ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺍﻟﺘﻁﺒﻴﻕ: 1ﺃﻨﺸﺊ ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ :ﻭ U0 = 0 Un = 1 U n−1 − 2 2 ﺍﻟﺤل : (1ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ :ﻭﻨﺤﻭل ﻋﻤل ﺍﻵﻟﺔ ﺇﻟﻰ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ Seq : (2ﻨﻘﻭﻡ ﺒﺈﺩﺨﺎل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺭ ﻜﻤﺎ ﻴﻠﻲ :ﻭﻨﺩﺨل ﺍﻷﺭﻗﺎﻡ (3ﻨﻀﻐﻁ ﻋﻠﻰ ﻜﻤﺎ ﻫﻭ ﻭﺍﻀﺢ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ :ﻓﻨﺤﺼل ﻋﻠﻰ (4ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﺍﻟﻨﻘﻁ ﺍﻟﺘﺎﻟﻴﺔ :ﻭﻨﺤﺭﻙ (5ﻨﻀﻌﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﺒﺯﺭ ﺍﻻﺘﺠﺎﻫﺎﺕ ﺍﻟﻤﺅﺸﺭ ﻟﻨﺤﺼل ﻋﻠﻰ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ
ﺍﻟﺘﻁﺒﻴﻕ : 2ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺒﺭﻤﺠﻴﺔ sinequanonﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : ⎧ U 0 = −3 ⎪ =1+ 1 ⎩⎨⎪U n+1 Un ﺍﻟﺤل : (1ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ﺜﻡ ﻨﻤﻸ ﺍﻟﻤﻌﻠﻤﺎﺕ ﻜﻤﺎ ﻫﻭ ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ ﻨﻼﺤﻅ ﻗﻴﻡ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺘﻅﻬﺭ ﻤﺒﺎﺸﺭﺓ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﻤﻘﺎﺒل ﻤﻥ U0ﺇﻟﻰ . U14 (2ﺒﺎﻟﻨﻘﺭ ﻋﻠﻰ ﻴﻅﻬﺭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﻊ ﻜﻴﻔﻴﺔ ﺇﻨﺸﺎﺌﻬﺎ . y 3 2 1-3 -2 -1 0 1 2 3xu0 -1 u 1 u 3 u2 -2 -3
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ . 1ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ : (1ﻋﻨﺩ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ) p ( nﻨﻔﺭﺽ ﺼﺤﺔ ) p ( k ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) . p ( k + 1 (2ﺇﺫﺍ ﻜﺎﻨﺕ ﺨﺎﺼﻴﺔ ) p ( nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل n = 0ﻭ n = 1 ﻭ n = 2ﻓﻬﻲ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . nﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ﻫﻭ ﻨﻤﻁ ﻤﻥ ﺃﻨﻤﺎﻁ ﺍﻟﺒﺭﻫﺎﻥ ﻟﻼﺴﺘﺩﻻل ﻋﻠﻰ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﺘﺘﻌﻠﻕ ﺒﻌﺩﺩ ﺼﺤﻴﺢ (3 ﺴﺎﻟﺏ n (4 (5ﺍﻟﻤﺘﺘﺎﻟﻴﺔ u nﺤﻴﺙ u n = 4 n − 3 :ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ( ).⎧ u n +1 = 4un − 1 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ n ≥ 0 :⎨ u 0 1⎩ = ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ . (6ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ un = an + b :ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ) ( ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ aﻭ ﺤﺩﻫﺎ ﺍﻷﻭل b lim ⎛ 1 ⎞n = ∞+ (7 ⎜⎝ 1000 ⎟⎠ ∞n→ + lim ⎛ 3 ⎞n = 0 (8 ⎜⎝ 840 ⎟⎠ ∞n→ + . ﻤﻭﺠﻭﺩﺓ l i mﻏﻴﺭ ⎛ − 1 ⎞n (9ﺍﻟﻨﻬﺎﻴﺔ : ∞n→ + ⎜⎝ 10 ⎟⎠ lim ⎛ − 1 ⎞n = 0 (10 ⎝⎜ 40000 ⎠⎟ ∞n→ + Vnﻭ u nﻤﺘﺠﺎﻭﺭﺘﺎﻥ( ) ( ). ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻓﺈﻥ lim ( u n − =)vn 0 (11ﺇﺫﺍ ﻜﺎﻥ : ∞n→ + 3 n (12 4n lim = 0 ∞n→ + 1 + 4 + 42 + 43 + .... + 499 = 1 − 4100 (13 1−4
3+ 5+ 7+ ... + (2 n + =)1 (2 n ) + 4 )(n (14 2 (15ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ . (16ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻏﻴﺭ ﺜﺎﺒﺘﺔ ﻤﺘﺒﺎﻋﺩﺓ . l i m 1 = 0 (17 ∞ nn → + (18ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (u nﺍﻟﻤﻌﺭﻓﺔ ﺏ un = an − b : ﺤﻴﺙ a ≠ 0ﻭ b ≠ 0ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ. u nﻤﺘﻘﺎﺭﺒﺔ( ).⎛ 1 ⎞n un (19ﺍﻟﻤﺘﺘﺎﻟﻴﺔ = ⎝⎜ ⎠⎟ 3 ﺤﻴﺙ : u nﻤﺘﻘﺎﺭﺒﺔ( ). ﻓﺈﻥ l ≠ 0 , lim = l (20ﺇﺫﺍ ﻜﺎﻨﺕ ∞n→ + ﺍﻟﺘﻤﺭﻴﻥ . 2 ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻓﺈﻥ :1 − 3 + 5 − 7 + ... + (− 1 )n − 1 . (2 n − 1 ) = n (− 1 )n − 1 ﺍﻟﺘﻤﺭﻴﻥ . 3ﺃﺜﺒﺕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ nﻓﺈﻥ ﺍﻟﻤﺸﺘﻕ ﻤﻥ ﺍﻟﺭﺘﺒﺔ nﻟﻠﺩﺍﻟﺔ x a sin x : f= ) f (n ) ( x sin ⎛ x + nπ ⎞ ﻴﻌﺭﻑ ﺒﺎﻟﻌﺒﺎﺭﺓ : ⎝⎜ 2 ⎠⎟ ﺍﻟﺘﻤﺭﻴﻥ . 4 =)f (x 1 ﺤﻴﺙ : f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ x2 + 1ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻥ ﺍﻟﻤﺸﺘﻕ ﻤﻥ ﺍﻟﺭﺘﺒﺔ nﻟﻠﺩﺍﻟﺔ fﻴﻌﺭﻑ ﺒﺎﻟﻌﺒﺎﺭﺓ : ) pn (x x 2 + 1 n+1= ) ( )f (n ) ( x ﺤﻴﺙ pn xﻫﻭ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ( )n ≥ 1 ، n
ﺍﻟﺘﻤﺭﻴﻥ . 5ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺒﺎﻟﻌﺒﺎﺭﺓ un+1 = unﻭ ( )u0 = 10 – 1ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ . unﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟) ( – 2ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ nﻓﺈﻥ . un ≥ 1 : -3ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻨﺎﻗﺼﺔ ( ). – 4ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ . lim un ﺍﺤﺴﺏ – 5 ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 6 unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﺤﻴﺙ ( ):⎧ u0 + u1 + u2 = 15⎪ 1 + 1 1 33⎨ u1 + u2 = 40⎩⎪ u0 -ﺍﺤﺴﺏ ﻜل ﻤﻥ u0 , u1 , u2ﻭ ﺍﻷﺴﺎﺱ . r n -ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ∑. Sn = ui : i=0 ﺍﻟﺘﻤﺭﻴﻥ . 7 unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﻴﺙ us = 1000, u1 = 250 :ﻭ ﺃﺴﺎﺴﻬﺎ ( )q ﺤﻴﺙ. q > 0 : (1ﺍﺤﺴﺏ . q123 n (2ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ . S n = 2 2 + 2 2 + 2 2 + . . . . . . . . + 2 2 (3 . lim sn ﺍﺤﺴﺏ (4 ∞n→ + ﺍﺤﺴﺏ ﺒﺩﻻﻟﺔ nﺍﻟﺠﺩﺍﺀ : 123 2n × 2 . 2 . 2 × ...= ( ) ( ) ( ) ( )p n
ﺍﻟﺘﻤﺭﻴﻥ . 8 unﻭ vnﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﻜﻤﺎ ﻴﻠﻲ ( ) ( ): n>1 , Vn = 1 , un = −2 ln n n – 1ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻥ ) (u nﻭ ) . ( v n . (l i m un − ) vn – 2ﺍﺤﺴﺏ ∞n→ + – 3ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ unﻭ vnﻤﺘﺠﺎﻭﺭﺘﺎﻥ ؟) ( ) ( ﺍﻟﺘﻤﺭﻴﻥ . 9 unﻭ vnﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﻜﻤﺎ ﻴﻠﻲ ( ) ( ): ) V n = L n ( n + 1 ) , U n = L n ( nﺤﻴﺙ . n > 0 : - 1ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻥ unﻭ ( ) ( ). vn . (l i m un − ) vn -2ﺍﺤﺴﺏ ∞n→ + -3ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ unﻭ vnﻤﺘﺠﺎﻭﺭﺘﺎﻥ ( ) ( ). ﺍﻟﺘﻤﺭﻴﻥ . 10 θ0 ≤ θ ≤ π ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺤﻴﺙ : ﻟﻴﻜﻥ 2⎪⎧ u 0 = 2 cosθ un ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻜﻤﺎ ﻴﻠﻲ ( ), n ≥ 0 :⎨ u n = 2+⎩⎪ +1 -1ﺤﺴﺏ ﻜل ﻤﻥ u0 , u1, u2 , u3ﺒﺩﻻﻟﺔ ( )cos 2θ = 2cos2 θ -1 .θ -2ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n . un = 2 c o s ⎛ θ ⎞ ﻓﺈﻥ : ⎜⎝ 2n ⎠⎟ vn = θ – 3ﻟﺘﻜﻥ vnﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ ( ): 2n ﺍﺤﺴﺏ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). vn – 4ﺃﺴﺘﻨﺘﺞ ﺃﻥ unﻤﺘﻘﺎﺭﺒﺔ ( ).
