G G JG ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱO ;i, j,k . -ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ P cﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ F 2 ; 4 ; 4ﻭﻴﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻭﻱ Pﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ 4 x 6 y 5 z 3 0 : G G JG ﺍﻟﺘﻤﺭﻴﻥ 11O ;i, j,k . ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ -ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ Pcﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ Oﻭﺍﻟﻨﻘﻁﺔ A 1;1;2ﻭ ﻴﻌﺎﻤﺩ ﺍﻟﻤﺴﺘﻭﻱ Pﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ 2x 3 y z 0 : ﺍﻟﺘﻤﺭﻴﻥ 12ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ . C 0;2;1 ، B 3;1;0 ، A1;1;1 -ﻋﻴﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Cﻭﺍﻟﻤﺴﺘﻘﻴﻡ . AB G G JG ﺍﻟﺘﻤﺭﻴﻥ 13ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O;i, j, kﻨﻌﺘﺒﺭ ﺍﻟﻤﺴﺘﻭﻱ Pﺍﻟﺫﻱﻤﻌﺎﺩﻟﺘﻪ 5 x y 3z 1 0 :ﻭﺍﻟﻨﻘﻁﺔ . A0;1;3 -ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ A 0;1;3ﻭ . P G G JG ﺍﻟﺘﻤﺭﻴﻥ 14ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O;i, j, kﺘﻌﻁﻰ ﺍﻟﻨﻘﻁ ، A 1;2;1 D1;1;9 ، C 2;0;1 ، B0;1;1 -ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁ C ، B ، Aﺘﻌﻴﻥ ﻤﺴﺘﻭﻴﺎ ﻭﺤﻴﺩﺍ . ABC -ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Dﻭﺍﻟﻤﺴﺘﻭﻱ . ABC G G JG ﺍﻟﺘﻤﺭﻴﻥ 15ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O;i, j, kﻨﻌﺘﺒﺭﺍﻟﻨﻘﻁ D3;1;2 ، C 0;5;1 ، B 2;3;0 ، A5;2;4 -ﻋﻴﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺤل ﺍﻟﻨﻘﻁ M x; y; z ﺤﻴﺙ . 2MA2 MB2 MC 2 MD2 20 :
G G JG ﺍﻟﺘﻤﺭﻴﻥ 16ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O;i, j, kﻨﻌﺘﺒﺭﺍﻟﻨﻘﻁ . C 1;0;4 ، B 3; 1; 4 ، A 1; 2; 1 -ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔJGﺍﻟJﻨﻘJﻁ M x; yJ;JzJJGﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤJGﻤﺎJﻴJﻠﻲ JJJ:JGJAJJMG J.JBJCJG 10 (2 BM .AC 0 (1MB.MC 0 (4 AM 2 BC 2 100 (3 J J JG J J JG . M A . M B B C 2 (5 ﺍﻟﺘﻤﺭﻴﻥ 17 ABCDEFGHﻤﻜﻌﺏ ﻤﺭﻜﺯﻩ Oﻭﻁﻭل ﺤﺭﻓﻪ . m ﺍﺤﺴﺏ ﺍGﻟJﺠJﺩﺍJﺀﺍGﺕJﺍﻟJﺴJﻠﻤﻴﺔ ﺍﻵﺘﻴﺔ JJJG JJJG : HJJBJG.BJJAJG (2 JAJJHG J.BJJFG (1 AE.BG (4 AB.AO (3 G G G JG ﺍﻟﺘﻤﺭﻴﻥ 18ﺍﻟﻔﻀﺎﺀ ﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . i 1 ، D;i, j, k ABCDEFGHﻤﻜﻌﺏ ﻤﺭﻜﺯﻩ Oﻭﻁﻭل ﺤﺭﻓﻪ . m ! 1 m -ﺃﺤﺴﺏ ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺴﻠﻤﻴﺔ ﺍﻵﺘﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺩﺍﺀ JJJG JJJG JJJG JJJG ﺍﻟﺴﻠﻤﻲ .1) DC .DG 2) AG .EC JJJG JJJG 3)AB.AO J J JG J J JG J J J G J J JG4 ) A B .B G 5 ) H F .G C
