ﺤﺴﺎﺏ ﺒﻌﺽ ﺍﻟﺤﺠﻭﻡ ﻤﺒﺭﻫﻨﺔ :ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a . Iﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ Iﺤﻴﺙ a < b :(O ; r , r ) ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ (C ). i j) ( Dﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) (Cﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ: y=0 , x=b , x=aﺇﻥ ﺤﺠﻡ ﺍﻟﺠﺯﺀ ﺍﻟﻤﺘﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ Dﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻤﻘﺩﺭ ﺒﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ ﻴﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ) ( b ⎡⎣ f ( x )⎦⎤ 2 d x : V=∫π a ﻤﺜﺎل : 1 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f ( x ) = x 2 : . ( Oﻭ ﻟﺘﻜﻥ ) ( Dﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ; r , r ) ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ (C ) ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ i jﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ) (Cﺍﻟﻭﺤﺩﺓ ( cmﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﻫﺎ: y = 0 , x = 1, x = 0ﺍﺤﺴﺏ ﺍﻟﺤﺠﻡ Vﺍﻟﻤﺘﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ Dﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل( ). ﺍﻟﺤل : (1ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ :(C) y 2 1 D x-2 -1 0 12 -1
(2ﺤﺴﺎﺏ ﺍﻟﺤﺠﻡ : V 12V = ∫ π ⎣⎡ f ( x )⎦⎤ d x 0 ( )∫ ∫1V=π x 2 2 d x = π 1 x 4dx 00V=π ⎡ x5 ⎤1 ⎢ 5 ⎥ ⎣ ⎦0V=π ⎡ (1 )5 − ⎤ (0 )5 = π ⎡ 1 ⎤ 3 ⎢ ⎥ ⎢⎣ 5 ⎦⎥ cm ⎢⎣ 5 5 ⎦⎥=V π cm 3 5 ﻤﺜﺎل : 2 =)f (x x : f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ 4x3 + 1 -1ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ + ﻭ ﻟﻴﻜﻥ Cﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). ﻨﻔﺭﺽ ) ( Dﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺤﻨﻰ ) (Cﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ . y = 0 , x = 1 , x = 0 : -ﺍﺤﺴﺏ ﺍﻟﺤﺠﻡ ﺍﻟﻤﺘﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ ) ( Dﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . ﺍﻟﺤل : -1ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : y0,5 0 0,5 1 1,5 2 x
-2ﺤﺴﺎﺏ ﺍﻟﺤﺠﻡ : 1 V = ∫ π ⎡⎣ f ( x )⎤⎦ 2 d x 0 1 2 dx = π 0 12 1V =π ∫ ( ) ∫ ( )0 x2 12 x 2 2 dx 4x3 + 1 4x3 + 1 π 1 12x 2 π ⎡ −1 ⎤1 12 0 4x 3 + 1 1 2 ⎣⎢ 4 x 3 + 1 ⎦⎥ 0∫ ( )V= 2 dx =V = π ⎛⎡ −1 ⎞ − ⎛ −1 ⎤⎞ = π ⎛ −1 + 1 ⎞ 12 ⎜⎝ ⎣⎢ 5 ⎟⎠ ⎝⎜ 1 ⎦⎥ ⎠⎟ 12 ⎝⎜ 5 ⎠⎟ V = π cm 3 ﻭﻋﻠﻴﻪ : V = π × 4 ﺇﺫﻥ : 15 12 5 ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺍﻟﺘﻁﺒﻴﻕ : 1 (1ﺃﻨﺸﺊ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ Cﻟﻠﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( ): f )(x = ln ⎛ ex − 1 ⎞ ⎜ ex + 1 ⎟ ⎝ ⎠ 2 (2ﺍﺤﺴﺏ ﺍﻟﺘﻜﺎﻤل ﺍﻵﺘﻲ ∫ f (x) dx : 1 ﺍﻟﺤل : (1ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ : ﻭﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ fﻓﻲ y1ﻜﻤﺎ ﻴﻠﻲ: (2ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﻭﻨﺩﺨل ﺍﻷﺭﻗﺎﻡ ﺍﻟﺘﺎﻟﻴﺔ:
(3ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ (4ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﺜﻡ ﻋﻠﻰ ﺍﻟﺯﺭ ﺜﻡ ﻨﺨﺘﺎﺭ ﺍﻟﻌﺩﺩ 7 ﺜﻡ ﻨﺼﺎﺩﻕ ﺒﺎﻟﺯﺭ ﻓﻴﻅﻬﺭ ﺍﻟﻤﻨﺤﻨﻰ ﻋﻠﻴﻪ ﻨﻘﻁﺔ ﺜﻡ ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﻌﺩﺩ 1ﻭ ﻨﺼﺎﺩﻕ ﺒـ ﻓﺘﻅﻬﺭ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻤﻘﺎﺒﻠﺔ : ﺍﻟﻌﺩﺩ 1ﻫﻭ ﺤﺩ ﺍﻷﺩﻨﻰ ﻟﻠﺘﻜﺎﻤل (6ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﻌﺩﺩ 2ﻭ ﻨﺼﺎﺩﻕ ﺒـ ﻓﺘﻅﻬﺭ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻤﻘﺎﺒﻠﺔ : ﺍﻟﻌﺩﺩ 2ﻫﻭ ﺤﺩ ﺍﻷﻋﻠﻰ ﻟﻠﺘﻜﺎﻤل2ﻓﻨﺠﺩ ∫ f ( x ) d x = − 0 , 4 7 6 1 7 7 2 :1
( )1 ﺗﻄﺒﻴﻖ : 2ﺤﺴﺎﺏ (1ﻨﻨﻘﺭ ﻋﻠﻰ x 2 − 1 dxﺒﺎﺴﺘﻌﻤﺎل ∫sinequanon -1 (2ﻨﻜﺘﺏ ﺤﺩﻭﺩ ﺍﻟﺘﻜﺎﻤل (3ﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﻓﺘﻅﻬﺭ ﺍﻟﻨﺘﻴﺠﺔ (5ﻨﻨﻘﺭ ﻋﻠﻰ ﻓﻴﻅﻬﺭ ﺍﻟﺭﺴﻡ ﺃﺩﻨﺎﻩ: 1 1 2 3 4x y Intégrale = -1,33333-1 0 -1
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ 1 ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ ﻤﻊ ﺍﻟﺘﻌﻠﻴل : b (1ﺍﻟﻌﺩﺩ f x dxﻴﻤﺜل ﻤﺴﺎﺤﺔ ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ) ( ∫ a ﺍﻟﻤﺠﺎل [ ]. a ; b∫⎡ − 1 ⎤ 2 2 1 (2ﺍﻟﺘﻜﺎﻤل −2 x2⎣⎢ x ⎦⎥ − 2 = −1 ﻴﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ : dxb bb∫ ⎣⎡α f ( x ) + β g ( x )⎤⎦dx = α ∫ f ( x ) dx + β ∫ g ( x ) dx (3a aa (4ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﺘﺤﻘﻕ f x > 1ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [0 ; 1ﻓﺈﻥ ( ): 1 ∫ f (x )dx > 1 0 22 ( )∫ ∫x 2 + 2 dx > x 2dx (5 11 ( )∫1 x 4 + x 2 + 1 d x > 0 (6 0 f (7ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ ]1 ; 443 41 ∫ f ( x )d x = ∫ f ( x )d x + ∫ f ( x )d x21 3 b ∫a − b ≤ sin xdx ≤ b − a (8 a α ∫ x5dx = 0 (9 −α
aa ∫ ∫x4dx = 2 x4dx (10 −a 0 3π 2π ∫ sin xdx = ∫ sin xdx (11 π0 bb ∫ xf (x )dx = x ∫ f (x )dx (12 aa ﺍﻟﺘﻤﺭﻴﻥ 2 x2 + 1 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ x2 − 1 2 : =x( ) ( )f -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f -2ﺒﻴﻥ ﺃﻨﻪ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ f xﻋﻠﻰ ﺍﻟﺸﻜل ( ):f ( )x = ( a + ( b x − 1)2 x + 1)2 aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ . -3ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [−∞ ; − 1. y=0 −2 -4ﺃﺤﺴﺏ ﺍﻟﺘﻜﺎﻤل ∫ ( )f x dx −3 -5ﺍﺴﺘﻨﺘﺞ sﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ f ﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ , x = −3, x = −2 :