ﺍﻟﺘﻤﺭﻴﻥ . 11 unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ( ): ⎧ u0 = −1 ∈, u ⎪ = un+1 ⎨ 3 + 2un ⎪⎩ 2 + un – 1ﺍﺤﺴﺏ . u1 , u2 , u3 , u4 : – 2ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻓﺈﻥ un > 0 : ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺃﻥ unﻤﻌﺭﻓﺔ ﻤﻥ ﻨﺤﻭ) ( ≤ un – 3ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ 3 : – 4ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( )unVn = un − ﺒﺎﻟﻌﺒﺎﺭﺓ 3 : – 5ﻟﺘﻜﻥ vnﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ) ( un + 3 ﺃ – ﺒﺭﻫﻥ ﺃﻥ ) ( v nﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺤﺴﺎﺏ ﺤﺩﻫﺎ ﺍﻷﻭل ﻭ ﺃﺴﺎﺴﻬﺎ . q . lim u n ﺜﻡ ﺍﺴﺘﻨﺘﺞ lim Vn ﺏ – ﺍﺤﺴﺏ ∞n→+ ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 12 αﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺒﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ un+1 = α un + 3 :ﻤﻥ) ( ﺃﺠل ∈ n – 1ﻋﻴﻥ ﺍﻟﻘﻴﻤﺔ α0ﻟﻠﻌﺩﺩ αﺒﺤﻴﺙ ﺘﻜﻭﻥ unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ) ( ﺃﺴﺎﺴﻬﺎ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . – 2ﻨﻔﺭﺽ . α ≠ α0ﻜﻴﻑ ﻴﻤﻜﻥ ﺍﺨﺘﻴﺎﺭ u0ﺒﺤﻴﺙ ﺘﻜﻭﻥ unﺜﺎﺒﺘﺔ ( ). – 3ﻨﻔﺭﺽ ﺃﻥ unﻟﻴﺴﺕ ﺤﺴﺎﺒﻴﺔ ﻭ ﻻ ﺜﺎﺒﺘﺔ ﻭ ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ) ( ( )Vn = β un + δ ﻜﻤﺎ ﻴﻠﻲ , n ≥ 0 : v n ﺤﻴﺙ βﻭ δﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ . ﺘﻜﻭﻥ ﻫﻨﺩﺴﻴﺔ ﻓﻲ ﺤﺎﻟﺔ ﻜﻭﻥ ﺃﺴﺎﺴﻬﺎ ( )qv ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ - n
ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ . αﺜﻡ ﺍﺴﺘﻨﺘﺞ δﺒﺩﻻﻟﺔ αﻭ βﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ ( ).v ﻜﻴﻑ ﻴﻤﻜﻥ ﺍﺨﺘﻴﺎﺭ αﺤﺘﻰ ﺘﻜﻭﻥ - n . lim un ﺍﺤﺴﺏ ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 13 unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل ( )u0 = 1 1 ﻭ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ un+1 = un + 2n+1 : 1 1 1 Sn = 1+ 2 + 22 + ... + 2n – 1ﺍﺤﺴﺏ : S n -2ﺍﺴﺘﻨﺘﺞ unﺒﺩﻻﻟﺔ . n . lim un – ﺍﺴﺘﻨﺘﺞ 3 ∞n→+ – 4ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). un ﺍﻟﺘﻤﺭﻴﻥ . 14⎧⎪ u0 = − 2 unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ( ), n ≥ 0 :⎨⎪⎩ u n + 1 = 2 + un -1ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ 2 − un ≥ 0 -ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ n ﻓﺈﻥ . un ≥ 0 : -2ﺒﺭﻫﻥ ﺃﻥ unﻤﺘﺯﺍﻴﺩﺓ( ). – 3ﺍﺴﺘﻨﺘﺞ ﺃﻥ unﻤﺘﻘﺎﺭﺒﺔ( ). ﺍﻟﺘﻤﺭﻴﻥ . 15 un (1ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل u0 = 60ﻭ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ( ): un+1 − un = un × 0,06 , n ≥ 0 ﺃ -ﺃﺜﺒﺕ ﺃﻥ unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ) (
n ﺏ – ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ∑Sn = ui : i=0 ( 2ﺒﻠﻎ ﻋﺩﺩ ﺴﻜﺎﻥ ﺒﻠﺩ 600ﻤﻠﻴﻭﻥ ﻨﺴﻤﺔ ﻴﻭﻡ 1ﺠﺎﻨﻔﻲ ﺴﻨﺔ . 2000 ﻨﻔﺭﺽ ﺃﻥ ﻋﺩﺩ ﺴﻜﺎﻥ ﻫﺫﺍ ﺍﻟﺒﻠﺩ ﻴﺯﺩﺍﺩ ﺴﻨﻭﻴﺎ ﺒﻨﺴﺒﺔ ﻗﺩﺭﻫﺎ 60 0 0 ﻜﻡ ﺴﻴﺼﻴﺭ ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ 1ﺠﺎﻨﻔﻲ ﺴﻨﺔ . 2007 ﺍﻟﺘﻤﺭﻴﻥ . 16 λﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ( ): ⎧ u0 = 1 , u1 = 2 ⎨ − λ un ⎩ u n + 2 = ( λ + )1 u n + 1 ,n ≥ 0 ﻭ ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﻜﻤﺎ ﻴﻠﻲ ( )Vn+1 = un+1 − un , n ≥ 0 : – 1ﺒﻴﻥ ﺃﻥ Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺜﻡ ﺍﺤﺴﺏ Vnﺒﺩﻻﻟﺔ nﻭ ( ). λSn = V0 + V1 + ... + Vn-1 – 2ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Snﺒﺩﻻﻟﺔ nﻭ λﺤﻴﺙ : .ﺜﻡ ﺒﻴﻥ ﺃﻥ Sn = un − 1 -ﺍﺴﺘﻨﺘﺞ unﺒﺩﻻﻟﺔ nﻭ . λ – 3ﻨﻀﻊ . λ = 3ﺍﺤﺴﺏ ﺒﺩﻻﻟﺔ nﺍﻟﻤﺠﻤﻭﻉ :S ′ = 1 + 225 .ﺍﺴﺘﻨﺘﺞ nﺒﺤﻴﺙ : Sn′ = u 2 + u12 + ... + u2 4n 0 n-1 n
ﺍﻟﺤـﻠـــﻭل . × (4 × (3 × (2 ﺍﻟﺘﻤﺭﻴﻥ. 1 . √ (8 × (7 √ (6 × (1 . √ (12 × (11 √ (10 √ (5. × (16 × (15 √ (14 × (9. √ (20 √ (19 × (18 √ (13 √ ( 17 ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ( ): p n 1 − 3 + 5 − 7 + ... + (−1)n .( 2n − 1) = n( )−1 n−1 -ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ( )p 11 = 1 ( − 1 )0 = 1 : ﻭ ﻤﻨﻪ p 1ﺼﺤﻴﺤﺔ ( ). -ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1p (k ) : 1 − 3 + 5 − 7 + ... + (− 1)k−1 (2k − 1) = k (− 1)k−1) p (k + 1 ) : 1 − 3 + 5 − 7 + ... + (− 1 )k −1 (2 k − 1 + (− 1 )k .(2 k + 1 ) = (k + 1 )(− 1 )k) 1 − 3 + 5 − 7 + ... + (− 1 )k −1 . (2 k − 1 ) + (− 1 )k . (2 k + 1 ) = k (− 1 )k −1 + (− 1 )k (2 k + 1 ) = k (− 1 )k −1 + (− 1 )k −1 × (− 1 )(2 k + 1 )= (−1)k−1 [k − 2k − 1] = (−1)k−1 (− k − 1 )= − (−1)k−1 (k + 1) = (−1)k (k + 1 ﻭ ﻤﻨﻪ p k + 1ﺼﺤﻴﺤﺔ ( ). ﺇﺫﻥ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ( ). n ﺍﻟﺘﻤﺭﻴﻥ. 3
= ) f (n) ( x s in ⎛ x + nπ ⎞ : ) p (n ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ⎝⎜ 2 ⎟⎠f )(1 (x ) = s i n ⎛ x + π ⎞ = cos x : ) p (1 -ﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ⎜⎝ 2 ⎠⎟ ﻭ ﻟﺩﻴﻨﺎ f ′ ( x ) = co s x :ﻭ ﻤﻨﻪ p (1 ) :ﻤﺤﻘﻘﺔ . -ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) ( )p ( k + 1 = ) f (k ) ( x sim ⎛ x + kπ ⎞ ﺍﻟﻔﺭﻀﻴﺔ : ⎝⎜ 2 ⎟⎠ f ( )(k +1) x = sin ⎛ x + (k + 1)π ⎞ : ﺍﻟﻤﻁﻠﻭﺏ ⎜ ⎟ ⎝ 2 ⎠ = ) f (k ) ( x sim ⎛ x + kπ ⎞ ﻟﺩﻴﻨﺎ : ⎝⎜ 2 ⎠⎟= ) ( )f ((k + 1 ) x = ) ′ (x ⎛ kπ ⎞ ﻟﻜﻥ : ) f (k c o s ⎜⎝ x + 2 ⎠⎟ = sin ⎛ x + kπ + π ⎞ = sin ⎛ x + (k + 1 )π ⎞ ⎝⎜ 2 2 ⎟⎠ ⎜ ⎟ ⎝ 2 ⎠ ﻭ ﻤﻨﻪ p k + 1 :ﺼﺤﻴﺤﺔ( ). ﺇﺫﻥ ) p ( nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . n ﺍﻟﺘﻤﺭﻴﻥ. 4 ) pn ( x ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ) : p ( n x 2 + 1 p+1 = ) ( )f (n ) ( x – 1ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ) : p (1 −2 x −2 x x2 + 1 x 2 + 1 1+1 = ) ( ) ( )f (1) ( x 2 = ﺇﺫﻥ p1 ( n ) = − 2 xﻭ ﻫﻭ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ . – 2ﻨﻔﺭﺽ ﺼﺤﺔ ) p ( kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) p ( k + 1 ﺍﻟﻔﺭﻀﻴﺔ p k ( x ) : x 2 + 1 k+1 p (k ): = ) ( )f (k ) ( x ﺤﻴﺙ pk x :ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ( ). k + 1
( )( ) ( )f (k +1) x = p(k ): pk+1 x : ﺍﻟﻤﻁﻠﻭﺏ x2 + 1 k+2 pk (x ) :ﻟﺩﻴﻨﺎ x 2 + 1 k+1 ( )f (k ) ( x ) = : ) ( ﻭ ﻤﻨﻪf (k + 1) ( x ) = f k ′ ( x ) : ﻭ ﻟﺩﻴﻨﺎ k+1 - (k + 1).2 x k . pk ( x )′ (x) =( ) ( ) ( ) ( )f kpk′ ( x ) .x2 + 1 x2 + 1 ⎡ x2 + 1 ⎤k +1 2 ⎣⎢ ⎥⎦x2 + 1( ) (( ))= k ⎡⎣ p ′ ( x ). x2 + 1 − 2 ( k + 1 ) x pk ( x )⎦⎤ k x 2 + 1 2k+2( ( ) )=p ′ ( x ) . x2 + 1 − 2(k + 1) x. pk ( x ) k x 2 + 1 2k+2−k−2 (k + 1) xpk (x ) − p ′ ( x ) x 2 + 1 k+2 k( )= ( ) ( )k − 1 : ﻫﻲpk′ x ﻓﺈﻥ ﺩﺭﺠﺔk ﻫﻲpk x ﺒﻤﺎ ﺃﻥ ﺩﺭﺠﺔ ( )k + 1 : ﻫﻲxpk x ﻭ ﺩﺭﺠﺔ( )k + 1 : ﻫﻲ-2( k + 1) xpk ( x ) -p′k ( x ) . x2 + 1 ﻭ ﻋﻠﻴﻪ ﺩﺭﺠﺔ( )(pk+1 x) = 2( k + 1) xpk ( x ) − pk′ ( k ) . x2 + 1 : ﺒﻭﻀﻊ( ) ( ) ( ( ) ). ﺼﺤﻴﺤﺔp k + 1 : ﻭ ﻤﻨﻪf (k+1) x= pk+1 x : ﻨﺠﺩ x2 + 1 k+2 ( ). n ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲp n ﺇﺫﻥ
ﺍﻟﺘﻤﺭﻴﻥ . 5 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : y 32,5 21,5 10,5-0,5 0 0,5 1 1,5 2 2,5 3 x ﺍﻟﻤﻼﺤﻅﺔ :ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺘﻘﺘﺭﺏ ﻤﻥ ﺍﻟﻌﺩﺩ . 1 (2ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ( )Un ≥ 1 : p n -ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ) U 0 ≥ 1 : p ( 0ﻭ ﻫﻲ ﺼﺤﻴﺤﺔ ﻷﻥ U0 = 10 : -ﻨﻔﺭﺽ ﺼﺤﺔ ) p( kﻭ ﻨﺒﺭﻫﻥ )p( k + 1 ﺍﻟﻔﺭﻀﻴﺔ ( )p k : Uk ≥ 1 : ﺍﻟﻤﻁﻠﻭﺏ ( )p k + 1 : Uk+1 ≥ 1 : ﻟﺩﻴﻨﺎ Uk ≥ 1 :ﻭ ﻤﻨﻪ Uk ≥ 1 : ﻭ ﻋﻠﻴﻪ Uk+1 ≥ 1 :ﻭ ﻤﻨﻪ p k + 1 :ﺼﺤﻴﺤﺔ ( ). -3ﻨﺒﻴﻥ ﺃﻥ Unﻤﺘﻨﺎﻗﺼﺔ ( ): = ( ) ( )U n − U n= U n+1 − U n Un −Un Un + Un Un + Un =) ( U n − U 2 = Un 1 − Un n Un + Un Un + Unﻭ ﺒﻤﺎ ﺃﻥ Un ≥ 1 :ﻓﺈﻥ 1 − Un ≤ 0 :ﻭ Un > 0ﻭ Un > 0ﻭ ﻤﻨﻪ : Un+1 − Un ≤ 0ﺇﺫﻥ Un :ﻤﺘﻨﺎﻗﺼﺔ ( ).