( )∫3 2 3 ﺍﻟﺘﻤﺭﻴﻥ ( x + 1) dx : ﺍﺤﺴﺏ ﺍﻟﺘﻜﺎﻤﻼﺕ ﺍﻵﺘﻴﺔ x2 + 2x (2 11 ( )∫ 1 − 4 x + x 3 dx (1 −1 ∫2 1 (4 ∫0 1 (3 dx 1 3x + 2 −1 x + 2dx∫1 2 e 2 x + e x 1dx (6 π (5 e2x + ex + ∫2 c o s x−1 0 (1 + sin x )2 d x3 x+2 π ∫2∫ ( )−4 x 2 + 4 x + 10 2 dx (8 3 sin x cos x dx (7 −π 2 2 2 π 0 ∫(10 4 tan x (9 dx ∫ cos3 xdx − π cos x 4 −π 4 ﺍﻟﺘﻤﺭﻴﻥ : ﺍﺤﺴﺏ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ ﺍﻟﺘﻜﺎﻤﻼﺕ ﺍﻵﺘﻴﺔ ∫1 x 1d x (2 π x+ 0 ∫ ( 2 x − 3 )cos xdx (1 π 2 π ∫2 (4 2 (3 x 2 cos xdx 0 ∫ ln xdx 1
ﺍﻟﺘﻤﺭﻴﻥ 5 π 2 ﻨﻌﺘﺒﺭ ﺍﻟﺘﻜﺎﻤل ∫In = xn sin xdx : 0 (1ﺍﺤﺴﺏ ﻜل ﻤﻥ . I1 , I0 . In+1 ; I (2ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ ﺒﻴﻥ n ﺍﺴﺘﻨﺘﺞ . I3 , I2 ﺍﻟﺘﻤﺭﻴﻥ 6 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ . f ( x ) = x : 1 − x2ﺤﻴﺙ (O ; r , r ) ﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ) ( Cﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ f (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ i j ﺍﻟﻭﺤﺩﺓ ﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل 2cmﻭ ﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . 1cm (2ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ( C y=0 , x = 1 , ﻭ ﺒﺎﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ x = 0 : 2 ﺍﻟﺘﻤﺭﻴﻥ 7 (1ﺃﻨﺸﺊ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﺍﻟﺘﻤﺜﻴﻠﻴﻥ ﺍﻟﺒﻴﺎﻨﻴﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ fﻭ gﺤﻴﺙ : g (x )= x3 − 1 , f (x )= x2 + 3 (2ﺍﺩﺭﺱ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻴﻴﻥ ) ( C fﻭ ) . ( C g (3ﺍﺤﺴﺏ Sﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻴﻴﻥ ( )C f ﻭ ) ( C gﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = 3 , x = 2 ﺍﻟﺘﻤﺭﻴﻥ 8 f = ) (x 1 1 ﺤﻴﺙ : f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ + ln x – 1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f – 2ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ) (Cﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ r r ( ).O ; i , j
– 3ﻟﺘﻜﻥ sﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ( )C fﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ y = 0 , x = 1 , x = e -ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻤﺴﺎﺤﺔ . s ﺍﻟﺘﻤﺭﻴﻥ 9 –1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f x = 1 + cos x :ﻋﻠﻰ) ( ﺍﻟﻤﺠﺎل 0 ; πﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ Cﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ] [ ) ( ﻤﺘﺠﺎﻨﺱ ) ﺍﻟﻭﺤﺩﺓ ﻫﻲ . ( cm –2ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ) ( Dﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ( )C fﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ y = 0 , x = π , x = 0 : –3ﺍﺤﺴﺏ Dﺤﺠﻡ ﺍﻟﺠﺴﻡ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﺒﺩﻭﺭﺍﻥ ﺤﻭل ﻤﺤﻭﺭ) ( ﺍﻟﻔﻭﺍﺼل . ﺍﻟﺘﻤﺭﻴﻥ 10ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f ( x ) = x 3 − x : –1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ γﻓﻲ ﻤﻌﻠﻡ) ( r rOﺍﻟﻭﺤﺩﺓ ﻫﻲ ( ). cm;i,jﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ –2ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ ( )g ( x ) = a x 2 + b x + c 3 − x : -ﻋﻴﻥ aﻭ bﻭ cﺤﺘﻰ ﺘﻜﻭﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [. −∞ ; 3 –3ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﺤﺔ Aﻟﻠﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ Dﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ( ) ( )γﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ . y = 0 , x = 0 , x = 3 : –4ﺍﺤﺴﺏ ﺤﺠﻡ ﺍﻟﺠﺴﻡ ﺍﻟﻤﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ γﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ( ). ﺍﻟﺘﻤﺭﻴﻥ 11ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f ( x ) = ln xﻭﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞] [. 0 ; + x
–1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ) (γﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ( Oﺍﻟﻭﺤﺩﺓ ﻫﻲ . cm ; r , r ﻤﺘﺠﺎﻨﺱ ) i j ∫. 4 ln x –2ﺍﺤﺴﺏ ﺍﻟﺘﻜﺎﻤل : dx 1x –3ﺍﺤﺴﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ] . [1; 4 ﺍﻟﺘﻤﺭﻴﻥ 12 =) f (x 1 x − 1+ 1 ln x −1 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : 4 2 r r ( ).O; i , j ) ( C fﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ –1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ . –2ﺒﻴﻥ ﺃﻥ ) ( C fﻴﻘﻁﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻓﻲ ﻨﻘﻁﺔ ﻓﺎﺼﻠﺘﻬﺎ α . 5 < α < 3 ﺤﻴﺙ : 2 –3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻰ C fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ( ) ( )0 –4ﺍﺩﺭﺱ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ C fﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ) ( . =y 1 x ﻤﻌﺎﺩﻟﺘﻪ : 4 –5ﺃﻨﺸﺊ ∆ ﻭ ( ) ( ). C f –6ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﺤﺔ ) s (αﻟﻠﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ( C f.y =4 ,x =α ,y = 1 ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ : 4x( ). 1 –7ﺒﻴﻥ ﺃﻥ Cm2 :s (α =) 4 −α 2 − 7α − 6 ln 3 + 20
ﺍﻟﺤـﻠــﻭل ﺍﻟﺘﻤﺭﻴﻥ 1 (1ﺨﺎﻁﺌﺔ : ﺤﺘﻰ ﺘﻜﻭﻥ ﻤﺴﺎﺤﺔ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ fﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] [a ; b b ﻓﻴﻜﻭﻥ . ∫ f ( x )d x > 0 a (2ﺨﺎﻁﺌﺔ : ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ 0 xa 1 ﻷﻥ ﺍﻟﺘﻜﺎﻤل ﻏﻴﺭ ﻤﻭﺠﻭﺩ ﻟﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ x2 ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ] . [− 2 ; 2 (3ﺼﺤﻴﺤﺔ ﻷﻥ:b bb∫ ⎡⎣ α f ( x ) + β g ( x )⎦⎤d x = ∫ α f ( x )d x + ∫ β g ( x )d xa aa bb = α ∫ f ( x )d x + β ∫ g ( x )d x aa (4ﺼﺤﻴﺢ ﻷﻥ: bb f ( x ) > 1ﺃﻱ ∫ f ( x ) dx > ∫ dx : aa 11 ]1 0 ﻭﻋﻠﻴﻪ ∫ f ( x ) dx >1 : ∫ f ( x)dx > [ x ﺃﻱ ﺃﻥ : 00 (5ﺼﺤﻴﺢ ﻷﻥ: ∫ ( ) ∫2 2 ﻭﻤﻨﻪ : x2 + 2 > x2 x2 + 2 dx > x2dx 11 (6ﺼﺤﻴﺢ ﻷﻥ: x4 + x2 +1> 0ﻋﻠﻰ 0 ; 1ﻭﻋﻠﻴﻪ ( ) [ ]∫1 x 4 + x 2 + 1 dx > 0 :0