– 4ﻨﺒﻴﻥ ﺃﻥ Unﻤﺘﻘﺎﺭﺒﺔ ( ). ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻤﺘﻨﺎﻗﺼﺔ ﻭ ﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺩﻨﻰ ﺒﺎﻟﻌﺩﺩ ( )1 Un > 1ﻓﺈﻥ Unﻤﺘﻘﺎﺭﺒﺔ ( ) ( ). lim U n ﺤﺴﺎﺏ -5 ∞n→+ lim U n =l ﻨﻔﺭﺽ ﻟﻤﺎ ∞ n + 1 → +∞ : n → +ﻭ ﻤﻨﻪ : ∞n→+ lim U n+1 = lim Un : ﻓﺘﻜﻭﻥ lim U n+1 = l ﻓﻴﻜﻭﻥ ∞n→+ ∞n→+ ∞n→+ ﻭ ﻋﻠﻴﻪ l = l :ﻭ ﻤﻨﻪ l2 = l :ﺃﻱ l2 − l = 0 ﻭ ﻋﻠﻴﻪ l l − 1 = 0 :ﺃﻤﺎ ) l = 0 :ﻤﺭﻓﻭﺽ ﻷﻥ ( )( Un ≥ 1 . lim U n = 1 ﻭ ﻋﻠﻴﻪ: ﺃﻭ l = 1 : ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 6 ﺍﻟﺤﺴﺎﺏ : ﺒﻤﺎ ﺃﻥ Unﺤﺴﺎﺒﻴﺔ ﻓﺈﻥ ( )U0 + U2 = 2U1 :ﻭ ﻟﺩﻴﻨﺎ U0 + U1 + U2 = 15 :ﻭ ﻤﻨﻪ 3U1 = 15 :ﺇﺫﻥU1 = 5 :⎧ U0 + U2 = 10 ﻭ ﺒﺎﻟﺘﺎﻟﻲ: ⎧ U 0 + 5 + U2 = 15 ﻭ ﻤﻨﻪ:⎪ 1 + 1 ⎪ 1 + 1 + 1 = 33⎨ = 5 ⎨ U0 5 40⎩⎪ U 0 U2 8 ⎪⎩ U2 ⎧ U 0 + U 2 = 10 ﺃﻱ: ⎧ U0 + U2 = 10 ﻭ ﻤﻨﻪ: ⎨ U 0 × U 2 = 16 ⎪ U0 = 5 ⎩ ⎨ U + U2 8 ⎪⎩ 0 .U 2 ﻭ ﻋﻠﻴﻪ U0 ,U2 :ﻫﻤﺎ ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ x2 − 10 x + 16 = 0 : ﻟﺩﻴﻨﺎ ∆ = (1 0 )2 − u (1 6 ) :ﺃﻱ ∆ = 36 : ﻭ ﻤﻨﻪ x1 = 2 :ﻭ x2 = 8ﺇﺫﻥ U0 = 2 :ﻭ U2 = 8 ﻭ ﻋﻠﻴﻪ r = U1 − U0 = 5 − 2 = 3 : ﺤﺴﺎﺏ Sn = U0 + U1 + ... + Un : Sn
Sn = (n + 1 ) (U 0 + )Un ﺒﻤﺎ ﺃﻥ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ n + 1ﻓﺈﻥ : 2 Sn = (3n + )4)(n + 1 ﺇﺫﻥ : 2 ﺍﻟﺘﻤﺭﻴﻥ . 7 -1ﺤﺴﺎﺏ : qﻟﺩﻴﻨﺎ U5 = U1 × q4 q4 = 1000 ﺃﻱ : ﻭ ﻤﻨﻪ q4 = U5 : 250 U1 ﺃﻱ q4 = 4 :ﻭ ﻋﻠﻴﻪ q2 = 2 :ﻭﺒﺎﻟﺘﺎﻟﻲ. q = 2 : 123 n -2ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn = 22 + 22 + 22 + ... + 2 2 : 2 3 2n 2+ 2 + ... + = Sn ( ) ( ) ( )2 + ﻭ ﻤﻨﻪ: ﺇﺫﻥ Sn :ﻫﻲ ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺤﻴﺙ q = 2 : 1− 2 n ×2 1− 2 = ( )S n 2 × 1 − qn = 1− q (2 ⎡ 1 − )2 n ⎤ ⎣⎡ 1 + ⎦⎤ 2 ⎢⎣ ⎥⎦ ⎤⎦ 2 = Sn × ⎡ ⎤ ⎡⎣ 1 ⎢⎣ 1 − 2 ⎦⎥ + n n ( ) ( ) ( )2 × ⎣⎢⎡1 −⎤ 2 ⎥⎦ ⎡⎣1 + ⎤⎦ 2 2 ⎢⎡⎣1 − ⎤n =− ⎦⎥= Sn 1− 2 2 1+ 2 – 3ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺔ : ⎡ 2 ⎜⎝⎛ 1 − n ⎞⎠⎟ ⎤ ( ) ( )lim ⎢⎣ ⎥⎦ 1+ ∞n→ + Sn = lim − 2 ∞2 = + ∞n→ + ( )lim 2 n ﻷﻥ : ∞n→ + ∞= + – 4ﺤﺴﺎﺏ ﺍﻟﺠﺩﺍﺀ : pn 1 2 3 2n ×2 ×2 × 2 × ...= ( ) ( ) ( ) ( )pn
2 =1 + 2 + 3 + ... + n (1 + n )n = ( ) ( )p n 22 ﺍﻟﺘﻤﺭﻴﻥ . 8 – 1ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻥ Unﻭ ( ) ( ): VnU n+1 − U n = −2 + 2 = −2n + 2 (n + )1 = 2 n+1 n )n (n + 1 )n (n + 1 ﻭ ﻤﻨﻪ Un+1 − Un > 0 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ).V + 1 − V = 1 )1 − 1 = )ln(n) − Ln(n + 1 n n ln(n + )ln(n )ln(n + 1).ln(n ln ⎛ n n 1 ⎞ ⎝⎜ + ⎠⎟ = )ln(n + 1).ln(n ﺒﻤﺎ ﺃﻥ n > 1 :ﻓﺈﻥ ln(n) > 0 :ﻭ Ln( n + 1) > 0 L n ⎛ n ⎞ < 0 ﻓﺈﻥ: n n 1 < 1 ﻭ ﺒﻤﺎ ﺃﻥ: ⎜⎝ n+ ⎟⎠ + 1 ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ( ). V ﺇﺫﻥ : V +1 − V < 0 ﻭ ﻤﻨﻪ: n n n ( )lim lim ⎛ −2 ⎞1 0 -2ﻟﺩﻴﻨﺎ : ⎜ n ∞n→ + ∞n→ + ⎝ U n − Vn = − l n ( n ) ⎟ = ⎠ – 3ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻤﺘﺠﺎﻭﺭﺘﺎﻥ ﻷﻥ Unﻤﺘﺯﺍﻴﺩﺓ ﻭ Vnﻤﺘﻨﺎﻗﺼﺔ) ( ) ( ( )lim ∞n→+ Un − Vn =0 ﻭ ﻟﺩﻴﻨﺎ :
ﺍﻟﺘﻤﺭﻴﻥ . 9 -1ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻥ U nﻭ ( ) ( ): Vn U n+1 − Un = ln(n + )1 − ) ln ( n = l n ⎛ n + 1 ⎞ ﻟﺩﻴﻨﺎ : ⎝⎜ n ⎟⎠ L n ⎛ n+ 1 ⎞ > 0 ﻓﺈﻥ : ﺒﻤﺎ ﺃﻥ n + 1 > 1 : ⎝⎜ n ⎟⎠ n ﻭﻤﻨﻪ Un+1 − Un > 0 :ﻭﺒﺎﻟﺘﺎﻟﻲ Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). Vn+1 − V = ln (n + 2)− ln (n + = )1 ln ⎛ n + 2 ⎞ n ⎜⎝ n + 1 ⎟⎠ L n ⎛ n + 2 ⎞ > 0 ﻓﺈﻥ : n + 2 > 1 ﺒﻤﺎ ﺃﻥ : ⎜⎝ n + 1 ⎟⎠ n + 1 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). Vn ﻭﺒﺎﻟﺘﺎﻟﻲ Vn+1 − V > 0 ﻭﻤﻨﻪ : n – 2ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺔ :lim (U n − Vn ) = lim ⎡⎣ln ( n + )1 − ln ( n + ⎤⎦) 2∞n→ + ∞n→ + ⎛ n+ ⎞1 ⎛ n ⎛ 1 + 1 ⎞ ⎞ ⎝⎜ n+ ⎠⎟ 2 ⎜ ⎜⎝ ⎟⎠ ⎟ = lim ln = ⎜ lim ln n ⎞ ⎟ ∞ ⎜n → + ⎛ 2 ⎠⎟ ⎟ ∞n→ + ⎝⎜ n ⎜⎝ 1 + ⎠⎟ n ⎛ 1 + 1 ⎞ ⎜ n ⎟ = lim ⎜ ln 2 ⎟ = 0 ∞n→ + ⎟ ⎜1+ ⎠⎝ n – 3ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻏﻴﺭ ﻤﺘﺠﺎﻭﺭﺘﻴﻥ ﻷﻨﻬﻤﺎ ﻤﺘﺯﺍﻴﺩﺘﺎﻥ ﻤﻌﺎ .