(7ﺼﺤﻴﺢ ﻷﻥ: 34 4 ∫ f ( x )d x + ∫ f ( x )d x = ∫ f ( x )d xﻤﻥ ﺨﻭﺍﺹ ﺍﻟﺘﻜﺎﻤل . 131 (8ﺼﺤﻴﺢ ﻷﻥ: b −1 ≤ sin x ≤ 1ﻭﻋﻠﻴﻪ −1(b − a ) ≤ ∫ sin xdx ≤ 1(b − a ) : a b ﺇﺫﻥ ∫a − b ≤ sin xdx ≤ b − a : a α (9ﺼﺤﻴﺢ ﻷﻥ :ﺍﻟﺩﺍﻟﺔ x a x5ﻓﺭﺩﻴﺔ ﻭﻋﻠﻴﻪ ∫ x5dx = 0 : −α (10ﺼﺤﻴﺢ ﻷﻥ :ﺍﻟﺩﺍﻟﺔ x a x 4ﺯﻭﺠﻴﺔ ﻭﻋﻠﻴﻪ : αα ∫ x 4dx = 2∫ x 4dx −α 0 2πﺩﻭﺭ ﻟﻠﺩﺍﻟﺔ x a sin x (11ﺼﺤﻴﺢ ﻷﻥ : 3π π +2π 2π ﻭﻋﻠﻴﻪ ∫ sin xdx + ∫ f ( x ) dx = ∫ f ( x ) dx : π 0+π 0 (12ﺨﻁﺄ ﻷﻥ x :ﻤﺘﻐﻴﺭ ﻭ ﻟﻴﺱ ﺜﺎﺒﺕ . ﺍﻟﺘﻤﺭﻴﻥ 2 –1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ :ﻟﺩﻴﻨﺎ D f = x ∈ : x 2 − 1 ≠ 0 :ﺤﻴﺙ { }D f = − {−1 ; 1} :[ ∞ D f = ]− ∞ ; - 1 [ U ]− 1 ; 1 [ U ]1 ; +f ( x ) = ( a + ( b –2ﻜﺘﺎﺒﺔ ) f ( xﻋﻠﻰ ﺍﻟﺸﻜل : x − 1)2 x + 1)2 f =)(x a ( x + 1 )2 + b ( x − 1 )2 ﻟﺩﻴﻨﺎ : ( x + 1 )2 ( x − 1 )2
x2 + 2x + 1 + b x2 − 2x + 1 2 ⎣⎡( x + 1 ) ( x − 1 )⎤⎦ 2 ( ) ( )f ( x ) = a f (x)= (a + b)x2 + (2a − 2b) x + a + b (x2 − 1) ⎧ a=b : ﻭﻤﻨﻪ ⎧ a+b=1 : ﺇﺫﻥ ⎪ ⎪ ⎨ 2a = 1 ⎨ 2 a − 2b = 0 ⎩⎪ a + b = 1 ⎪⎩ a + b = 1 11 : ﻭﻤﻨﻪ ⎧ a = 1 : ﻭﻋﻠﻴﻪ ⎪⎪ 2 f (x )= 2 + 2 ⎨ (x (x 1 − 1 )2 − 1 )2 ⎪ b = 2 ⎪⎩ 11 f (x )= (x 2 + (x 2 : ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ-3 − 1 )2 + 1 )2 f (x ) = 1 × (x 1 + 1 × (x 1 : ﻭﻤﻨﻪ 2 2 : ﻭﻋﻠﻴﻪ − 1 )2 + 1 )2 g (x )= 1 × −1 + 1 × −1 +c 2 x −1 2 x +1 g (x )= 1 ⎡ −1 − x 1 ⎤ +c , c∈ 2 ⎢⎣ x − 1 + 1 ⎥⎦ −2 ∫ f ( x ) dx : – ﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤل4 −3 = ⎡ 1 × −1 − 1 × 1 ⎤ −2 ⎣⎢ 2 x −1 2 x + 1 ⎦⎥ − 3= ⎡ 1 × −1 − 1 × 1 ⎤ − ⎡ 1 × −1 − 1 1⎤ ⎢⎣ 2 −3 2 −2 + 1 ⎥⎦ ⎢⎣ 2 −3 − 1 2 − 3 + 1 ⎦⎥ = 1 + 1 − 1 − 1 = 4 + 12 − 3− 6 = 7 6 2 8 4 24 24
– 5ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻤﺴﺎﺤﺔ : ﻭﻤﻨﻪ f ( x ) > 0 : x2 + 1 ﻟﺩﻴﻨﺎ : x2 − 1 2 = ) ( )f ( x s = 7 ﺇﺫﻥ : −2 24 us ﻭﻤﻨﻪ s = ∫ f ( x ) dx : −3 :usﺘﻌﻨﻲ ﻭﺤﺩﺓ ﻤﺴﺎﺤﺔ . ﺍﻟﺘﻤﺭﻴﻥ 3 ﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤﻼﺕ : 1 (1ﻟﺩﻴﻨﺎ ( )∫ 1 − 4 x + x 3 d x : −1= ⎡ x − 2 x2 + x4 ⎤1 = ⎛ 1 − 2 + 1 ⎞ − ⎛ −1 − 2 + ⎞1 ⎢ 4 ⎥ ⎝⎜ 4 ⎟⎠ ⎝⎜ ⎟⎠ 4 ⎣ ⎦ −1 = −1 + 1 + 3 − 1 = 2 4 4( ) ( )∫ ∫3 2 1 3 2 2 1 )( x + 1 dx dx1 x2 + 2x = (2x + )2 x2 + 2x (2ﻟﺩﻴﻨﺎ: =) (⎡1 1 3⎤3 ⎣⎢ 2 × 3 x 2 + 2x ⎦⎥ 1 = 1 (15 ) − 1 = )(3 5 − 1 = 2 6 6 2 2 ∫0 x 1 2dx = ⎡⎣ ln x + 2 ⎤⎦ 0 1 = ln 2 − 0 = ln 2 (3ﻟﺩﻴﻨﺎ : + − −1 ∫ ∫2 1 22 3 (4ﻟﺩﻴﻨﺎ : 1 3x + 2dx = 3 1 2 3x + 2 dx = ⎡ 2 3x + 2 ⎤ 2 = 2 8 − 2 5 ⎣⎢ 3 ⎦⎥ 1 3 3 = 42 − 25 = 4 2−2 5 3 3 3
ππ ∫2 cos x ⎡ −1 ⎤ 2 1 1 = ⎣⎢ 1 + sin x ⎥⎦ 0 = − 2 +1= 2 : ( ﻟﺩﻴﻨﺎ5 0 (1 + sin x )2 dx ∫ ( )2 2e 2x + ex 2 ex + − −1 2x + e 1d x = ⎣⎡ln e 2x + e x + 1 ⎦⎤ 1 : ( ﻟﺩﻴﻨﺎ6 ( ) ( )= l n e 4 + e 2 + 1 − l n e − 2 + c − 1 + 1 = ln e4 + e2 + 1 e −2 + e −1 + 1 π ∫ ∫π 3 sin x cos x dx = 3 2 2 sin x cos x dx : ( ﻟﺩﻴﻨﺎ7 2 2 2 2 −π 2 2 −π 22 π = 3 2 sin xdx = 3 [ − c o s x ] 2 2 ∫ −π 2 = 3 [0 + 0]= 0 2 3 x+2 : ( ﻟﺩﻴﻨﺎ8 ∫ ( )− 4 x 2 + 4 x + 1 0 2 d x −2 = ∫ ( ) ∫ ( )−4 x+2 3 x+2 x2 + 4 x + 10 x 2 + 4 x + 10 2dx 2dx + −2 −2 3 = ∫ ( ) ∫ ( )−4 −(x + 2) 2dx + x+2 x 2 + 4 x + 10 2dx x2 + 4 x + 10 −2 1 −2 13 2 −2 ∫ ( ) ∫ ( )= − 2 −4 2x + 4 2 dx + 2x + 4 x2 + 4 x + 10 x2 + 4 x + 10 2 dx= ⎡ −1 ⎛ x 2 + −1 + 10 ⎞ ⎤ −2 + ⎡1 × ⎛ x 2 + −1 + 10 ⎞⎤3 ⎣⎢ 2 ⎝⎜ 4x ⎠⎟ ⎦⎥ − 4 ⎣⎢ 2 ⎝⎜ 4x ⎠⎟ ⎦⎥ − 2 = ⎡ −1 × 1 − 1 × 1⎤ + ⎡1 × −1 + 1 × 1⎤ ⎣⎢ 2 6 2 1 0 ⎥⎦ ⎢⎣ 2 31 2 6 ⎥⎦
= 1 − 1 − 1 + 1 = 1 − 1 − 1 12 20 62 12 6 20 62 = 310 − 93 − 60 = 157 1860 1860 ππ π ∫ ∫ ∫4tan xdx 4 sin x 4 − sin x : ( ﻟﺩﻴﻨﺎ9 cos x cos2 x dx = cos2 dx = − x − π − π − π 4 4 4 −1 ππ cos x ⎡1 = − ⎡ ⎤4 = ⎣⎢ co s x ⎤4 ⎢⎣ ⎦⎥ ⎥⎦ − π − π 4 4 = 1 − 1 = 1 − 1 =0 2 2 c o s π cos ⎛ − π ⎞ 4 ⎜⎝ 4 ⎟⎠ 2 2 00 ∫ ∫cos 3 xd x = cos x . cos 2 xd x : ( ﻟﺩﻴﻨﺎ10 −π −π 0 = ∫ cos x (1 − sin2 x)dx −π ( )∫= 0 c o s x − c o s x . s i n 2 x d x −π 1 π 1 2 3 3 3 = ⎡ s i n x − sin 3 x ⎤2 = ⎛ 1 − ⎞ − (0 − 0) = ⎢⎣ ⎦⎥ − π ⎝⎜ ⎟⎠ 4 ﺍﻟﺘﻤﺭﻴﻥ : ﺍﻟﺘﻜﺎﻤل ﺒﺎﻟﺘﺠﺯﺌﺔ π : ( ﻟﺩﻴﻨﺎ1 ∫ (2 x − 3 )cos xdx π 2bb b∫ f ′(x )g (x )dx = ⎡⎣ f ( x ) . g ( x ) ⎦⎤ a − ∫ g′( x ) f ( x )dxaa g ( x ) = 2 x − 3 ﻭf ′ ( x ) = co s x : ﺒﻭﻀﻊ g ′ (x ) = 2 ﻭf ( x ) = sin x :ﻨﺠﺩ
ππ π ∫ (2x − 3)cos xdx = ⎡⎣( 2 x − 3 )sin x ⎤⎦ π − 2∫ sin xdx : ﺇﺫﻥ π 2π 22 = ⎣⎡ ( 2 x − 3 )sin x ⎤⎦ π − 2 [−cosx ]π π π 22 = ⎣⎡ ( 2 x − 3 )sin x + 2 cos x ⎤⎦ π π 2 = (−2 ) − (π − 3 ) = 1 − π ∫1 x : ( ﻟﺩﻴﻨﺎ2 dx 0 x +1bb b∫ f ′( x) g ( x)dx = ⎣⎡ f ( x ) . g ( x ) ⎦⎤ a − ∫ g′( x) f ( x)dxaa g (x ) = x ﻭf ′(x ) = 1 : ﺒﻭﻀﻊ x+1 g ′ ( x ) = 1 ﻭf ( x ) = 2 x + 1 : ﺇﺫﻥ ∫ ∫1 x 1d x = ⎣⎡ 2x x + 1 ⎦⎤ 1 − 1 2 x + 1d x x+ 0 0 0 11 = 2 2 − 2∫ ( x + 1)2dx 0 ⎡ 3 ⎤1 ⎢ ( + 1)2 ⎥ =2 2 − 2 ⎢ x ⎥ 3 ⎥ ⎢ ⎦0 ⎣ 2 =2 2 − ⎡4 (x + 1) x + 1 ⎤ 1 ⎢⎣ 3 ⎥⎦ 0 =2 2 − 4 ⎣⎡ 2 2 + 2 ⎦⎤ = − 2 2 + 4 3 3 3 2 ∫ ln xdx : ( ﻟﺩﻴﻨﺎ3 1bb b∫ f ′( x ) g ( x )dx = ⎣⎡ f ( x ) . g ( x ) ⎦⎤ a − ∫ g′( x ) f ( x )dxaa
g ( x ) = ln x ﻭf ′ ( x ) = 1 : ﺒﻭﻀﻊ g ′ ( x ) = 1 ﻭf ( x ) = x : ﻨﺠﺩ x 22 ]2 ∫ ln xdx = [x ln − ∫ 1d x x1 11 = [ x ln ]2 − [ x ]2 = [ x ln x − ]2 1 x1 x1 = ( 2 l n 2 − 2 ) − (1 l n 1 − 1 ) = 2 ln 2 − 1 : ( ﻟﺩﻴﻨﺎ4 π 2 ∫ x2 cos xdx 0bb b∫ f ′( x) g( x ) dx = ⎣⎡ f ( x ) . g ( x ) ⎦⎤ a − ∫ g′( x) f ( x)dxaa g ( x) = x2 ﻭf ′( x) = cos x : ﺒﻭﻀﻊ g′( x) = 2x ﻭf ( x) = sin x : ﻨﺠﺩ ππ 2 π2 ∫ ∫x2 ⎣⎡ x2 cos xdx = sin x ⎤⎦ 2 − 2 x sin xdx : ﻭﻤﻨﻪ 0 00 π ∫= π2 − 2 x sindx 4 2 0 π 2 ∫: x sin xdx ﺤﺴﺎﺏ- 0 π 2b b ∫ f ′( x) g( x ) dx = ⎡⎣ f ( x).g( x) ⎦⎤ a − ∫ g′( x) f ( x) dx : ﻟﺩﻴﻨﺎ 0a g ( x ) = x ﻭf ′( x) = sin x : ﺒﻭﻀﻊ