. 10 ﺍﻟﺘﻤﺭﻴﻥ : – ﺍﻟﺤﺴﺎﺏ1U1 = 2+ U0 = 2+ 2 ⎛ 2 cos2 θ − 1 ⎞ ⎝⎜ 2 ⎟⎠ = 2 + 4 co s 2 θ − 2 = 4 c o s 2 θ = 2 c o s θ 2 2 2 0 ≤ θ ≤ π : ﻴﻜﻭﻥ θ > 0 ﻭ co s θ > 0 : ﻷﻥ 2 4 2 2U2 = 2 + U1 = 2+ 2 cos θ = 2 + 2 ⎛ 2 co s 2 θ − 1 ⎞ 2 ⎝⎜ 4 ⎠⎟ = 4 × c o s 2 θ = 2 cos θ = 2 co s θ 4 4 22U3 = 2+U2 = 2 + 2 c o s θ = 2 c o s θ = 2 cos θ 4 8 23 U n = 2 c o s ⎛ θ ⎞ : p (n ) – ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ2 ⎜⎝ 2n ⎟⎠ . ﺼﺤﻴﺤﺔp ( 0 ) ﻤﺤﻘﻘﺔ ﻭﻤﻨﻪU 0 = 2 c o s θ : p ( 0 ) ﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ- p(k ):U k = 2 c o s ⎛ θ ⎞ : ﺍﻟﻔﺭﻀﻴﺔ ⎜⎝ 2k ⎟⎠p(k + 1) : U k+1 = 2 cos ⎛ θ ⎞ ⎝⎜ 2k+1 ⎠⎟U k+1 = 2+ Uk = 2 + 2 co s ⎛ θ ⎞ ⎝⎜ 2k ⎟⎠U k+1 = 2 + 2 ⎛ 2 co s 2 θ − 1 ⎞ = 4 cos2 θ = 2 cos θ ⎝⎜ 2 k +1 ⎟⎠ 2k+1 2 k +1 0≤θ ≤ π : ﻟﻜﻭﻥ cos θ > 0 : ﻷﻥ 2 2 k +1 ( ) ( ). n ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲp n : ﺼﺤﻴﺤﺔ ﻭﻋﻠﻴﻪp k + 1 ﻭﻤﻨﻪ lim 2n = 0 : ﻷﻥ lim Vn = lim θ =0 -3 n→+∞ n→+∞ n→+∞ 2n ( )Un = 2cos Vn : Un ﺍﺴﺘﻨﺘﺎﺝ ﺘﻘﺎﺭﺏ-4
= lim U n = lim 2 cos Vn = 2 ∞n→ + ∞n→ + ﻭﻤﻨﻪ ) (U nﻤﺘﻘﺎﺭﺏ ﻨﺤﻭ . 2 lim Vn = 0 ﻷﻥ : ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 11 – 1ﺍﻟﺤﺴﺎﺏ : U1 = 3 + 2U 0 = 3− 2 =1 2 + U0 2−1 U2 = 3 + 2U 1 = 3+ 2 = 5 2 + U1 2+1 3 3 + 2U 2 3 + 10 19 2+ U2 3 11 U3 = = 5 = 3 2+ U4 = 3 + 2U 3 = 3+ 38 = 71 2 + U3 2+ 11 41 19 11 – 2ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ( )Un > 0 : p n -ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ) U 1 > 0 : p (1ﻭﻫﻲ ﻤﺤﻘﻘﺔ ﻭﻤﻨﻪ p 1ﺼﺤﻴﺤﺔ( ). -ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ p kﺼﺤﻴﺤﺔ ﻓﺈﻥ p k + 1ﺼﺤﻴﺤﺔ( ) ( ). ﺍﻟﻔﺭﻀﻴﺔ ( )p k :Uk > 0 : ﺍﻟﻤﻁﻠﻭﺏ ( )p k + 1 : Uk+1 > 0 : ﻭﻤﻨﻪ Uk+1 > 0 3 + 2U k > 0 ﻓﺈﻥ : Uk > 0 ﺒﻤﺎ ﺃﻥ : 2 + Ukﺇﺫﻥ p k + 1 :ﺼﺤﻴﺤﺔ .ﻭﻋﻠﻴﻪ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ) ( ). n U n+1 = 3 + 2U n ﻟﺩﻴﻨﺎ : 2+ Unﻨﺤﻭ . ﻭ ﺒﻤﺎ ﺃﻥ Un > 0 :ﻓﺈﻥ 2 + Un ≠ 0 :ﻭﻤﻨﻪ Uk+1 :ﻤﻌﺭﻓﺔ ﻤﻥ - 3ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ) U n ≤ 3 : p ( n
-ﻤﻥ ﺃﺠل U0 ≤ 3 : n = 0ﻭ ﻫﺫﺍ ﺼﺤﻴﺢ ﻷﻥ U0 = −1 ﻭﻋﻠﻴﻪ p 0 :ﺼﺤﻴﺤﺔ( ). -ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) ( )p ( k + 1 ﺍﻟﻔﺭﻀﻴﺔ p ( k ) : U k ≤ 3 : ﺍﻟﻤﻁﻠﻭﺏ p ( k + 1 ) : U k + 1 ≤ 3 :U k+1 − 3 = 3 + 2U k − 3 = 3 + 2U k −2 3 − Uk 3 2+ Uk 2 + Uk( ) ( ) ( )= 2 U k − 3 + 3−Uk 3 = 2 Uk − 3 ≤ 3 Uk − 3 2+ Uk 2+ Uk =) () ( Uk − 3 2− 3 2+ Un ﻭ ﺒﻤﺎ ﺃﻥ U k ≤ 3ﻓﺈﻥ U k − 3 ≤ 0ﻭﻋﻠﻴﻪ U k +1 − 3 ≤ 0 : ﻭ ﻤﻨﻪ U k + 1 ≤ 3 : ﺇﺫﻥ p ( k + 1 ) :ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ p ( n ) :ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n – 5ﻨﺒﺭﻫﻥ ﺃﻥ Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ( ):Vn+1 = U n+1 − 3 = 3 + 2U n − 3 U n+1 + 3 2 + Un + 3 3 + 2U n 2 + Un = 3 + 2U n − 2 3 − U n 3 3 + 2U n + 2 3 + U n 3 (2 − ) ( )3 2− (3 2 − )3 =( Un + 3 − 2 3 3 Un − (3 2 + )3 = 2+ ) ( )3 U n + 3 + 2 3 2 + 3 U n + ( )2 − 3 ⎡⎣U n − 3 ⎤⎦ = 2 − 3 .Vn 3 ⎣⎡U n + 3 ⎤⎦ 2 + 3 = ( )2 +
(2 − 3 )(2 − 3 ) : ﺇﺫﻥ( ) ( )Vn+1 = 2 + 3 2 − 3 .Vn ( )2 : ﻭﻋﻠﻴﻪ 2− 3 : ﻭﺒﺎﻟﺘﺎﻟﻲVn+1 = 4 − 3 .Vn ( )2Vn+1 = 2 − 3 .Vn ( )V n + 1 = 7 − 4 3 V n : ﺇﺫﻥ ( )q = 7 − 4 3 ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎVn ﻭﻤﻨﻪ V0 = U0 − 3 = −1 − 3 : ﻭﺤﺩﻫﺎ ﺍﻷﻭل U0 + 3 −1 + 3−1 −(( ))(( )) ( )V 0 =3−1 −3−1 + 3 −1 − 3 = 1+ 3 = 4+ 2 3 1− 3 −2 V0 = −2 − 3 : lim Vn ﺏ– ﺤﺴﺎﺏ( ) ( )Vn = V0 .q n = − 2 + 3 7 − 4 3 n n→ +∞( )( )limVn ⎡ n⎤ ⎣⎢ ⎥⎦n→ +∞ = lim − 2+ 3 7−4 3 n→ +∞ ( ) ( )= lim − 2 + 3 2 − 3 2n = 0 n→ +∞ 0 < 2 − 3 < 1 : ﻷﻥ : lim Un ﺍﺴﺘﻨﺘﺎﺝ n→+∞( )Vn U n + 3 = Un − 3 : ﻭﻤﻨﻪ Vn = Un − 3 Un + 3 UnVn + Vn 3 = Un − 3 : ﻭﻋﻠﻴﻪ : ﻭ ﻤﻨﻪUnVn − Un = −Vn 3 − 3 : ﻭﺒﺎﻟﺘﺎﻟﻲ
− )3 (Vn + 1 ﺇﺫﻥ : U n (Vn − 1) = − )3 (Vn + 1= Un Vn − 1 lim U = lim − 3 (Vn + )1 = ﻭ ﻋﻠﻴﻪ3 : ∞n→ + n ∞n→ + Vn − 1 . lim Vn = 0 ﻷﻥ : ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ . 12 -1ﺘﻌﻴﻴﻥ : α0ﺘﻜﻭﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ( ): Un+1 − Un = rﻭ ﻤﻨﻪ ( )Un+1 − Un = αUn + 3 − Un = Un α − 1 + 3 : ﺇﺫﻥ α − 1 = 0 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ α = 1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ Un+1 − Un = 3 :ﻤﻥ ﺃﺠل. α = 1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ 3ﻤﻥ ﺃﺠل( ). α = 1 : – 2ﻟﺩﻴﻨﺎ α ≠ 1 : ﺘﻜﻭﻥ Unﺜﺎﺒﺘﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ( ): ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un+1 = Un : nﻭ ﻤﻨﻪ αUn + 3 = Un :ﻭ ﻋﻠﻴﻪ( )α − 1 Un = −3 : ﺜﺎﺒﺘﺔ ﻓﺈﻥ ( )U0 = Un : = −3 Un ﻭ ﺒﻤﺎ ﺃﻥ Un ﺇﺫﻥ: α −1 −3 . U0 = α −1 ﻭ ﻤﻨﻪ: – 3ﺘﺒﻴﺎﻥ ﺃﻥ : q = α ( )Vn+1 = βUn+1 + δ = β αUn + 3 + δ= αβUn + 3β + δ = αβUn + αδ − αδ + 3β + δ = α (β U n + δ ) − αδ + 3β + δ
= α Vn − αδ + 3β + δﻭ ﻋﻠﻴﻪ −αδ + 3β + δ = 0 :ﺇﺫﻥ δ (1 − α ) = −3β : δ = −β ﻭ q=α ﺇﺫﻥ : δ = −3β ﺃﻱ: 1−α 1−α -ﺘﻜﻭﻥ Vnﻤﺘﻘﺎﺭﺒﺔ ﻟﻤﺎ − 1 < q < 1ﻭ ﻋﻠﻴﻪ ( )−1 < α < 1 : : lim U n ﺤﺴﺎﺏ : - ∞n→+Un = 1 (Vn −δ ) ﻭ ﻤﻨﻪ : ﻟﺩﻴﻨﺎ Vn = β Un + δ : β( )lim U 1 = −δ β β∞n→ + n = lim Vn − δ ∞n→ + ﺍﻟﺘﻤﺭﻴﻥ . 13 – 1ﺤﺴﺎﺏ : Sn Snﻫﻭ ﻤﺠﻤﻭﻉ n+1ﺤﺩﺍ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1 1 − ⎛ 1 ⎞n+1 1 1. ⎝⎜ 2 ⎟⎠ ﻭ ﺃﺴﺎﺴﻬﺎ q = 2ﻭ ﻤﻨﻪ : Sn = 1 1− 2 ⎡ ⎛ 1 ⎞ n+1 ⎤ ⎢ ⎜⎝ 2 ⎟⎠ ⎥ Sn = 2 1 − ⎦⎥ ﺇﺫﻥ : ⎢⎣ – 2ﺤﺴﺎﺏ Unﺒﺩﻻﻟﺔ : n 1 ﻟﺩﻴﻨﺎ : U1 = U0 + 2 1 U 2 = U1 + 22 1 U 3 = U 2 + 23 M 1 U n−1 = U n−2 + 2 n−1 1 U n = U n−1 + 2n
Un = U0 + 1 + 1 + ... + 1 ﺒﺎﻟﺠﻤﻊ ﻁﺭﻓﺎ ﻟﻁﺭﻑ ﻨﺠﺩ : 2 22 2n Un = 1+ 1 + 1 + ... + 1 ﻭ ﻤﻨﻪ: 2 2n 2n Un = ⎡ − ⎛ 1 ⎤ ⎞n+1 ﺇﺫﻥ Un = Sn :ﻭ ﻋﻠﻴﻪ: 2 ⎢1 ⎜⎝ 2 ⎟⎠ ⎥ ⎥⎦ – 3ﺍﺴﺘﻨﺘﺎﺝ ﻨﻬﺎﻴﺔ ( ): Un ⎣⎢ lim U = ⎡ ⎛ 1 ⎤ ⎞ n+1 = 2 lim 2 ⎢1 − ⎜⎝ 2 ⎟⎠ ⎥ ∞n→ + n ⎣⎢ ∞ n → + ⎥⎦ lim ⎛ 1 ⎞n+1 = 0 ﻷﻥ : ⎝⎜ 2 ⎟⎠ ∞n→ + - 4ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ) : (UnU n+1 − U = ⎡ − ⎛ 1 ⎤ ⎞n+2 − ⎡ − ⎛ 1 ⎤ ⎞n+1 2 ⎢1 ⎝⎜ 2 ⎠⎟ ⎥ 2 ⎢1 ⎜⎝ 2 ⎠⎟ ⎥ n ⎥⎦ ⎦⎥ ⎣⎢ ⎢⎣ = − 2 ⎛ 1 ⎞n+2 + 2 ⎛ 1 ⎞n+1 ⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ = 2 ⎛ 1 ⎞n+1 ⎡ − 1 + ⎦⎤⎥ 1 = ⎛ 1 ⎞ n+1 ⎜⎝ 2 ⎠⎟ ⎣⎢ 2 ⎜⎝ 2 ⎟⎠ Un+1 − Un > 0ﻭ ﻤﻨﻪ Un :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ( ). ﻭ ﻋﻠﻴﻪ: ﺍﻟﺘﻤﺭﻴﻥ . 14 – 1ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ( )2 − Un ≥ 0 : p n -ﻤﻥ ﺃﺠل 2 − U0 ≥ 0 : n = 0ﺃﻱ 4 ≥ 0 :ﻤﺤﻘﻘﺔ . ﻭ ﻤﻨﻪ p 0 :ﻤﺤﻘﻘﺔ ( ). -ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( ): p k + 1 p(k): 2 −Uk ≥ 0 ﺍﻟﻔﺭﻀﻴﺔ : p (k + 1 ): 2 − U k+1 ≥ 0 ﺍﻟﻤﻁﻠﻭﺏ : ﻟﺩﻴﻨﺎ 2 − Uk ≥ 0 :ﻭ ﻤﻨﻪ Uk ≤ 2 :