g′( x) = 1 ﻭf ( x) = − cos x : ﻨﺠﺩ ππ 2 π2 [− x cos ]x ∫ ∫xsin = 2 + cos xdx xdx 0 : ﺇﺫﻥ 00 0 + [sin ]x π =1 = 2 0 π ∫2 x 2 cos xdx = π2 − 2 : ﻭﻤﻨﻪ 4 0 5 ﺍﻟﺘﻤﺭﻴﻥ : I0 ( ﺤﺴﺎﺏ1 π 2π ∫I 0 = sin [− cos ]2 1 xdx = x 0 = 0 π 2 ∫I 1 = x sin xd x : I1 ﺤﺴﺎﺏ- 0 bb b ∫ f ′( x) g ( x)dx = ⎡⎣ f ( x ) . g ( x ) ⎦⎤ a − ∫ g′( x) f ( x)dx : ﻟﺩﻴﻨﺎ aa g ( x ) = x ﻭf ′ ( x ) = sin x : ﺒﻭﻀﻊ g ′ ( x ) = 1 ﻭf ( x ) = − c o s x : ﻨﺠﺩ ππ ∫ ∫2 π 2 [− ]2 : ﺇﺫﻥ x sin xdx = x cos x 0 + cos xdx = 1 00 I1 = 1 : ﻭ ﻤﻤﺎ ﺴﺒﻕ π 2 ∫In+1 = xn+1 sin xdx : In+1 ﻭIn ( ﺇﻴﺠﺎﺩ ﻋﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ ﺒﻴﻥ2 0bb b∫ f ′(x )g (x )dx = ⎡⎣ f ( x ) . g ( x )⎤⎦ a − ∫ g′( x ) f (x )dxaa g (x ) = x n+1 ﻭf ′ ( x ) = sin x : ﺒﻭﻀﻊ
g ′ ( x ) = ( n + 1 ) x n ﻭf ( x ) = − c o s x : ﻨﺠﺩ ππ 2 π2 : ﻭﻤﻨﻪ ∫ ∫x n + 1 s i n n+1 xdx = ⎡⎣ x cos x ⎦⎤ 2 − (n + 1) x n cos xdx 0 00 +1 π ⎛ ⎛ π ⎞ n π ⎞ 2 ⎜⎜⎝ ⎜⎝ 2 ⎠⎟ 2 ⎠⎟⎟ 0 cos 0 cos 0 (n 1) xn cos xdx ∫= − − + π 2 = − (n + 1 )∫ x n cos xdx 0 π 2 ∫ x n cos xdx : ﺤﺴﺎﺏ- 0 b f ′(x )g (x )dx = ⎣⎡ f ( x ) . g ( x ) ⎦⎤ b − b (x )dx : ﻟﺩﻴﻨﺎ a ∫ ∫ g′(x) f aa g ( x ) = x n ﻭf ′ ( x ) = co s x : ﺒﻭﻀﻊ g′ ( x ) = nx n−1 ﻭf ( x ) = sin x : ﻨﺠﺩ ππ 2 π2 x n −1 sin xd x : ﻭﺒﺎﻟﺘﺎﻟﻲ sin ∫ ∫x n c o s x d x = ⎣⎡ x n x ⎤⎦ 2 − n 0 00 π ∫2 ⎛ π ⎞ n π ⎝⎜ 2 ⎠⎟ 2 0 x n cos xdx = sin − 0− n .I n-1 : ﺃﻱ π ∫2 x n cos xdx = ⎛ π ⎞n − n I n-1 : ﻭﻤﻨﻪ ⎝⎜ 2 ⎠⎟ 0 I n+1 = − (n + 1 ) ⎡ ⎛ π ⎞n − ⎤ : ﺇﺫﻥ ⎢ ⎜⎝ 2 ⎠⎟ n I n-1 ⎥ ⎣⎢ ⎦⎥ I n+1 = − (n + 1 ) ⎛ π ⎞n + n (n + )1 I n -1 : ﻭ ﻤﻨﻪ ⎝⎜ 2 ⎠⎟ : I3 ﻭI2 ﺍﺴﺘﻨﺘﺎﺝI2 = − 2 ⎛ π ⎞1 + 2I0 = −π + 2 ⎜⎝ 2 ⎠⎟
I3 = − 3 ⎛ π ⎞2 + 6I1 = − 3π 2 + 6 ⎝⎜ 2 ⎠⎟ 4 6 ﺍﻟﺘﻤﺭﻴﻥ {D f = x ∈ : 1 − x 2 > 0 } : f – ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ1 x −∞ −1 1 +∞ 1− x2 -+ - D f = ]− 1 ; 1 [ : ﻭ ﻤﻨﻪ • lim f ( x ) = − ∞ lim f ( x ) = + ∞ > < x → −1 x→ 1 1× 1 − x2 − x × −2 x 1 − x2 1 − x2 f ′(x) = 1 − x2 + 2x f ′(x) = 1 − x2 ( )= 1 + x 2 1 − x2 1 − x2 1 − x2 ]− 1 ; 1[ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰf ﻭﻋﻠﻴﻪf ′ ( x ) > 0 : ﻭﻤﻨﻪ x −1 1 f ′(x ) + f (x) +∞ −∞
ﻫﻨﺎﻙ ﻓﺭﻋﻴﻥ ﻻ ﻨﻬﺎﺌﻴﻴﻥ ﻭﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻘﺎﺭﺒﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = −1 ﻭ . x=1 y 0,5 x 0 0,5 –2ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ : 11 ∫ ∫2 2 x dx= S = f (x )dx 0 0 1 − x2 11 2 dx = − ∫ ∫1 2 −2 x −2 x dxS =−2 0 1 − x2 0 2 1 − x2 ⎛1 ⎛ 1 ⎞2 ⎞ ⎝⎜⎛ ⎟⎠⎞ 1 − ( 0 )2 ⎡ 1− 2 ⎤2 ⎜− 1 ⎜⎝ 2 ⎟⎠ ⎟S = ⎣ − x ⎦0 = ⎜⎝ − ⎠⎟ − −S = ⎛ 2 − 3 ⎞ × 4cm 2 ﻭﻋﻠﻴﻪ : ⎛ 3 + 1 ⎞ × 4cm 2 ﻭﻤﻨﻪ : ⎝⎜⎜ 2 ⎠⎟⎟ S = ⎜⎝⎜ − 2 ⎠⎟⎟ ﺇﺫﻥ ( )S = 2 2 − 3 cm 2 :
ﺍﻟﺘﻤﺭﻴﻥ 7 –1ﺇﻨﺸﺎﺀ ) ( C fﻭ ) : ( C g y 5 4 3 2 1 -2 -1 0 1 2x -1 -2 –2ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟـ ( C f ) :ﻭ ) : ( C g g (x )− f (x )= x 3 − 1 − x 2 − 3 = x 3 − x 2 − 4 ) = ( x − 2 )( x 2 + x + 2 g(x)− f (x)= 0 ﻤﻌﻨﺎﻩ x − 2 = 0 :ﻭﻤﻨﻪ x = 2 :ﻷﻥ x2 + x + 2 > 0 : ﻭﻋﻠﻴﻪ f ( x ) − g ( x ) > 0 :ﺘﻜﺎﻓﺊ x > 2 :ﺇﺫﻥ C f :ﺘﻘﻊ ﺘﺤﺕ C gﻓﻲ ﺍﻟﻤﺠﺎل) ( ∞ 2; +ﻭ ﺘﻘﻊ ﻓﻭﻕ C gﻓﻲ ﺍﻟﻤﺠﺎل) ( [ ] ) ( []−∞;2 –3ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ : ﻓﻲ ﺍﻟﻤﺠﺎل 2;3ﻟﺩﻴﻨﺎ C g :ﺘﻘﻊ ﻓﻭﻕ C fﻭﻤﻨﻪ ( ) ( ) [ ]: 3 S = ∫ ⎡⎣ g ( x ) − f ( x )⎦⎤d x 2 3 ⎡x4 x3 ⎤ 3 3 ⎥=∫ ( )S x3 − x2 − 4 dx = ⎢ 4 − − 4x ⎣ 2 ⎦2
S =⎢ ⎡ (3 )4 − (3 )3 − ⎤ − ⎡ 24 − 23 − 4 ( 2 )⎥⎤ ⎣⎢ ⎢ 4 3 4 3 4 (3 )⎥ ⎣ ⎦ ⎥⎦ S = 81 − 27 − 12 − 16 + 8 + 8 4 3 4 3 81 8 81 8 S = 4 − 9−4− 4+ 3 = 4 + 3 − 17 S = 243 + 32 − 204 = 71 ( u s ) 12 12 8 ﺍﻟﺘﻤﺭﻴﻥ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1 D f = { x ∈ : x > 0 ; 1 + lnx ≠ 0 } x = 1 : ﻭﻤﻨﻪl n x = − 1 : ﻤﻌﻨﺎﻩ1 + ln x = 0 e Df = ⎤ 0 ; 1⎡ U ⎤1 ; + ∞ ⎡ ⎦⎥ e ⎢⎣ ⎥⎦ e ⎣⎢( )lim f x = lim 1 = 0 > > 1 + ln x 0x→0 x→lim f (x) = lim 1 = −∞ <1 <1 1 + ln xx→ x→eelim f (x ) = lim 1 ln = +∞ >1 1> 1 + xx→ x→eelim f (x ) = lim 1 =0 x →+∞ 1 + ln xx →+∞ 1 − f ′(x) = x = −1 (1 + ln x )2 x (1 + ln x )2 ( ) ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥf : ﻭ ﻤﻨﻪf ′ x < 0 : ﻭﻋﻠﻴﻪ . ⎤ 0 ; 1⎡ ⎤ﻭ1 ; + ∞ ⎡ ﺍﻟﻤﺠﺎﻟﻴﻥ ⎦⎥ e ⎣⎢ ⎦⎥ e ⎣⎢
x 01 ∞+ e) f ′(x - -f (x) 0 ∞+ 0 ∞− –2ﺇﻨﺸﺎﺀ ) y = 0 , x = 1 : (Cﻤﻌﺎﺩﻟﺘﻲ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﻘﺎﺭﺒﻴﻥ . e –3ﺤﺼﺭ ﺍﻟﻤﺴﺎﺤﺔ : s<1 x<e ﺒﻤﺎ ﺃﻥ S = e f (x )dx = ∫e 1 dx x ∫ 1 1 + ln 1ﻓﺈﻥ 0 < l n x < 1 :ﻭﻤﻨﻪ 1 < 1 + l n x < 2 :
1 < f (x) < 1 ﻭﻋﻠﻴﻪ : 1 < 1 < 1 ﺇﺫﻥ :2 2 1 + ln x 1 (e ≤)− 1 e f (x )dx ≤ 1 (e )− 1 ﻭﻤﻨﻪ : 2 ∫ 1 1 (e − < )1 S < e − 1 ﻭﻋﻠﻴﻪ : 2 ﺍﻟﺘﻤﺭﻴﻥ 9 (1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ D f = [0 ; π [ : f f (0 ) = 2 , f (π ) = 0 f ′ ( x ) = − sin xﻭﻟﺩﻴﻨﺎ sin x > 0 :ﻓﻲ ﺍﻟﻤﺠﺎل ∞ ] [0 ; + x = πﻓﺈﻥ f ′( x) = 0 : ﻭﻤﻨﻪ f ′ ( x ) < 0 : ﺇﺫﺍ ﻜﺎﻥ x = 0 :ﺃﻭ x0 π f ′(x) 0 -0 f (x) 2 0
: – ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ2 ππ S = ∫ f ( x )d x = ∫ (1 + c o s x )d x 00 S =[x + sin x ]π = π cm 2 0 : – ﺤﺴﺎﺏ ﺍﻟﺤﺠﻡ3 π ⎡⎣ f ( x )⎤⎦ 2 d xV=∫π0 ππ( )V = ∫ π (1 + c o s x )2 d x = π ∫ 1 + 2 c o s x + c o s 2 x d x00 ∫π ⎛ 1 + 2 cos x + 1 + cos 2 x ⎞ d x ⎜⎝ 2 ⎠⎟V= π 0 ∫π ⎛ 3 + 2 cos x + 1 co s 2 x ⎞ d x ⎜⎝ 2 2 ⎟⎠V= π 0 V=π ⎡3 x + 2 sin x + 1 s in 2 x ⎤ ⎣⎢ 2 4 ⎥⎦ V = 3 π cm 3 2{: ﻭﻤﻨﻪD f = x ∈ : 3 − x ≥ 0} : ﻟﺩﻴﻨﺎ 10 ﺍﻟﺘﻤﺭﻴﻥ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1 D f = ]− ∞ ; 3 [ lim f ( x ) = lim x 3 − x = − ∞ x→ −∞ x→ −∞ lim f ( x ) = lim 3 − x = 0 < < x→3 x→3 f ′(x )= 3− x + x× 2 −1 3− x f ′(x) = 2(3 − x) − x = 6 − 3x 2 3− x 2 3− x x −∞ 2 3 -f ′(x) +