ﻭ ﻋﻠﻴﻪ 2 + Uk ≤ 4 :ﻭ ﻤﻨﻪ 2 + U k ≤ 2 : ﺇﺫﻥ Uk+1 ≤ 2 :ﻭ ﻋﻠﻴﻪ 2 − Uk+1 ≥ 0 : ﺇﺫﻥ p k + 1 :ﺼﺤﻴﺤﺔ ( ). ﻭ ﻤﻨﻪ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). n -ﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻥ Un ≥ 0 : ﻟﺘﻜﻥ ﺍﻟﺨﺎﺼﻴﺔ ( )p n : Un ≥ 0 ﻤﻥ ﺃﺠل U1 ≥ 0 : n = 1 ﻭ ﻟﺩﻴﻨﺎ U1 = 2 + U0 = 2 − 2 = 0 :ﻭ ﻤﻨﻪ p 1 :ﻤﺤﻘﻘﺔ( ). ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ( ) ( )p k + 1 ﺍﻟﻔﺭﻀﻴﺔ ( )p k : Uk ≥ 0 : ﺍﻟﻤﻁﻠﻭﺏ ( )p k + 1 : Uk+1 ≥ 0 : ﻟﺩﻴﻨﺎ Uk ≥ 0 :ﻭ ﻤﻨﻪ Uk + 2 ≥ 0 : ﻭ ﻋﻠﻴﻪ Uk + 2 ≥ 0 :ﻭﺒﺎﻟﺘﺎﻟﻲ . Uk+1 ≥ 0 : ﺇﺫﻥ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ( ). n – 2ﻨﺒﺭﻫﻥ ﺃﻥ Unﻤﺘﺯﺍﻴﺩﺓ ( ):= U n+1 − U n ⎡⎣ = 2 + U n − U n 2 + U n − U n ⎤⎦ 2 + U n + U n 2+ Un + Un = 2 + Un − U 2 = − U 2 + Un + 2 n n 2 + Un + Un 2 + Un + Un −U 2 + Un + 2 : ﺍﻹﺸﺎﺭﺓ ﻨﺩﺭﺱ n ﻟﺩﻴﻨﺎ ∆ = 9 :ﻭ ﻤﻨﻪ Un = 2 :ﺃﻭ Un = −1ﺇﺫﻥ :−U 2 + Un + 2 = − (Un − 2)(Un + )1 = (2 − Un )(Un + )1 n U n+1 − Un = (2 )− Un )(Un + 1 ﻭ ﻤﻨﻪ : 2 + Un + Un
ﻭ ﺒﻤﺎ ﺃﻥ 2 − Un ≥ 0 :ﻭ Un ≥ 0ﻓﺈﻥUn+1 − Un ≥ 0 : ﺇﺫﻥ Un :ﻤﺘﺯﺍﻴﺩﺓ ( ). – 3ﺍﺴﺘﻨﺘﺎﺝ ﺘﻘﺎﺭﺏ ( ): Un ﻟﺩﻴﻨﺎ 2 − Un ≥ 0 :ﻭ ﻤﻨﻪ Un ≤ 2 : ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﻋﻠﻰ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻘﺎﺭﺒﺔ) ( ﺍﻟﺘﻤﺭﻴﻥ . 15 (1-Iﺇﺜﺒﺎﺕ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ( ). ﻟﺩﻴﻨﺎ Un+1 − Un = Un × 0,06 : ﻭ ﻤﻨﻪ Un+1 = Un + Un × 0, 06 : )Un+1 = Un (1 + 0,06 ﺇﺫﻥ Un+1 = 1,06 × Un : ﻭ ﻋﻠﻴﻪ Un :ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( ). q = 1, 06 (2ﺤﺴﺎﺏ Unﺒﺩﻻﻟﺔ : nﻟﺩﻴﻨﺎ Un = U0 × qn :ﻭ ﻤﻨﻪ ( ). Un = 60. 1,06 n : (3ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ : Sn = U0 + U1 + ... + Un ﻟﺩﻴﻨﺎ :Sn = U0 × 1 − qn+1 = 60 × )1 − (1,06 1−q 1 − 1,06Sn = × 60 1− (1, 0 6 )n+1 = × 60 1− (1, 0 6 )n+1 0,06 6 100Sn = 6000 × ⎡ 1 − (1 , 0 6 )n + 1 ⎤ 6 ⎣ ⎦Sn = 1000 × ⎣⎡1 − ( 1, 0 6 ) n + 1 ⎤ ⎦
- IIﻨﻔﺭﺽ Unﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺴﻨﺔ n ﻭﻋﻠﻴﻪ Un+1ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ n + 1 6 ﻭ ﻋﻠﻴﻪ Un+1 = Un + Un × 100 : Un+1 = Un + Un × 0,06ﺇﺫﻥ Un+1 = 1, 06.Un :ﻭ ﻫﻲ ﻨﻔﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ . ﻭ ﻤﻨﻪ Un = 60 1,06 n :ﺤﻴﺙ ( )U0 = 60 : ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺍﻟﺴﻨﺔ 2000ﺒﺎﻟﻤﻼﻴﻴﻥ .. U7 ﻓﻴﻜﻭﻥ ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺍﻟﺴﻨﺔ 2007ﻫﻭ U7 ﺤﻴﺙ U7 = 60(1,06)7 :ﻭ ﻤﻨﻪ90, 22 :ﺇﺫﻥ ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺍﻟﺴﻨﺔ 2007ﻫﻭ ﺤﻭﺍﻟﻲ 90,22ﻤﻠﻴﻭﻥ ﻨﺴﻤﺔ. ﺍﻟﺘﻤﺭﻴﻥ . 16 – 1ﻨﺒﻴﻥ ﺃﻥ ) ( V nﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ :( )Vn+1 = U n+ 2 − U n+1 = λ + 1 U n+1 − λ U n − U n+1= λUn+1 − λUn ( )= λ U n + 1 − U n = λ Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( )q = λVnﻭﻋﻠﻴﻪ Vn+1 − λ V ﺇﺫﻥ: n -ﺤﺴﺎﺏ Vnﺒﺩﻻﻟﺔ nﻭ : λﻟﺩﻴﻨﺎ Vn =V0 .qn , V0 =U1-U0 = 1 : ﻭ ﻤﻨﻪ . Vn = λ n : – 2ﺤﺴﺎﺏ : Sn Sn = × V0 1 − qn = 1− λn ﻟﺩﻴﻨﺎ : 1− q 1− λ ﻨﺒﻴﻥ ﺃﻥ S n = U n − 1 :
V0 = U 1 − U 0 : ﻟﺩﻴﻨﺎ V1 = U 2 − U 1 V2 = U 3 − U 2 M V n-2 = U n −1 − U n − 2 V n -1 = U n − U n − 1 V0 + V1 + ... + Vn−1 = U n − U 0 : ﺒﺎﻟﺠﻤﻊ ﻁﺭﻓﺎ ﻟﻁﺭﻑ ﻨﺠﺩ Un = 1− λn + 1 : ﺇﺫﻥ Sn = U n − 1 : ﻭ ﻤﻨﻪ 1− λ S ′ : ﺤﺴﺎﺏ n S ′ = U 2 + U 2 + ... + U2 0 1 n−1 n Un = 1 − 3n + 1 : ﻭ ﻤﻨﻪ Un = 1− λ +1 : ﻟﺩﻴﻨﺎ 1− 3 1− λ 1 1 : ﺃﻱU n 1 + 1 : ﺇﺫﻥ ( )U n 2 2 2 = − + .3 n = − 1 − 3n ( )1 Un = − 2 1 + 3n( ) ( ) ( )S⎛1 ⎞2 ⎛ 1 ⎞2 2 ⎛ 1 ⎞2 2 ′ = ⎝⎜ 2 ⎟⎠ 1 + 30 + ⎜⎝ 2 ⎟⎠ 1 + 31 + ... + ⎜⎝ 2 ⎟⎠ 1 + 3n−1 n( ) ( )S 1 ⎡ 2⎤ 1 ⎡ 2⎤′ = 4 ⎣⎢ 1 + 2.3 0 + 30 ⎦⎥ + 4 ⎢⎣ 1 + 2 .3 1 + 31 ⎦⎥ + ...n ( )... + 1 ⎡ 2⎤ 4 ⎣⎢ 1 + 2 .3 n−1 + 3 n−1 ⎦⎥ ( )S 1 ′ = 4 [ 1+ 1+ ... + 1 + 2 3 0 + 3 1 + ... + 3 n −1 n ( )+ 30 + 3 2 + ... + 3 2(n−1) ⎤ ⎦ S ′ = 1 ⎡ + 2× 1 − 3n + 1 − 32n ⎤ 4 ⎢n 1− 3 ⎥ n ⎣ 1− 32 ⎦ = 1 ⎡ − 1 + 3n + 1 − 3 2n ⎤ 4 ⎢n ⎥ ⎣ −8 ⎦
= 1 ⎡ n + 3n −1− 1 + 1 3 2n ⎤ 4 ⎢⎣ 8 8 ⎦⎥= 1 ⎡ n + 1 32n + 3n − ⎤9 4 ⎣⎢ 8 ⎦⎥ 8 ﺍﺴﺘﻨﺘﺎﺝ : n 1 ⎛ 1 3 2n + 3n − 9 ⎞ = 225 ﻟﺩﻴﻨﺎ : 4 ⎝⎜ 8 8 ⎠⎟ﻭ ﻤﻨﻪ ، 32n + 8.3n − 7209 = 0 :ﺒﻭﻀﻊ 3n = t :ﻨﺠﺩ : t 2 − 8t − 7209 = 0ﻭ ﻤﻨﻪ t = 81 :ﻭ ﻤﻨﻪ 3n = 81 : ﻭ ﻋﻠﻴﻪ . n = 4 :
ﺍﻟﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤﻠﻲ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﺘﻜﺎﻤل ﻟﺤﺴﺎﺏ ﻤﺴﺎﺤﺔ ﺴﻁﺢ ﻤﻌﻁﻰ. -ﺘﻭﻅﻴﻑ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﺩﺍﻟﺔ. -ﺍﺴﺘﻌﻤﺎل ﺍﻟﺘﻜﺎﻤل ﺒﺎﻟﺘﺠﺯﺌﺔ. -ﺘﻭﻅﻴﻑ ﺍﻟﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤﻠﻲ ﻟﺤﺴﺎﺏ ﺩﻭﺍل ﺃﺼﻠﻴﺔ. -ﺤﺴﺎﺏ ﺤﺠﻭﻡ ﻟﻤﺠﺴﻤﺎﺕ ﺒﺴﻴﻁﺔ. -ﺘﻭﻅﻴﻑ ﺍﻟﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤﻠﻲ ﻟﺤل ﻤﺸﻜﻼﺕ ﺒﺴﻴﻁﺔ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. – ﺘﻌﺭﻴﻑ. -ﺨﻭﺍﺹ. – ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ. – ﺍﻟﻤﺴﺎﺤﺔ ﻭ ﺍﻟﺘﻜﺎﻤل. – ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل. -ﺤﺴﺎﺏ ﺒﻌﺽ ﺍﻟﺤﺠﻭﻡ. -ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل. -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. -ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : 1 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ f ( x ) = x − 1 :ﻭﺤﺩﺓ) ( f ∆ – 1ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ⎛ O → → ⎞ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻟﻠﺩﺍﻟﺔ⎝⎜ ⎟⎠ ;i ,j ﺍﻟﻁﻭل . cm – 2ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ) M ( x ; f ( x )) , N ( x ; 0 ) , A (1 ; 0ﻤﻥ ) ∆ ( ﺤﻴﺙ x ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺃﻜﺒﺭ ﺘﻤﺎﻤﺎ ﻤﻥ .1 ﺃ -ﺃﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ A N Mﻭ ﻟﺘﻜﻥ ( )s x ﺏ – ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ fﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ 1ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺩﺍﻟﺘﻴﻥ sﻭ g ﺠـ -ﻋﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ π f 2ﻭ ﻟﺘﻜﻥ Gﺩ – ﺃﺤﺴﺏ ﺤﺠﻡ ﺍﻟﺠﺯﺀ ﺍﻟﻤﺘﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ s xﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﻴﻜﻥ ) . V ( xﻤﺎﺫﺍ) ( ﺘﺴﺘﻨﺞ ؟ ﺍﻟﺤل : – 1ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ∆ ﻟﻠﺩﺍﻟﺔ ( ): f )) M ( x ; f ( x ) A (1;0 ) N ( x ; 0 -2ﺃ( ﺤﺴﺎﺏ ( ): s x= ) s (x 1 (x أي − 1 )2 = ) s (x AN .N M = (x − 1 ).f ) (x 2 2 2 = ) s (x ⎛1 x2 − x + 1 ⎞ cm 2 ﻭ ﻤﻨﻪ : ⎝⎜ 2 2 ⎠⎟
ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺏ( ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ ﺍﻟﻌﺩﺩ :1ﺍﻟﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰf f ﺃﺼﻠﻴﺔ g =) g (x 1 x2 − x+λ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : 2 λ = 1 ﻭ ﻤﻨﻪ : 1 − 1 + λ =0 g (1 ) = 0ﻭ ﻋﻠﻴﻪ : ﻟﻜﻥ : 2 2 =) g (x 1 x2 − x+ 1 ﻭﻋﻠﻴﻪ : 2 2 ﺍﻻﺴﺘﻨﺘﺎﺝ : ﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﺒﻕ s x = g xﻭﻤﻨﻪ ﺍﻟﻤﺴﺎﺤﺔ sﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ( ) ( ). f ﺝ( ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ π f 2ﻭ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ 1ﻟﺩﻴﻨﺎ : f 2(x) = x2 − 2x + 1 ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻷﺼﻠﻴﺔ G1ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : ﺍﻟﺩﺍﻟﺔ f 2ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰG = ) G 1 ( xﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ π f 2ﻫﻲ ﺍﻟﺩﺍﻟﺔ x3 − x2 + x+λ 3 G = ) (x π x3 − π x2 + π x − π ﺤﻴﺙ G = πG1ﻭﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ: 3 3 ﺩ ( ﺤﺴﺎﺏ ﺍﻟﺤﺠﻡ :ﻋﻨﺩ ﺩﻭﺭﺍﻥ s xﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻴﻨﺘﺞ ﻤﺨﺭﻭﻁ ﺩﻭﺭﺍﻨﻲ ﻨﺼﻑ ﻗﻁﺭ ﻗﺎﻋﺩﺘﻪ f xﻭ) ( ) ( =)V (x 1 π R 2 .h ﻭﻋﻠﻴﻪ : ﺍﺭﺘﻔﺎﻋﻪ x − 1 3 1 =)V (x 3 π ⎣⎡ f ( x )⎤⎦ 2 . f )(x ﺇﺫﻥ : = )V (x 1 π ⎡⎣ f ( x )⎤⎦ 3 3 1 1 3 1 )3 3 ( )V =)(x π (x − = π x3 − 3x2 + 3x − 1 =)V (x 1 π x3 −π x2 + π x − π 3 3