[2 ; 3 ] ] ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ− ∞ ]; 2 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎلf ﻭ ﻤﻨﻪ x −∞ 2 3f ′(x) 2 - + 0f (x ) −∞ : ﺍﻟﺭﺴﻡ ﺍﻟﺒﻴﺎﻨﻲ ﺒﺂﻟﺔ- ( )g ( x ) = a x 2 + b x + c 3 − x : c ﻭb ﻭa – ﺘﻌﻴﻴﻥ2( )g ′ ( x ) = ( 2 a x + b ) 3 − x + a x 2 + b + x + c × −1 2 3− x g′( x ) = 2 (2ax + b )(3 − x ) − (ax 2 + bx + c ) 2 3− x g′( x ) = (4ax + 2b)(3 − x ) − ax2 − bx − c 2 3− x g′(x ) = 12ax − 4ax2 + 6b − 2bx − ax2 − bx − c 2 3− x
g′(x) = −5ax 2 + (12a − 3b ) x + 6b − c × 3− x 2(3 − x ) f g: ﻭ ﻋﻠﻴﻪ ﻨﻜﻭﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ−5ax 2 + (12a − 3b ) x + 6b − c =x 6 − 2x −5ax 2 + (12a − 3b ) x + 6b − c = −2 x 2 + 6 x : ﻭ ﻤﻨﻪ ⎧ a = 2 : ﻋﻠﻴﻪ ﻭ ⎧ −5a = −2 : ﻭ ﻋﻠﻴﻪ ⎪ − 3 5 ⎪ 3b = ⎪ 24 = 6 ⎨ 1 2 a − 6 ⎪ 5 b ⎨ ⎩⎪ 6 b − c = 0 ⎪ ⎪ c = 6b ⎩⎪ c = − 12 ؛ b = − 2 ؛ a= 2 : ﻭﻤﻨﻪ 5 5 5 g (x )= ⎛ 2 x2 − 2 x − 12 ⎞ 3 − x : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ⎜⎝ 5 5 5 ⎠⎟ : A – ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ3 33 A = ∫ f (x )dx = ∫ x 3 − xdx 00 A = ⎡⎣ g (x ) ⎦⎤ 3 = g (3 ) − g (0 ) 0 ( )=2 2 5 32 − 3 − 6 3 − 3 − 3 (0 − 0 − 6) 3− 0A = 12 3 cm 2 5 ( )3 3 2 : – ﺤﺴﺎﺏ ﺍﻟﺤﺠﻡ4 V = ∫ π f 2 ( x )dx = π ∫ dx x 3− x 00 33( )V = ∫ x 2 ( 3 − x ) d x = π ∫ − x 3 + 3 x 2 d x 00 3⎡ x4 ⎤ 3 ⎡⎛ −81 ⎞ ⎤ ⎢− 4 ⎥ ⎣⎢ ⎜⎝ 4 ⎟⎠ ⎥⎦∫V = π + x 3 =π + 27 − 0 0⎣ ⎦0 V = 27π cm 3 4
ﺍﻟﺘﻤﺭﻴﻥ 11 -1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ D f = ]0 ; + ∞ [ : f lim f (x ) = 0ﻭ ∞ lim f ( x ) = lim 1 ln x = − > >x ∞x → +x→ 0 x→ 0 = )f ′(x 1 .x − lnx = 1 − ln x x x2 x2 g ′ ( x ) = 0ﺘﻜﺎﻓﺊ 1 − ln x = 0 :ﻭ ﻤﻨﻪ ln x = 1 :ﺇﺫﻥ x = e : 0e ∞+x1 − ln x + - ) f ′(x +- x ﻟﺩﻴﻨﺎ f ( e ) = 1 :ﻭﻤﻨﻪ:)f ′(x e ∞+ 0e +-)f (x 1 e −∞ e -ﺇﻨﺸﺎﺀ ﺍﻟﺒﻴﺎﻥ y = 0 ، x = 0 :ﻤﻌﺎﺩﻟﺘﻴﻥ ﻟﻠﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﺘﻘﺎﺭﺒﻴﻥ .
∫ ∫4 ln x = 4 1 (ln x )1 dx : ﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤل- dx 1 4 1x = ⎡ (ln x )2 ⎤ 4 = (ln 4 )2 − (ln 1 )2 = 2 (ln 2 )2 ⎢ ⎣⎢ 2 ⎥ 2 2 ⎦⎥ 1 : f – ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻠﺩﺍﻟﺔ3α ﻭﻤﻨﻪα = ∫1 3 f ( x )d x ﺃﻱα = ∫1 4 f ( x )d x : ﻭ ﻫﻭ ﺍﻟﻌﺩﺩ 31 4−1 1 α = 1 × 2 (ln 2 )2 3 g (x )= 2 (ln 2 )2 : ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ g ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ 3 12 ﺍﻟﺘﻤﺭﻴﻥ D f = {x ∈ : x − 1 ≠ 0} : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1 D f = ]− ∞ ; 1 [ U ]1 ; + ∞ [ : f lim f (x )= lim 1 x −1+ 1 ln x−1 4x → − ∞ 2 x → −∞ = lim 1 x −1+ 1 ln (− x + 1) 4 2 x → −∞ = lim (− x ⎡ 1 x − 1 ⎤ ⎢ x + 1 1 ln (− x + 1 )⎥ x → −∞ + 1 ) ⎢ 4 + 2 ⎥ = −∞ − −x +1 ⎥ ⎢ ⎣⎦lim f (x ) = lim 1 x −1+ 1 ln x −1 = −∞ < < 4 2x→ 1 x→ 1lim f (x ) = lim 1 x −1+ 1 ln x −1 = −∞ > > 4 2x→1 x → +∞lim f (x)= lim 1 x −1+ 1 ln x−1 = +∞ 4 2x→ +∞ x→ +∞f ′(x )= 1 + 1 1 = x −1+ 2 4 2× x −1 4(x − 1) f ′(x )= x+1 4 (x − 1)
∞x − ∞- 1 1 + - ++ x+1 - -+ x−1 + -+ ) f ′(x fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﺍﻟﻤﺠﺎﻟﻴﻥ ] ]− ∞ ; − 1 ﻭ ] ∞ ]1 ; +ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] ]− 1 ; 1 x ∞− -1 1 ∞+ + -) f ′(x + ) f (− 1 ∞+)f (x ∞−∞ −∞ − f (− 1 ) − 0 , 9 ﻭﻤﻨﻪ f = )(− 1 − 1 − 1+ 1 ln 2 4 2 -ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ :lim = )f (x lim 1 − 1 + )1 ln (− x + 1 4 x∞x → − x ∞x → − 2 −x = lim 1 − 1 + 1 × ×−x −1 ) ln (− x + 1 = 1 4 x 2 −x 4 ∞x → − −x +1lim f (x)− 1 x = lim ⎛ − 1 + 1 ln (− x + 1 ) ⎞ = ∞+ 4 ⎝⎜ 4 ⎟⎠∞x → − ∞x→ − y = 1 ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : 4x
ﺒﺠﻭﺍﺭ ∞− lim f = ) (x lim 1 − 1 + 1 )ln (x − 1 4 x 2 ∞x → + x ∞x → + x = lim 1 − 1 + 1 × ×x −1 ) ln (x − 1 = 1 4 x 2 x 4 ∞x → + x −1lim ⎡ f (x)− 1 x ⎤ = lim ⎛ − 1 + 1 ln ( x − 1 ) ⎞ = ∞+ ⎢⎣ 4 ⎦⎥ ⎜⎝ 2 ⎟⎠∞x→ + ∞x→ + y = 1 ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : 4x ﺒﺠﻭﺍﺭ ∞+ – 2ﺘﺒﻴﺎﻥ ﺃﻥ ) ( C fﻴﻘﻁﻊ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل : ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ . f ﺍﻟﺩﺍﻟﺔ ⎡ 5 ; 3 ⎤ ﻓﻲ ﺍﻟﻤﺠﺎل ⎢⎣ 2 ⎥⎦ = ) f (3 − 1 + 1 ln 2 ﻭ ﻟﺩﻴﻨﺎ : 4 2 f (3) 0,096 f ⎛ 5 ⎞ = − 3 + 13 ⎜⎝ 2 ⎟⎠ 8 2 ln 2 :f ⎛ 5 ⎞ ﻭ ﻤﻨﻪ ⎛ 5 ⎞ − 0,17 (3 ). f ⎜⎝ 2 ⎟⎠ < 0 f ⎝⎜ 2 ⎠⎟ ⎤5 ; 3 ⎡ ﻭ ﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ αﻤﻥ ﺍﻟﻤﺠﺎل ⎥⎦ 2 ⎣⎢ ﺒﺤﻴﺙ f (α ) = 0 : ﻭ ﻤﻨﻪ C fﻴﻘﻁﻊ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ( ). – 3ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ y = f ′ ( 0 ) ( x − 0 ) + f ( 0 ) : f = ) ′ (0 − 1 , f (0 )= -1 4 y = − 1 x − 1 4
-4ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ:f (x)− y = 1 x −1+ 1 x −1 − 1 x 4 2 ln 4 1 f (x )− =y −1 + 2 ln x−1 f (x )− y = −2 + ln x − 1 2 f ( x ) − y = 0ﺘﻜﺎﻓﺊ − 2 + ln x − 1 = 0 :ﻭ ﻤﻨﻪ ln x − 1 = 2 :ﻭ ﻋﻠﻴﻪ x − 1 = e2 :ﺇﺫﻥ x − 1 = e 2 :ﺃﻭ x − 1 = − e 2ﻭ ﻋﻠﻴﻪ : x = 1 + e2ﺃﻭ x = 1 − e 2 : f ( x ) − y < 0ﺘﻜﺎﻓﺊ ln x − 1 − 2 < 0 :ﻭ ﻤﻨﻪ ln x − 1 < 2 :ﻭ ﻋﻠﻴﻪ x − 1 < e2 :ﻭ ﻤﻨﻪ −e2 < x − 1 < e2 :ﺇﺫﻥ 1 − e2 < x < 1 + e2 :ﻭ ﻋﻠﻴﻪ C fﻴﻘﻊ ﺘﺤﺕ ) ∆ ( ﻓﻲ ﺍﻟﻤﺠﺎل ⎡⎣ ⎦⎤ 1 − e 2 ; 1 + e 2ﻭ ﻴﻘﻊ ﻓﻭﻗﻪ ﻓﻲ ﻜل ﻤﻥ) (ﺍﻟﻤﺠﺎﻟﻴﻥ ⎤⎦ 1 + e 2 ; + ∞ ⎡⎣ :ﻭ ⎣⎡ ⎤⎦ − ∞ ; 1 − e 2 – 5ﺭﺴﻡ ) ∆ ( ﻭ ) : ( C f y 4 2-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 x -2 -4
: – ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ6 S (α ) = 4 −f ( x )⎦⎤ d x ∫= 4 ⎛ 1 − 1 x − 1 ⎞⎠⎟d x α ⎜⎝ 2 ln ∫ ⎣⎡ y α S (α ) = 4 − ∫1 4 ln (x − 1 )d x ∫ 1d x 2α α S (α )= [ x ]4 − 1 4 ln ( x − 1)dx α 2 ∫ α = 4 − α − 1 4 ln ( x − 1)dx 2 ∫ α 4 ∫ ln ( x − 1 ) d x : ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ αb b b : ﻟﺩﻴﻨﺎ a∫ f ′( x ) g ( x )d x = ⎣⎡ f ( x ).g ( x ) ⎤⎦ − ∫ g′(x ) f ( x )d xaa ( )g ( x ) = l n ( x − 1 ) ﻭf ′ x = 1 : ﺒﻭﻀﻊ g′(x )= 1 ﻭ f (x )= x : ﻨﺠﺩ x −1 ∫ ∫4 4 4 x α α − ln ( x α − 1)dx = ⎣⎡ x ln ( x − 1 ) ⎤⎦ − x 1dx = 4 l n 3 − α l n (α − 1)− 4 x −1+1 x − 1 dx ∫ α = 4 ln 3 − α ln (α 4 1 x − 1 dx − 1)− ∫1 + α = 4 l n 3 − α l n (α − 1)− ⎡⎣ x + ln ( x − 1 ) ⎤⎦ 4 α = 4 l n 3 − α l n (α − 1 ) − ⎣⎡ 4 + l n 3 − α − l n (α − 1 )⎦⎤ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ b ∫ ln ( x − 1 ) d x = 3 ln 3 − 4 − (α − 1 ) ln (α − 1 ) + α a : ﺇﺫﻥ S (α ) = 4−α − 1 ⎣⎡ 3 l n 3 − 4 − (α − 1 ) l n (α − 1 ) + α ⎤⎦ 2 S (α )= 6 − 3 α − 3 ln 3 + 1 (α − 1 ) ln (α − 1) us 2 2 2
( )S 1 : ﺇﺜﺒﺎﺕ ﺃﻥ (α )= 4 −α 2 − 7α − 6ln 3 + 20 1 α −1+ 1 ln (α − 1)= 0 : ﻭ ﻤﻨﻪ f (α ) = 0 : ﻟﺩﻴﻨﺎ 4 2 1 11 ln (α − 1)= 4−α :ﺃﻱ 2 ln (α − 1)= 1− 4 α :ﺇﺫﻥ2 4 l n (α − 1)= 4−α : ﻭ ﻋﻠﻴﻪ 2 : ﻨﺠﺩS (α ) ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ S (α )= 6 − 3 α − 3 ln 3 + 1 (α − 1 )(4 − α ) 2 2 4 3 3 1 ( )S (α 2 2 4 )= 6− α − ln 3 + 4α − α 2 − 4 + α S (α ) = 1 (−α 2 − 7α − 6ln3 + 20) 4
ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -ﺘﻭﻅﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻹﺜﺒﺎﺕ ﺍﻟﺘﻌﺎﻤﺩ . -ﺘﻭﻅﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻭ . -ﺘﻭﻅﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ ﻭﻤﺴﺘﻭ ﻭﺒﻴﻥ ﻨﻘﻁﺔ ﻭﻤﺴﺘﻘﻴﻡ . -ﺘﻭﻅﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺎﺕ ﻨﻘﻁ . ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. –1ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ) ﻤﺭﺍﺠﻌﺔ(. –2ﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ. – 3ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ. – 4ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ. -5ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻭ. – 6ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ ﻭﻤﺴﺘﻘﻴﻡ ) ﺃﻭ ﻤﺴﺘﻭﻯ(. -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. -ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ :، A (1 ; 0 ) ﺍﻟﻨﻘﻁ ﻨﻌﺘﺒﺭ (O G G ) ﻤﺘﺠﺎﻨﺱ ﻤﺘﻌﺎﻤﺩ ﻤﻌﻠﻡ ﺇﻟﻰ ﺍﻟﻤﻨﺴﻭﺏ ﺍﻟﻤﺴﺘﻭﻯ ﻓﻲ ;i, j )D (α ; − 1 ) ، C (3 ; 1 ) ، B (2 ; − 2 ﺤﻴﺙ αﻋﺩﺩ ﺤﻘﻴﻘﻲ . -1ﻋﻴﻥ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ . A B C -2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ γﺫﺍﺕ ﺍﻟﻘﻁﺭ ] ( ). [ A B -3ﻋﻴﻥ αﺤﺘﻰ ﻴﻜﻭﻥ A B C Dﻤﺭﺒﻌﺎ . -4ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ( ). BC -5ﻋﻴﻥ αﺤﺘﻰ ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Dﻭ BCﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ ( ). 10 ABC ﺍﻟﺤل : JJJG JJJG : 2 ; 1) ، ﺍﻟGﻤJﺜﻠJJﺙ -1ﺘﻌﻴﻴﻥ ﻁﺒﻴﻌﺔ AB AC AB ( ﻟﺩﻴﻨﺎ 1; −2 J J JG ( )5 = AC ﻭ ﻭﻋﻠﻴﻪ = 5 JJJG JJJG ﻭﻟﺩﻴﻨﺎ A B . A C = 1.( 2 ) + ( − 2 ) (1) = 0 : ﺇﺫﻥ ﺍﻟﻤﺜﻠﺙ ABCﻗﺎﺌﻡ ﻓﻲ Aﻭ ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ . -2ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ γﺫﺍﺕ ﺍﻟﻘﻁﺭ [ ] ( ): AB J J JG MB ( ) ( )J J JG MA ⊥ ﺤﻴﺙ M x; y JJGγﻫJﻲ ﻤJGﺠﻤJﻭJﻋﺔ ﺍﻟﻨﻘﻁ ﺍﻟﺩﺍﺌﺭﺓ ﺃﻱ J J JG J J JG M A.M B = 0 ﻟﻜﻥM B ( 2 − x ; − 2 − y ) ، M A (1 − x ; − y ) : ﻭﻤﻨﻪ(1 − x ) ( 2 − x ) + ( − y ) ( − 2 − y ) = 0 : ﻭﻋﻠﻴﻪ 2 − x − 2 x + x2 + 2 y + y2 = 0 ﺇﺫﻥ x 2 − 3x + y 2 + 2y + 2 = 0 x − 3 2 − 9 + (y + 1 )2 − 1 + 2 = 0 2 4
x − 3 2 + (y + 1)2 = 5 ﻭﻋﻠﻴﻪ 2 4=R 5 ﻗﻁﺭﻫﺎ ﻭﻨﺼﻑ ω 3 ; −1 ﻫﻭ ﻤﺭﻜﺯﻫﺎ ﺤﻴﺙ : 2 2 -3ﺘﻌﻴﻴﻥ αﺤﺘﻰ ﻴﻜﻭﻥ ABCDﻤﺭﺒﻊJJJG JJ:JG ﻜﺎﻥ =JJBJGD BD α − ( )AC ﺇﺫﺍ ﻭﻓﻘﻁ ABCDﻤﺭﺒﻌﺎ ﺇﺫﺍ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ 2 ;1 J J JJG ) AJJCJG ( 2JJ;1JGﻭﻭﻤﻨﻪ BD = ACﻴﻜﺎﻓﺊ α − 2 = 2 :ﻭﻤﻨﻪ α = 4 -4ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ( ): BC J J JG ; )3 ﻟﺩﻴﻨﺎ B C (1ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ M x; yﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ( )JJJJG JJJGﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ ) ( B Cﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ BM // BC J J JJG − ;2 y + )2 ﻭﻋﻠﻴﻪ ﻟﻜﻭﻥ BM (x ﻓﺈﻥ . 3( x − 2) − 1( y + 2) = 0 ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ BCﻫﻲ ( ). 3 x − y − 8 = 0 -5ﺘﻌﻴﻴﻥ : α ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Dﻭ BCﺒﺎﻟﻌﺒﺎﺭﺓ ( ):= DH 3α + 1 − 8 = 3α − 7 (3 )2 + (− 1 )2 10ﺇﺫﻥ 3 α − 7 = 1 0 3α − 7 = ﻟﻜﻥ DH = 10ﻭﻤﻨﻪ 1 0 10 ﻭﻤﻨﻪ 3 α − 7 = 1 0ﺃﻭ 3α − 7 = −10 α = −1 ﺃﻭ 17 ﻭﻋﻠﻴﻪ α= 3
ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ) ﻤﺭﺍﺠﻌﺔ ( GG * ﻤﻥ ﺃﺠل Gﻜل ﺸJGﻌﺎﻋﻴﻥ uGﻭ vGﻤﻥ ﺍﻟﻤﺴGﺘﻭﻱ. G G G G G ﺇﺫﺍ ﻜﺎﻥ u ≠ 0ﻭ v ≠ 0ﻓﺈﻥ u.v u . v cos u;v G G G G JG G ﺇﺫﺍ ﻜﺎﻥ u = 0ﺃﻭ v = 0ﻓﺈﻥ G G u.v = 0 : * ﻴﺘﻌﺎﻤﺩ ﺍﻟﺸﻌﺎﻋﺎﻥ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﻴﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ . u . v = 0 * ﻜل ﺸﻌﺎﻉ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻋﻤﻭﺩﻱ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ∆ ﻴﺴﻤﻰ ﺸﻌﺎﻉ) ( ﻨﺎﻅﻤﻲ ﻟﻠﻤJGﺴJﺘﻘJﻴﻡ G JJJG G ( )G . ∆G * ﺇﺫﺍ ﻜﺎﻥ u = ABﺤﻴﺙ u ≠ 0ﻭ v = ACﻭﻜﺎﻨﺕ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟGﻠJﻨﻘJﻁJﺔ JGCﻋﻠJﻰG AB JﻓJﺈﻨJﻪ( ):J ﺇﺫﺍ ﻜﺎﻥ ABﻭ AH z 0 AHﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ GG ﻓﺈﻥ u . v = AJBJJ.GAHJJJG : ﺇﺫﺍ ﻜﺎﻥ ABﻭ AHﻤﺨﺘﻠﻔﻴﻥ Gﻓﻲ ﺍGﻻﺘﺠﺎﻩ ﻓﺈﻥ G Gu .JJvJG=J−JJAGB.AH : ﺃﻱ ﺃﻥ ﻓGﻲ ﺍﻟﺤGﺎﻟﺘﻴGﻥu . v = AB.AH :J * ﺇﺫﺍ ﻜﺎﻨﺕ w ،GvG، uﺜﻼﺜﺔGﺃﺸGﻌﺔ ﻭﻜﺎﻥ λﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻓﺈGﻥ G G G: * u.v = v.u * λu.v λ u.v G G JG G G G JG JG JG G G u 2u .v v* u. v w u.v u.w JG G 2 2 2 * u vGG uG 2 GG vG2 GG GG uG 2 Guv 2 2u.v * uv . uv v 2* GG vﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤGﺘﺠﺎﻨﺱ ﻓﺈﻥ ( ) ( ):;x′y′u x; y G ﻭG * ﺇﺫﺍ ﻜﺎﻥ u.v = xx′ + yy′ﻭ u = x2 + y2
G * ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ∆ ﺤﻴﺙ v a;bﺸﻌﺎﻉ) ( ) (ﻨﺎﻅﻤﻲ ﻟﻪ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ax + by + c = 0ﺤﻴﺙ Cﻋﺩﺩ ﺤﻘﻴﻘﻲ .* ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺔ ( )M x0; y0ﻭﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )ax + by + c = 0ax 0 + by 0 + c ﺒﺎﻟﻌﺒﺎﺭﺓ : a2 +b 2ﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺃ( ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ : Dﻤﺴﺘﻘﻴﻡ ﻓﻲ ﺍﻟﻔﻀﺎﺀ M .ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀ ( ).ﻨﺴﻤﻲ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ Dﺍﻟﻨﻘﻁﺔ M ′ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ) ( Dﻭﺍﻟﻤﺴﺘﻭﻯ Pﺍﻟﺫﻱ ﻴﺸﻤل Mﻭ ﻴﻌﺎﻤﺩ ( ) ( ) ( ). D ﻓﺈﺫﺍ ﻜﺎﻨﺕ Mﻨﻘﻁﺔ ﻤﻥ Dﻓﺈﻥ M ′ﺘﻨﻁﺒﻕ ﻋﻠﻰ ( ). M ﺏ( ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻨﻘﻁﺔ ﻋﻠﻰ ﻤﺴﺘﻭ :ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻨﻘﻁﺔ Nﻋﻠﻰ ﻤﺴﺘﻭ Pﻫﻲ ﺍﻟﻨﻘﻁﺔ N ′ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻭﻯ ( ) ( )P ﻭﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻴﺸﻤل Nﻭ ﻴﻌﺎﻤﺩ ﺍﻟﻤﺴﺘﻭﻯ ( ) ( ). P ﻓﺈﺫﺍ ﻜﺎﻨﺕ Nﻨﻘﻁﺔ ﻤﻥ Pﻓﺈﻥ N ′ﺘﻨﻁﺒﻕ ﻋﻠﻰ ( ). N
ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ GG ﺃ( ﺘﻌﺭﻴﻑ :ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺸﻌﺎﻋﻴﻥ uﻭ vﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻫﻭ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﻬﻤﺎ ﻜﻤﺎ ﺴﺒﻕ ﺘﻌﺭﻴﻔﻪ Gﻓﻲ Gﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﺫﻱ ﻴﺸﻤﻠGﻬﻤﺎ G .ﻭﻴﻜﻭﻥ u.v = 0ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ uﻭ vﻤﺘﻌﺎﻤﺩﻴﻥ .JJJG JJJG ﺏ( ﻨﺘﺎﺌﺞ : -ﺇﺫﺍ ﻜﺎﻨﺕ A, B,Cﻨﻘﻁ ﻤﻥ ﺍﻟﻔﻀﺎﺀ ﺤﻴﺙ ABﻭ ACﻟﻴﺴﺎ ﻤﺭﺘﺒﻁﻴﻥ ﺨﻁﻴﺎ ﻓﺈﻥ ﺍﻟﻨﻘﻁGA, B,CﺘJﻌﻴJﻥ JﻤGﺴJﺘJﻭﻴJﺎ ﻭﺤﻴﺩﺍ ) JJJG JJJG . ( ABCﻭﻴﻜﻭﻥ AB.JAJJCG J=JJAG B.JAJJCG .JcJoJsG( AB, AC ) : AB.AC = AB.AH -ﺇﺫﺍ ﻜﺎﻨﺕ Cﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ABﻭﻜﺎﻨﺕ A, B,Cﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨGﻰ JﻓJﺈﻨJﻪ JJJG :* ﺇﺫﺍ ﻜﺎﻥ ABﻭ ACﻓﻲ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩJJJG JJJGﻓﺈﻥ AB.AC = AB.AC JJJG JJJG :* ﺇﺫﺍ ﻜﺎﻥ ABﻭ ACﻤﻥ ﺍﺘﺠﺎﻫﻴﻥ ﻤﺨﺘﻠﻔﻴﻥJJJG JJJGAB.AC = −AB.AC ﻓﺈﻥ : ﺝ( ﻤﺒﺭﻫﻨﺎGﺕ JG G: ﺇﺫﺍ ﻜﺎﻨﺕ Gw ،Gv ،JGuﺜﻼGﺜﺔ ﺃﺸﻌﺔJGﻭﻜﺎﻥ kGﻋGﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻓGﺈﻥ G G :G* u.v = v.u * u. v w u.v u.w G G G G G * u. kv ku .v k u.v ﺩ( ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻤﺴﺘﻭ JG: ﻜل ﺸﻌﺎﻉ ﻏﻴﺭ ﻤﻌﺩﻭﻡ wﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺸﻌﺎﻋﻴﻥ ﻏﻴﺭ ﻤﺭﺘﺒﻁﻴﻥ ﺨﻁﻴﺎ ﻤﻥ ﻤﺴﺘﻭ Pﻴﺴﻤﻰ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻠﻤﺴﺘﻭﻯ ( ) ( ). P
ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ G G JG ﻨﻌﺘﺒﺭO ; i , j , k ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ GG . v xGc;Gyc; zc ، u x; y;z ﺍﻟﺸﻌﺎﻋﺎﻥ : ﻲ ﺍﻟﻔﻀﺎﺀ ﺒﺎﻟﻌﺒﺎﺭﺓG ﻓvG ، u ﺘﻌﻁﻰ ﻋﺒﺎﺭﺓ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﻠﺸﻌﺎﻋﻴﻥ u.v xxc yyc zzc G G G JG : * ﺍﻟﺒﺭﻫﺎﻥ uG xiG y jG zkJGv xci G yc j G zck JGG G G G JG u.v xi y j zk xci yc j zck G G G JG G JG G JG JG JG xx c.i .i xy JcGi .JGj xz cGi JkG x cyJGi .JjG yy cJGj .JjG G GyzGcjJG.k G xJG cz i .k yG cGz j .Gk G zJzG cJkG .k i. j i.k j.k 0 JGﻭG i.i j. j k.k 1 ﻭﻨﻌﻠﻡ ﺃﻥ u .v xx c yy c zz c : ﻭﻋﻠﻴﻪ : * ﻨﺘﺎﺌﺞ JG 2 JG JG : ﺃ( ﺍﻟﻤﺭﺒﻊ ﺍﻟﺴﻠﻤﻲ u u .u JG x .x y .y z .z c u 2 x 2 y 2 z 2 : ﻭﻤﻨﻪ JJJG ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩB x1; y 1;z 1 ،A x 0 ; y G0; z 0JG ﻜﺎﻨﺕ ﺇﺫﺍ (ﺏ G AB x1 x0; y1 y0; z1 z0 : ﻓﺈﻥO;i, j, k ﻤﺘﺠﺎﻨﺱ : ﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓB ﻭA ﻭﻋﻠﻴﻪ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ A B x 1 x 0 2 y 1 y 0 2 z 1 z 0 2
G G JG ﺘﻁﺒﻴﻕ : 1 . O ; i , j G, k ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ G GGﻨﻌﺘﺒﺭ ﺍﻟﺸﻌﺎﻋﺎGﻥGv ، uGﺤﻴGﺙ . v 1;2;4 ، u1;3G;2 -ﺃﺤﺴﺏ u.v؛ v.u؛ . u GG ﺍﻟﺤل : u.v 1.1 3 2 2 4GG 3v . u 1 1 2 3 4 2 3Gu 1 2 3 2 2 2 14 ﺘﻁﺒﻴﻕ : 2 G G JG ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O ;i, j,kﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ . B 2;3;5 ، A1;2;4 -ﺃﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ . B ﺍﻟﺤل : ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Bﻫﻲ :A B 2 1 2 3 2 2 5 4 2 AB 107 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻭ G G JG ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O ; i , j , kﺘﻌﺭﻴﻑ :ﻨﺴﻤﻲ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻭ Pﻜل ﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻤﺠﺎﻫﻴل ﺍﻟﺤﻘﻴﻘﻴﺔ z ، y ، x ﻭﻤﺠﻤﻭﻋﺔ ﺤﻠﻭﻟﻬﺎ ﻫﻲ ﻜل ﺍﻟﺜﻼﺜﻴﺎﺕ x; y; zﺍﻟﺘﻲ ﺘﺤﻘﻕ ) :ﺍﻟﻨﻘﻁﺔ M x; y; zﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻭﻯ . ( P G G JG ﻤﺒﺭﻫﻨﺔ :ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O ; i , j , kﻟﻜل ﻤﺴﺘﻭ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻤﻥ ﺍﻟﺸﻜل ax by cz d 0 :
G ﺤﻴﺙ n a;b;cﻫﻭ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻬﺫﺍ ﺍﻟﻤﺴﺘﻭﻱ .ﻭﺍﻟﻌﻜﺱ ﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜل axG by cz d 0ﺤﻴﺙ c, b, aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻟﻴﺴﺕ ﺠﻤﻴﻌﻬﺎ ﻤﻌﺩﻭﻤﺔ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻭ ﻤﻊ n a;b;cﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ . dﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻭﺇﺫﺍ ﻜﺎﻥ d 0ﻓﺈﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ . O G G JG ﺍﻟﺒﺭﻫﺎﻥ : O ;i, j,k A α ;β ;γﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ Pﺍﻟﺫﻱ ﻭﺍﻟﻤﺴﺘﻭﻱ G a ﻭﺍﻟﺸﻌﺎﻉ ; b G; c n ﻴﺸﻤل Aﻭ nﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ .ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : ;xP Mﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻭﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ y; z ﺍﻟﻨGﻘﻁﺔJJG ﺘﻜﻭﻥ JJ AM .n 0 ﻭﻤﻨﻪ a x α b y β c z γ 0 : ﻭﻋﻠﻴﻪ a x b y c z α a β b γ c 0 :ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ax by cz d 0ﺤﻴﺙ d αa βb γc G G JG ﺃﻤﺜﻠﺔ : ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O; i , j, k ﻟﻪ ﻤﻌﺎﺩﻟﺔ ﻫﻲ z 0 : G G ﺍﻟﻤﺴﺘﻭﻱ O ; i , jﻟﻪ ﻤﻌﺎﺩﻟﺔ ﻫﻲ y 0 : G JG ﺍﻟﻤﺴﺘﻭﻱ O ;i,k ﻟﻪ ﻤﻌﺎﺩﻟﺔ ﻫﻲ x 0 : G JG ﺍﻟﻤﺴﺘﻭﻱ O ; j , k
ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ ﻭﻤﺴﺘﻘﻴﻡ ) ﺃﻭ ﻤﺴﺘﻭﻱ ( ﺘﻌﺭﻴﻑ :ﻨﺴﻤﻲ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺔ Mﻭﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ) ﺃﻭ ﺍﻟﻤﺴﺘﻭﻱ ( Pﻁﻭل ﺍﻟﻘﻁﻌﺔ @ > M Hﺤﻴﺙ Hﻫﻲ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ) ﺃﻭ ﺍﻟﻤﺴﺘﻭﻱ . ( P ﻤﺒﺭﻫﻨﺔ G : 1 ﻟﻴﻜﻥ Pﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ Aﻭ nﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ . ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ Mﻭﺍﻟﻤﺴﺘﻭﻱ Pﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ : J J JJG G M Hﺤﻴﺙ Hﻫﻲ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ . P A M .n G n ﺍﻟﺒﺭﻫﺎﻥ JJJJG G JJJG JJJJG G: ﻟﺩﻴﻨﺎ AM .n AH HM .n : JJJG G JJJJG G JJJJG JG JJJJG JG AH .nJJJHG MG .n HM .n J J J JG G AM .n ﻭﻤﻨﻪ : AH .n ﻟﻜﻥ 0 : J J J JG G J J J JG G ﻭﻟﺩﻴﻨﺎ H M .n H M . n . c o s H M ; n : JJJJG G G JJJJG G HM .n HM . n .cos HM ;n ﺇﺫﻥ : JJJJG G J J J JG G 1 ﻟﻜﻥ cos HM;n 1 :ﺃﻭcos H M ;n JJJJG G G JJJJG G H M .nMH G ﻭﻤﻨﻪ : ﻭﻋﻠﻴﻪ H M .n H M . n : n JJJJG G A M .n MH ﺇﺫﻥ G : n
G G JG ﻤﺒﺭﻫﻨﺔ : 2 O ;i, j,kﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺔ ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ M α ; β ; γﻭﺍﻟﻤﺴﺘﻭﻱ Pﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : ax by cz d 0ﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ . a α b β c γ d : a2 b2 c2 ﺍﻟﺒﺭﻫﺎﻥ G :ﻟﺩﻴﻨﺎ ، n a ;b ;cﻟﺘﻜﻥ A x0; y0; z0ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ . Pﻟﺩﻴﻨﺎ ax0 JJbJyJG0 G cz0 d 0ﻭﻤﻨﻪ d ax0 by0 cz0 AM .n MH G n ﻤﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ 1ﻟﺩﻴﻨﺎ :JJJJG G ﺤﻴﺙ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ . Pﻟﻜﻥ AM .n a α x0 bβ y0 c γ z0 : JJJJGaGα bβ cγ ax0 by0 cz0AM .n aα bβ cγ d G ﻭﻟﺩﻴﻨﺎ a 2 b 2 c 2 : n MH aα bβ c γ d ﻭﺒﺎﻟﺘﺎﻟﻲ : a2 b2 c2 ﻤﺜﺎل :ﺃﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺔ M 0; 1; 2ﻭﺍﻟﻤﺴﺘﻭﻱ Pﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : 2x y 4z 12 0 ﺍﻟﺤل : ﻟﺘﻜﻥ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ . PM H 2 0 1 4 2 1 2 1 8 12 21 21 2 2 1 2 4 2 4 1 16 21 ﺇﺫﻥ MH 21 :
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ 1J J JG J J JG A, B,Cﺜﻼﺙ ﻨﻘﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺤﻴﺙ :AB .AC 16 ، AC 8 ، AB 4 J J JG J J JG (1ﺃﺤﺴﺏ ﻗﻴﺴﺎ ﻟﻠﺯﺍﻭﻴﺔ AB,AC .J J JG J J JG 2 J J JG J J JG AB AC AB AC 2 (2ﺍﺴﺘﻨﺘﺞ :JJJG JJJG 2 JJJG JJJG 2ﻭ AB AC AB AC ﺍﻟﺘﻤﺭﻴﻥ 2 Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ .ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ :1) M A 2 M B 2 AB 22) MA2 MB 2 1 AB2 2 JJJG JJJG 3) MA MB 1 AB2 4 ﺍﻟﺘﻤﺭﻴﻥ 3 ABCﻤﺜﻠﺙ ﺤﻴﺙ AC 11 ، BC 9 ، AB 7 : ﻋﻴﻥ ﺃﻗﻴﺎﺴﺎ ﻟﺯﻭﺍﻴﺎ ﺍﻟﻤﺜﻠﺙ ﻭﻤﺴﺎﺤﺘﻪ . G G JG ﺍﻟﺘﻤﺭﻴﻥ 4ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O ; i , j , k ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺔ . M x, y, zﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ ﻜل ﻤﻥ M 3JG، M -1ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴGﺎﺕ Gﻜل ﻤﻥ ﺍﻟﻨﻘﻁ2 ، MG1 JG Gﺍﻟﻤﺴﺘﻭﻴﺎﺕ O ; i , jﻭ O ; i , kﻭ O ; j , k ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . -2ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻜل ﻤﻥ ﺍﻟﻨﻘﻁ M6 ، M5 ، M4ﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ ﻜل JG ﻭ G G ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ O ;k O; j O ;iﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻭ
ﺍﻟﺘﻤﺭﻴﻥ 5 ABCDEFGHﻤﻜﻌﺏ ﻁﻭل ﻜل ﻤﻥGﺤJﺭJﻭﻓJﻪ JJJG JJJG .JJaJG -ﺍﺤﺴJGﺏJﻜJل ﻤJGﻥJﺍﻟJﺠﺩﺍﺀﺍGﺕJﺍﻟJﺴJﻠﻤﻴJGﺔ ﺍJﻟﺘJﺎﻟﻴﺔ AJBJ.JGAJHJJG:ﻭ AB.CD ﻭ AB.BCﻭ AB.DFﻭ . AB.AG G G JG ﺍﻟﺘﻤﺭﻴﻥ 6 ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O;i, j, k ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ A, B,C , D, Eﺤﻴﺙ :A1;0;0 , B0;1;0 , C 0;0;1 , D1;1;1 , E 1;1;1 -ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻭﻱ ABCﻭﺤﻴﺩ . -ﻫل ﺍﻟﻤﺴﺘﻘﻴﻡ EDﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻭﻱ . ABC G G JG ﺍﻟﺘﻤﺭﻴﻥ 7 ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O ; i , j , k -ﻋﻴﻥ ﻗﻴﻤﺔ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘGﻴﻘﻲ xﺒﺤﻴﺙ ﻴﺘﻌﺎﻤﺩ Gﺍﻟﺸﻌﺎﻋﺎﻥ : u5;2; xﻭ . v 1;6;1 G G JG ﺍﻟﺘﻤﺭﻴﻥ 8 ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O; i , j , kﻨﻌﺘﺒﺭ ﺍﻷﺸﻌﺔ :§ JG9; 6 ; 2 · ﻭ G § 2 ; 6 ; 9 · ﻭ G §6 ; 7 ; 6 ·©¨ 11 11 11 ¸¹ v ©¨ 11 11 11 ¸¹ u 11 11 ¸¹w G ¨©JG1 1 G -ﺒﻴﻥ ﺃﻥ O;u, v, wﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻟﻠﻔﻀﺎﺀ . ﺍﻟﺘﻤﺭﻴﻥ 9 ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ PﺍﻟﺫGﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ A 4;4;4 ﻭ ﻴﻌﺎﻤﺩ ﺍﻟﺸﻌﺎﻉ . u 1;2;1 ﺍﻟﺘﻤﺭﻴﻥ 10
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218