ﺍﻻﺴﺘﻨﺘﺎﺝ :ﺤﺠﻡ ﺍﻟﺠﺯﺀ ﺍﻟﻤﺘﻭﻟﺩ ﻋﻥ ﺩﻭﺭﺍﻥ s xﺤﻭل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻫﻭ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ( )π f 2 ﺍﻟﻨﺸﺎﻁ: 2 . ⎛ O ; → , → ⎞ ﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ⎜⎝ ⎟⎠ i j ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ] [0 ; 1 ﺒﺎﻟﻌﺒﺎﺭﺓ f ( x ) = x 2 : Aﻤﺴﺎﺤﺔ) (ﺍﻟﻤﺴﺎﺤﺔ ﺤﺴﺎﺏ ﻨﺭﻴﺩ ⎛ O ; → , → ⎞ ،ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﺍﻟﻤﻌﻠﻡ Cf ﻟﻴﻜﻥ ⎜⎝ ⎠⎟ i jﺍﻟﺴﻁﺢ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ( C fﻭﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﻌﺭﻓﻴﻥ ﺒﺎﻟﻤﻌﺎﺩﻟﺘﻴﻥ x = 0 : ﻭ x=1ﻨﻘﺴﻡ ﺍﻟﻤﺠﺎل ] [0 ; 1ﺇﻟﻰ nﺠﺯﺀﺍ ﻤﺘﺴﺎﻭﻴﺔ ﺤﻴﺙ ﺃﻥ ﻜل ﺠﺯﺀ ﻴﺴﺎﻭﻱ n ∈ ∗ 1ﻜﻤﺎ) ( n ﻫﻭ ﻤﺒﻴﻥ ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل .32n222n1n 1 2 3b n n nn n Vnﻤﺠﻤﻭﻉ ﻤﺴﺎﺤﺎﺕ ﻟﻴﻜﻥ lﺠﺯﺀ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﻭﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ( C fﻭ ﺍﻟﻤﺤﻭﺭﻴﻥ . ﻨﺴﻤﻲ unﻤﺠﻤﻭﻉ ﻤﺴﺎﺤﺎﺕ ﺍﻟﻤﺴﺘﻁﻴﻼﺕ ﺍﻟﻤﺤﺘﻭﺍﺓ ﻓﻲ lﻭ ﻨﺴﻤﻲ ﺍﻟﻤﺴﺘﻁﻴﻼﺕ ﺍﻟﺘﻲ ﺘﺤﻭﻱ . l
ﻭﻋﻠﻴﻪ ﻟﺩﻴﻨﺎ un ≤ A ≤ Vn :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﻓﺈﻥ : (1ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n (4ﺍﺴﺘﻨﺘﺞ 12 + 22 + 32 + 42 + ..... + n2 = )n (n + 1)(2 x + 1 6 n V ul i m ∞n→ + Vn , lim un (3ﻋﻴﻥ . (2ﻋﻴﻥ nﻭ nﺒﺩﻻﻟﺔ ∞n→ + (5ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gλﻟﻠﺩﺍﻟﺔ f ﻗﻴﻤﺔ . A (6ﺍﺤﺴﺏ ) . gλ (1) − g ( 0ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ؟ ﺍﻟﺤل : (1ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺍﻟﺨﺎﺼﻴﺔ : p (n ) : 1 2 + 22 + ..... + n2 = n (n + 1 )(2n + > )1 6 ﺒﺩﺍﻴﺔ ﺍﻻﺴﺘﺩﻻل :ﻤﻥ ﺃﺠل n = 0ﻟﺩﻴﻨﺎ 02 = 0ﻭﻋﻠﻴﻪ p 0ﺼﺤﻴﺤﺔ) ( -ﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻟﺨﺎﺼﻴﺔ ﻭﺭﺍﺜﻴﺔ : ﻨﻔﺭﺽ ﺼﺤﺔ ) p ( kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) p ( k + 1 p ( k ) : 1 2 +ﺍﻟﻔﺭﻀﻴﺔ. 22 + .... + k2 = k (k + 1 )(2 k )+ 1 6p (k = + 1 ) : 1 2 + 2 2 + ... + k 2 + (k + 1 )2 ) (k +1 )(2k +1 )(2k + 3 6 ﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ . 12 +22 +...k 2 + ( k +1)2 = k ( k ( )+1 2k )+1 + (k +1)2 6 = ⎤⎦) ( k + 1 ) ⎣⎡ k ( 2 k + 1 ) + 6 ( k + 1 = ) (k +1 )(2 k 2 + 7 k + 6 6 6 = (k + 1 )(k + 2 )(2 k + )1 6 ﻭ ﻋﻠﻴﻪ p k + 1 :ﺼﺤﻴﺤﺔ ( ). ﻭ ﻤﻨﻪ p n :ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). n (2ﺘﻌﻴﻴﻥ unﻭ : Vn
Un = 1 . 1 + 1 + 22 + 1 . 1 + ... + 1 . ( n −1 )2 n n2 n n2 n n3 n n2 ( )1 U n = n3 1 + 2 2 + 3 2 + ... + (n − 1 )2 Un = 1 ⎡(n − 1)n(2n − 1)⎤ ⎢ ⎥ n3 ⎣ 6 ⎦ Un = (n − 1 )(2n − 1) : ﺇﺫﻥ 6n2 Vn = 1 . 12 + 1 . 22 + .... + 1 . ( n −1 )2 + 1 . n 2 n n2 n n2 n n2 n n 2 Vn = 12 ⎡⎣ 1 2 + 2′2 + ..... + n 2 ⎦⎤ n3 Vn = 12 ⎛ n (n + 1)(2n + 1) ⎞ : ﻭ ﻋﻠﻴﻪ ⎜ ⎟ n 3 ⎝ 6 ⎠ Vn = n (2n + 1) 6n2 : lim Vn ﻭ lim u n : ( ﺤﺴﺎﺏ3 n→ +∞ n → +∞lim u = lim (n − 1)(2n − 1) = lim 2n2 − 3n + 1 6n2n→ +∞ n n→ +∞ 6n2 n→ +∞ = lim 2n2 = 2 = 1 6n2 6 3 n→ +∞ lim un = 1 : ﺇﺫﻥ 3 n→ +∞( )l i mn→ +∞V = lim n 2n + 1 = lim 2n2 + n = lim 2n2 = 2 6n2 6n2 6n2 6 n n→ +∞ n→ +∞ n→ +∞ lim V = 1 : ﻭ ﻤﻨﻪ 3 n→ +∞ n : A ( ﺍﺴﺘﻨﺘﺎﺝ ﻗﻴﻤﺔ4 lim V = 1 ﻭ lim u n = 1 ﻭ U n ≤ A ≤ Vn : ﻟﺩﻴﻨﺎ 3 3 n→ +∞ n n→ +∞ A= 1 : ﻭ ﻤﻨﻪ 3
(5ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gλﻟﻠﺩﺍﻟﺔ : f ﻟﺩﻴﻨﺎ f ( x ) = x 2 :ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ gλﻋﻠﻰ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : = )gλ ( x x3 +λ 3 ﺤﻴﺙ λﻋﺩﺩ ﺤﻘﻴﻘﻲ . (6ﺤﺴﺎﺏ g λ (1 ) − g λ ( 0 ) :g λ (1 ) − = ) g λ (0 ⎛ (1 )3 + λ ⎞ ⎛ (0 )3 + λ ⎞ ⎜⎜⎝ ⎟⎠⎟ − ⎝⎜⎜ ⎟⎟⎠ 3 3 = 1 + λ − 0 − λ = 1 3 3ﺍﻟﺘﺨﻤﻴﻥ :ﺍﻟﻌﺩﺩ ) g λ (1 ) − g λ ( 0ﻤﺴﺘﻘل ﻋﻥ λﻭ ﻜﺫﻟﻙ ) g λ (1 ) − g λ ( 0ﻴﻤﺜلﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ C fﻭ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﻌﺭﻓﻴﻥ) (ﺒﺎﻟﻤﻌﺎﺩﻟﺘﻴﻥ . x = 1 ، x = 0 :ﺇﺫﻥ g λ (1 ) − g λ ( 0 ) = A :
ﺘﻌﺭﻴﻑ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل a . Iﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻜﻴﻔﻴﺎﻥ ﻤﻥ . Iﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ Iﻭ ﺇﺫﺍ ﻜﺎﻨﺕ gﻭ hﺩﺍﻟﺘﻴﻥ ﺃﺼﻠﻴﺘﻴﻥ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ λﺒﺤﻴﺙ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ g ( x ) = h ( x ) + λ :Iﻟﺩﻴﻨﺎ g (b ) − g (a ) = ⎣⎡h (b ) + λ ⎦⎤ − ⎣⎡h (a ) + λ ⎤⎦ : ) = h (b ) − h (a ﻭ ﻋﻠﻴﻪ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ g b − g aﻤﺴﺘﻘل ﻋﻥ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺩﺍﻟﺔ) ( ) ( ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ fﻭ ﻋﻠﻴﻪ ﺍﻟﺘﻌﺭﻴﻑ ﺍﻵﺘﻲ : ﺘﻌﺭﻴﻑ a :ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ ﻤﺠﺎل . I fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻭ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻜﻴﻔﻴﺔ ﻟﻬﺎ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل . ﻴﺴﻤﻰ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ⎦⎤) ⎣⎡ g ( b ) − g ( aﺍﻟﺘﻜﺎﻤل ﻤﻥ aﺇﻟﻰ bﻟﻠﺩﺍﻟﺔ f b ﻭ ﻨﺭﻤﺯ ﻟﻪ ﻜﻤﺎ ﻴﻠﻲ . g (b ) − g (a ) = ∫ f ( x )d x : a ﻤﻼﺤﻅﺎﺕ : ( ) ∫b ﻴﻘﺭﺃ \" : f ( x ) dxﺍﻟﺘﻜﺎﻤل ﻤﻥ aﺇﻟﻰ \" f x dx :≥ b a bﻓﻲ ﺍﻟﻜﺘﺎﺒﺔ f x dx :ﺍﻟﺘﻲ ﺘﺸﻤل ﺍﻟﻤﺘﻐﻴﺭ xﻴﻤﻜﻥ ﺘﺒﺩﻴل xﺒﺄﻱ ﺤﺭﻑ ﺁﺨﺭ ﻤﺎ ﻋﺩﺍ ∫ ( )a a ﻭ bﻭ fﺍﻟﺘﻲ ﺘﺩل ﺃﺸﻴﺎﺀ ﻤﻌﻴﻨﺔ . b bb ﻓﻨﻜﺘﺏ ∫ f ( x )d x = ∫ f (t )d t = ∫ f ( z )d z : a aab b a∫ f ( x )dx = g (b) − = )g (a ⎡⎣ g ( x ) ⎦⎤ -ﻨﻜﺘﺏ ﻋﺎﺩﺓ :a
ﻤﺜﺎل : 2 ﺍﺤﺴﺏ ﺍﻟﺘﻜﺎﻤل ﺍﻵﺘﻲ ∫ ( )x2 − 4 x + 5 dx : 1ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ gﻤﻌﺭﻓﺔ ﺍﻟﺤل : ﺍﻟﺩﺍﻟﺔ x a x2 − 4 x + 5 : fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ : )g(x = 1 x3 − 2x2 + 5x + λ , ∈λ 3 ( )2 2 ﻭ ﻋﻠﻴﻪ : 1 ∫ x 3 − 4x + 5 dx = ⎡⎣ g (x ⎦⎤) = g (2) − g ) (1 1= ⎡1 (2 )3 − 2 (2 )2 + ⎤⎦⎥) 5 ( 2 − ⎡1 (1 )3 − 2 (1 )2 + 5 (1 ) ⎤ ⎣⎢ 3 ⎢⎣ 3 ⎥⎦ = 8 − 8 + 10 − 1 + = 2− 5 7 =−1 4 3 3 3 3 ﻤﺒﺭﻫﻨﺔ :ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ aﻤﻥ I ﻫﻲ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Iﻜﻤﺎ ﻴﻠﻲ : x g ( x ) = ∫ f (t )dt a ﺍﻟﺒﺭﻫﺎﻥ : fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ a ، Iﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻥ . Iﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Iﻜﻤﺎ ﻴﻠﻲ x g(x) = ∫ f (t)d : aﻨﻌﻠﻡ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ hﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ : I ) g ( x ) = h( x ) − h(a ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ( ) ( )g′ x = h′ x : I ﻭ ﻟﺩﻴﻨﺎ g (a ) = h (a ) − h (a ) = 0 : ﻭ ﻋﻠﻴﻪ gﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻭ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ a
ﺨﻭﺍﺹ ﺨﺎﺼﻴﺔ : 1 fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . Iﻤﻬﻤﺎ ﺘﻜﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ c, b, aﻤﻥ Iﻟﺩﻴﻨﺎ : cbc ∫ f (x )d x = ∫ f (x )d x + ∫ f (x )d x a ab ﺍﻟﺒﺭﻫﺎﻥ :ﺒﻤﺎ ﺃﻥ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻓﺈﻨﻪ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻬﺎ gﻋﻠﻰ . Iﻤﻬﻤﺎ ﺘﻜﻥ ﺍﻷﻋﺩﺍﺩ c, b, a ﻤﻥ Iﻟﺩﻴﻨﺎ : ))g (c) − g (a) = (g (c) − g (b)) + (g (b) − g (a c cb ﻭ ﻋﻠﻴﻪ ∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx : a ba bbc ﻭ ﻤﻨﻪ ∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx : aab ﺤﺎﻻﺕ ﺨﺎﺼﺔ : aaa ﺃ( ﺇﺫﺍ ﻜﺎﻥ a = b = c :ﻴﻜﻭﻥ ∫ f ( x)dx = ∫ f ( x)dx + ∫ f ( x)dx : aaa a ﻭ ﺒﺎﻟﺘﺎﻟﻲ ∫ f ( x ) d x = 0 : a ﺏ( ﺇﺫﺍ ﻜﺎﻥ c = aﻴﻜﻭﻥ : a ba ∫ f (x )dx = ∫ f (x )dx + ∫ f (x )dx aab ba 0 = ∫ f ( x )dx + ∫ f ( x )dx ab ba ﻭ ﺒﺎﻟﺘﺎﻟﻲ ∫ f ( x ) dx = − ∫ f ( x ) dx : ab
ﺨﺎﺼﻴﺔ : 2 fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻭ λﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻜﻴﻔﻲ .ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ bb ﺍﻟﺤﻘﻴﻘﻴﺎﻥ aﻭ bﻤﻥ Iﻟﺩﻴﻨﺎ ∫ ∫λf ( x )dx = λ f ( x )dx : aa ﺍﻟﺒﺭﻫﺎﻥ :ﺒﻤﺎ ﺃﻥ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ gﻋﻠﻰ . Iﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ λ fﻋﻠﻰ Iﻫﻲ λ gb b ﻭﻤﻨﻪ : a∫ λf (x )d x = ⎡⎣ λ g (x ) ⎦⎤ = λg (b )− λg ) (aa b = λ (g (b) − g (a)) = λ ∫ f ( x)dx a ﺨﺎﺼﻴﺔ : 3 f2 , f1ﺩﺍﻟﺘﺎﻥ ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ ﻤﺠﺎل . I ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ aﻭ bﻤﻥ Iﻟﺩﻴﻨﺎ : b bb ∫ ⎡⎣ f 1 ( x ) + f 2 ( x )⎦⎤d x = ∫ f 1 ( x ) d x + ∫ f 2 ( x ) d x a aa ﺍﻟﺒﺭﻫﺎﻥ : f2 , f1ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ ﺍﻟﻤﺠﺎل . Iﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﻜل ﻤﻨﻬﻤﺎ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ . Iﻟﺘﻜﻥ g2 , g1 ﻫﺎﺘﻴﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻷﺼﻠﻴﺘﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ f2 , f1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﺍﻟﻤﺠﺎل . Iﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ aﻭ bﻤﻥ Iﻟﺩﻴﻨﺎ : b b a ∫ ⎡⎣ f1 ( x ) + = f 2 ( x )⎦⎤dx ⎡⎣ g1 ( x ) + g 2 ( x ⎦⎤) a ﻷﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f 2 + f 1ﻫﻲ g 2 + g 1ﻭﻤﻨﻪ :b⎤⎦)∫ ⎡⎣f 1 (x ) + f 2 (x )⎦⎤ dx= ⎣⎡g1 (b ) + g 2 (b )⎦⎤ - ⎣⎡g1 (a) + g 2 (aa ⎤⎦) = ⎡⎣ g 1 ( b ) − g 1 ( a )⎤⎦ + ⎣⎡ g 2 ( b ) − g 2 ( a bb = ∫ f 1 ( x )d x + ∫ f 2 ( x )d x aa
ﺨﺎﺼﻴﺔ : 4 fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل a . Iﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ I ﺤﻴﺙ . a ≤ b : ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﻭﺠﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a; bﻴﻜﻭﻥ [ ]: b . ∫ f ( x )dx ≥ 0 a ﺍﻟﺒﺭﻫﺎﻥ : ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ gﻋﻠﻰ Iﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﻭﺠﺒﺔ ﻋﻠﻰ Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ gﻤﺘﺯﺍﻴﺩﺓ ﻋﻠﻰ Iﻷﻥ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔﻭ ﻋﻠﻴﻪ : .g ﻭ ﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ aﻭ bﻋﺩﺩﺍﻥ ﻤﻥ Iﻓﺈﻨﻪ : ﺇﺫﺍ ﻜﺎﻥ a ≤ bﻓﺈﻥ g a ≤ g bﺃﻱ ( ) ( )g (b ) − g (a ) ≥ 0 : b ∫ f ( x)dx ≥ 0 a ﻤﻼﺤﻅﺔ : b -ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﺴﺎﻟﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a;bﻓﺈﻥ ∫ ( ) [ ]f x dx ≤ 0 : a -ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ [ ]( ) ( )f1 x ≤ f2 x : a;bbbﺤﻴﺙ f2 , f1ﺩﺍﻟﺘﺎﻥ ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ a;bﻓﺈﻥ ∫ ∫ [ ]( ) ( )f1 x dx ≤ f2 x dx :aa ﺨﺎﺼﻴﺔ : 5 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . Iﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ a. I ﺃ ( ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ mﻭ Mﺒﺤﻴﺙ m ≤ f ( x ) ≤ M : b ﻓﺈﻥ m (a − b) ≤ ∫ f ( x)dx ≤ M (a − b) : a
ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ aﻭ bﺤﻴﺙ a < b :ﺏ( ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﻴﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ Mﺒﺤﻴﺙ : 0≤ f (x) ≤ M bﻓﺈﻥ 0 ≤ f ( x )dx ≤ M (a − b ) :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ aﻭ ∫. b a ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ m ≤ f x ≤ M :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﻭ ( )aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ Iﺤﻴﺙ a < b :ﻭ ﻤﻨﻪ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ ﻭ ﺍﻟﻤﻼﺤﻅﺔ ﺍﻟﺴﺎﺒﻘﺔ : bb b ∫ mdx ≤ ∫ f ( x)dx ≤ ∫ Mdx aa a b∫[mx]b ≤ f ( x)dx ≤ [ Mx]b ﺇﺫﻥ : aa abﻭ ﺒﺎﻟﺘﺎﻟﻲ m (b − a) ≤ ∫ f ( x)dx ≤ M (b − a) : aﺠـ( ﺒﻤﺎ ﺃﻥ 0 ≤ f ( x ) ≤ M :ﻓﺈﻥ − M ≤ f ( x ) ≤ M : ﻤﻥ )ﺃ( ﺇﺫﺍ ﻜﺎﻥ : a < b : b)− M (b − a) ≤ ∫ f ( x )dx ≤ M (b − a a ﻭ ﺇﺫﺍ ﻜﺎﻥ : b < a : a) −M (a − b ) ≤ ∫ f (x )dx ≤ M (a − b b b ﺃﻱ ﺃﻥ −M (a − b ) ≤ −∫ f ( x )dx ≤ M (a − b ) : a bﻭ ﻤﻨﻪ −M (a − b ) ≤ ∫ f ( x )dx ≤ M (a − b ) : a
b ﻭ ﻋﻠﻴﻪ ∫ f ( x )dx ≤ M b − a : a ﻤﺜﺎل :ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f ( x ) = 1 :ﺤﻴﺙ xﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻓﻲ ﺍﻟﻤﺠﺎل [ ]. 1 ; 3 x . ln 3 ﻤﺴﺘﻨﺘﺠﺎ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ 1 f (x )dx -ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ : ∫ 3 ﺍﻟﺤل : ﻷﻨﻬﺎ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ +ﺃﻭ ﻋﻠﻰ − ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ] . [1 ; 3 1 ≤1 ≤ 1 ﻭﻤﻨﻪ : ﻭ ﻟﺩﻴﻨﺎ 1 ≤ x ≤ 3 : 3 x ﻭﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ : 5 1 f (x)≤ 1 ﺇﺫﻥ : ≤31 ( 3 − ≤ )1 3 f ( x)dx ≤ 1(3 )− 13 ∫ 1∫2 ≤ 3 1 dx ≤ 2 ﻭﻋﻠﻴﻪ : 2 ≤ 3 f (x )dx ≤ 2 ﺇﺫﻥ : 1 x 33 ∫ 12 ≤ ln 3 − ln 1 ≤ 2 ﺃﻱ ﺃﻥ : 2 ≤ [ln ]x3 ≤ 2 ﻭﻤﻨﻪ :3 3 1 . 2 ≤ ≤ ln 3 2 ﻭﺒﺎﻟﺘﺎﻟﻲ : 3
ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ fﻭ gﺩﺍﻟﺘﺎﻥ ﻗﺎﺒﻠﺘﺎﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭ ﺩﺍﻟﺘﺎﻫﻤﺎ ﺍﻟﻤﺸﺘﻘﺘﺎﻥ f ′ﻭ g′ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ . I aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻥ . Iﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ tﻤﻥ : I ) ( f .g )′ ( t ) = f ′ ( t ) .g ( t ) + f ( t ) .g′ ( t xx ∫ ( f × g )′ ( t ) d t = ∫ ⎡⎣ f ′ ( t ) . g ( t ) + f ( t ) . g ′ ( t )⎦⎤ d t aa x xb ﻭﻋﻠﻴﻪ : a⎡⎣ f ( t ) . g ( t ) ⎦⎤ = ∫ f ′(t).g (t )dt + ∫ f (t ).g′(t )dt aa xx x ∫f ′ (t ).g (t )dt = ⎡⎣f (t ).g (t ) ⎤⎦ a − ∫f (t ) .g ′(t )dt aaﻤﻼﺤﻅﺔ :ﺘﺴﺘﻌﻤل ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﻟﺤﺴﺎﺏ ﺘﻜﺎﻤﻼﺕ ﻭ ﺫﻟﻙ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤل ﺍﻟﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻁﺭﻑ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺃﺴﻬل ﻤﻥ ﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤل ﺍﻟﻤﻁﻠﻭﺏ ﻭﺍﻟﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻁﺭﻑ ﺍﻷﻭل .ﻟﻠﺩﺍﻟﺔ fﺤﻴﺙ : x = π ﻤﺜﺎل :ﺍﺤﺴﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 0ﻤﻥ ﺃﺠل 2ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ gﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 0ﻤﻥ ﺃﺠل f ( x ) = x sin x ﺍﻟﺤل :ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ = ) ∫g ( x x ﻭﻫﻲ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : x = π 2 sin tdt π 2 ﻭ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﻜﺎﻤﻠﺔ ﺒﺎﻟﺘﺠﺯﺌﺔ ﻨﺠﺩ :xx x∫ g ′ (t ) .s (t )d t = ⎣⎡ g (t ) .s (t ) ⎦⎤ π − ∫ s ′ (t ) g (t )d tπ 2π22 ﺒﻭﻀﻊ g′( t ) = sin t :ﻨﺠﺩ g( t ) = −cost : s (t ) = tﻧﺠ ﺪ s ′ (t ) = 1 ﻭﺒﻭﻀﻊ:
xx ∫ t sintdt = [ − t cos t ]x − ∫ −costdt ﻭﻤﻨﻪ : π π 2π 22 = [ − t cos t ]x + [ sin t ]x = [− t cos t + sin t ]x π π π 22 2 = [−x cos x + sin x ] − ⎡⎣⎢− π cos π + sin π ⎤ ⎥⎦ 2 2 2 x ∫ t sin tdt = − x cos x + sin x − 1 π 2 ﺍﻟﻤﺴﺎﺤﺔ ﻭ ﺍﻟﺘﻜﺎﻤل ﺘﻌﺭﻴﻑ :ﻟﺘﻜﻥ ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﻭﺠﺒﺔ ﻋﻠﻰ ﻤﺠﺎل ] ( C ) .[a ; bﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩf r rﻤﻥ) (D i j ) ( Cﻫﻭ ﻤﺴﺎﺤﺔ ﻤﺠﺎل ﺍﻟﻤﺴﺘﻭﻱ .ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺃﺴﻔل O ; ,ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ ) (Cﻭ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = a : b ﻭﺘﻌﻁﻰ ﺍﻟﻌﺒﺎﺭﺓ : ﻭx = b ∫ f (x )dx a r j D ﻣﺴﺎﺣﺔ o r a b اﻟﻮﺣﺪة i
ﻤﻼﺤﻅﺎﺕ : (1ﻴﻌﺭﻑ Dﻋﻠﻰ ﺃﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴﺘﻴﻥ ) ( x ; yﺤﻴﺙ : a ≤ x ≤ bﻭ)0 ≤ y ≤ f (x (2ﺘﻌﻁﻰ ﻗﻴﻤﺔ ﺍﻟﻤﺴﺎﺤﺔ ﺒﻭﺤﺩﺓ ﺍﻟﻤﺴﺎﺤﺎﺕ ﻭ ﻫﻲ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺴﺘﻁﻴل ﺍﻟﻤﻜﻭﻥ ﻤﻥ ﺸﻌﺎﻋﻲ ﺍﻟﻭﺤﺩﺓ . ﺤﻴﺙ) ( O ; r , r ﻤﺜﺎل : i j ﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ) ﺍﻟﻭﺤﺩﺓ ﻫﻲ ( cm r =2 , r =3 j i fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ . f ( x ) = x 2 + 4 : r r ( )O ; i , j ) ( Cﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﺍﻟﻤﻌﻠﻡﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) ( Cﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ : y=0 , x=1 , x=0 ﺍﻟﺤل :ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻭ ﻤﻭﺠﺒﺔ ﻋﻠﻰ 0 ; 1ﻭﻋﻠﻴﻪ ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﺤﺔ Aﺒﺎﻟﻌﺒﺎﺭﺓ [ ]: 11 A = ∫ f (x )dx = ∫ ( x 2 + 4)dx 00( )gx = x3 + 4x + c ﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ f ﻟﻜﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ 3 ⎡ x3 ⎤ 1 ⎢ 3 ⎥ A = ⎣ + 4 x × ×3 2cm 2 ﻭ ﻤﻨﻪ : ⎦0 ⎛⎡ (1 )3 ⎞ ⎛ 03 4 (0 ) ⎞ ⎤ 1 6cm 2 = ⎢ ⎝⎜⎜ + ⎜ 3 + ⎟ ⎥ 0 ×A ⎣⎢ 3 4 (1 ) ⎟⎟⎠ − ⎝ ⎠ ⎦⎥ A = ⎛ 13 ⎞ × 6cm 2 ⎜⎝ 3 ⎟⎠ A = 26cm 2
ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل ﺘﻌﺭﻴﻑ : aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺤﻴﺙ . a < b :ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﻭﺠﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [a ; bﻭ ﻟﺘﻜﻥ gﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ ] [a ; b α >0 ﺃﻱ g ( x ) = α :ﺤﻴﺙﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻲ ﺘﻌﻁﻰ ﻟﻠﻌﺩﺩ αﺤﺘﻰ ﺘﺘﺴﺎﻭﻯ ﺍﻟﻤﺴﺎﺤﺔ ﺃﺴﻔل ﺍﻟﻤﻨﺤﻨﻰ ) ( C fﻭ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺴﺘﻁﻴل ﺃﺴﻔل C gﺘﺴﻤﻰ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﻭ ﺘﻌﻁﻲ) ( ] [ 1 b = ∫α b−a a ﺒﺎﻟﻌﺒﺎﺭﺓ f ( x ) d x : )(Cf y=α )(Cg Oa b ﺒﺎﻟﻌﺒﺎﺭﺓ f ( x ) = x 2 : ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻋﻴﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ] . [0 ; 2 ﺍﻟﺤل : ﺍﻟﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ ]0 ; 2ﻭ ﻜﺫﻟﻙ fﻤﻭﺠﺒﺔ ﻋﻠﻰ ] [0 ; 2ﻭ ﻤﻨﻪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ αﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل ﺘﻌﻁﻰ ﻜﻤﺎ ﻴﻠﻲ : 1 2 ( x )dx 1 2 x 2dx 2−0 0 2 0=∫ ∫α f = α = 4 ﺇﺫﻥ : α = 1 ⎡ x3 ⎤2 = 1 ⎡ 23 − ⎤ 03 3 ⎢ ⎥ ⎢ ⎥ 2 ⎣ 3 ⎦0 2 ⎣ 3 3 ⎦
=)g(x 4 ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : g ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ 3 ﺨﻭﺍﺹ : ﺃ( ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻭ ﺴﺎﻟﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﻓﺈﻥ] [ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ C fﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ( )f ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ y = 0 , x = b , x = a : a ﺃﻭ b f (x )dx ﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ : ∫ f (x )dx ∫− ba a b O )(Cf ∫ ( )1 b f ﻭ ﺘﻜﻭﻥ ﻗﻴﻤﺘﻬﺎ ﺍﻟﻤﺘﻭﺴﻁﺔ x dx : b−a aﺃﺠل ﻜل xﻤﻥ ﺏ( ﺇﺫﺍ ﻜﺎﻨﺕ fﻭ gﺩﺍﻟﺘﺎﻥ ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﺤﻴﺙ ﻤﻥ] [ f ( x ) > g ( x ) : a;bﻓﺈﻥ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺠﺎل Dﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻴﻴﻥ C fﻭ ( ) [ ]( )Cgﻭﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = b , x = a :ﺘﻌﻁﻰ ﻤﻘﺩﺭﺓ ﺒﻭﺤﺩﺓ ﺍﻟﻤﺴﺎﺤﺎﺕ ﺒﺎﻟﻌﺒﺎﺭﺓ : bb ∫ f ( x )dx − ∫ g ( x )dx aa ﺘﻁﺒﻴﻕ : (1ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴﻠﻴﻥ ﺍﻟﺒﻴﺎﻨﻴﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ fﻭ gﺤﻴﺙ : g ( x ) = x − 3 , f ( x ) = x 2 − 2ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ) ﺍﻟﻭﺤﺩﺓ ﻫﻲ ( cm (2ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ( )C f
ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ y = 0 , x = 0 , x = − 2 : ﻭ ﻟﺘﻜﻥ A1 (3ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺤﺼﻭﺭ ﺒﻴﻥ ﺍﻟﻤﻨﺤﻴﻴﻥ ( )C f ﻭ ) ( C gﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = 2 , x = 1 ﻭ ﻟﺘﻜﻥ A2 : ﺍﻟﺤل : (1ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : y 2 1-3 -2 -1A1 0 1 2 3x -1 A2 -2 -3 -4 fﺴﺎﻟﺒﺔ ﻭ ﻋﻠﻴﻪ : ⎡⎣ −ﺍﻟﺩﺍﻟﺔ (3ﺤﺴﺎﺏ : A1 −2 ﻓﻲ ﺍﻟﻤﺠﺎل ⎤⎦ 2 ; 0 A1 = ∫ f ( x )dx 0 −2A1 = ∫ ( x 2 − 2 )d x 0
2⎡ 3 ⎤ ( ) (A1 ⎡ x3 ⎤ − - 2 ⎥ ⎡ 03 ⎤ ⎢ 3 ⎥ 3 -2 ⎥ ⎢ 3 ⎥ = ⎣ - 2 x = ⎢ - )3 ⎥⎦ - ⎣ -2 (0 ) ⎢ ⎦0 ⎣⎢ ⎦ A1 = 43 cm 2 : ﻭﻤﻨﻪ A1 = −2 3 + 2 3 3 3 : A2 ( ﺤﺴﺎﺏ4 [ ]f ( x ) > g ( x ) : ﻟﺩﻴﻨﺎ1 ; 2 ﻓﻲ ﺍﻟﻤﺠﺎل 22 : ﻭ ﻋﻠﻴﻪ A2 = ∫ f (x )dx − ∫ g ( x )dx 11 22 = ∫ ( x2 − 2)dx − ∫ ( x − 3)dx 11 ⎡ x3 ⎤ 2 ⎡ x2 ⎤ 2 ⎢ 3 ⎥ ⎢ 2 ⎥ = ⎣ − 2 x − ⎣ − 3 x ⎦1 ⎦3= ⎡ ( 2)3 -2( 2 ⎤ - ⎡ (1)3 -2 ⎤ - ⎡ ( 2)2 -3 ( ⎤ + ⎡ (1)2 -3 ⎤ ⎢ ⎢ ⎢ ⎢ ⎣⎢ 3 )⎥ ⎢⎣ 3 (1)⎥ ⎣⎢ 2 2)⎥ ⎢⎣ 2 (1)⎥ ⎥⎦ ⎥⎦ ⎦⎥ ⎥⎦ A2 = ⎛ 8 − 4 − 1 + 2 − 2 + 6 + 1 − 3 ⎞ c m 2 : ﺇﺫﻥ ⎝⎜ 3 3 2 ⎟⎠ : ﻭﻤﻨﻪ A2 = 11 c m 2 : ﺃﻱ A2 = ⎛7 + 1 − 1 ⎞ cm 2 6 ⎜⎝ 3 2 ⎠⎟
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218