ﺍﻟﺤـﻠــﻭل JJJG JJJG 1 ﺍﻟﺘﻤﺭﻴﻥ : A B , A C ﺤﺴﺎﺏ ﻗﻴﺴﺎ ﻟﻠﺯﺍﻭﻴﺔ-1J J JG J J JG J J JG J J JGA B .A C J J JG J J JG AB . AC .cos AB , AC 16 J J JG J J JG 4 u 8.cos A B , A C J J JG J J JG 16 ﺇﺫﻥ cos A B , A C 32 JJJG JJJG 1 ﻭﻋﻠﻴﻪ 2 cos AB, AC J J JG J J JG J J JG J J JG 2π AB, AC AB , AC 3 4 π ﺃﻭ 2kπ ﻭﻤﻨﻪ 3 2kπ k ]J J JG J J JG 2 J J JG J J JG 2 : ﺍﻻﺴﺘﻨﺘﺎﺝ-2A B JJJGA CJJJG A B A C JJJG JJJGAB2 2AB.AC AC 2 AB2 2AB.AC AC 2 2AB2 2AC 2 216 264 160J J JG J J JG 2 J J JG J J JG 2A B A C JJJG AJJBJG A C JJJG JJJGAB2 AJCJJG2 JJ2JGAB.AC AB2 2AB.AC AC 24AB.AC 416 64
2 ﺍﻟﺘﻤﺭﻴﻥ : ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺎﺕ ﺍﻟﻨﻘﻁ > @. AB ﻤﻨﺘﺼﻑI ﻟﺘﻜﻥ MA2 MB2 AB2 ( ﻟﺩﻴﻨﺎ1 JJJG JJG 2 JJJG JJG 2 AB2 MI IA MI IB JJJG JJG 2 JJJG JJG 2 AB2 MI IA MI IA AB2 JJJG JJG JJJG JJGMI 2 2MI .IA IA2 MI 2 2MI .IA IA2 2MI 2 2IA2 AB2 2MI 2 AB2 2IA2 ·2 2MI2 AB 2 2 § AB ¹¸ ¨© 2 2MI 2 AB2 1 AB 2 1 AB2 2 2 1 AB2 MI2 4> @.ABﺃﻱ ﻗﻁﺭﻫﺎ 1 AB ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ I ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ M ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ 2 1 AB2 MA2 MB2 2 : ( ﻟﺩﻴﻨﺎ2 JJJG JJG M I IA 2 JJJG JJG 2 1 AB2 M I IB 2 J J JG J JG J J JG J JG 1 AB2M I 2 IA 2 2 M I .IA M I 2 2 M I .IA IA 2 2 J J JG J JG 1 A B 2 : ﻭ ﻤﻨﻪ J J JG J JG 1 AB2 M I .IA 8 4 M I .IA 2 J JG J J JG 1 AB 2 : ﻭﻋﻠﻴﻪ IA .IM 8 : ﻓﻴﻜﻭﻥIA ﻋﻠﻰM ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔH ﻨﻔﺭﺽ
JJG JJJG 1 A B 2 : ﺇﺫﻥ JJG JJJG JJG JJJGIA .IH 8 IA .IM IA .IH IH 2 IA : ﻭﻤﻨﻪI A . I H 1 A B 2 : ﺇﺫﻥ AB 2 2 1 A B : ﺃﻱ IH AB : ﻭﻋﻠﻴﻪ IH AB 2 . H ﻓﻲ ﺍﻟﻨﻘﻁﺔAB ﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰM ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ JJJG JJJG MA.MB 1 AB2 : ( ﻟﺩﻴﻨﺎ3 4 J J JG J JG J J JG J JG 1 AB2 M I IA M I IB 4 JJJG JJG J JJG J JG 1 AB2 M I IA M I IA 4 MI 2 IA2 1 AB2 4 1 MI 2 IA2 4 AB2 MI 2 § 1 A B ·2 1 A B 2 1 AB 2 ¨© 2 ¸¹ 4 2. 2 AB ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎI ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ 2 JJJG 3 ﺍﻟﺘﻤﺭﻴﻥ ﻟﺩﻴﻨﺎ BC 2 JJJG JJJG 2 BA AC JJJG BC 2 JJJG JJJG 2 AC AB BC 2 J J JG 2 JJJG JJJG J J JG 2 AC 2AC .AB AB J J JG J J JG B C 2 A C 2 A B 2 2 A C . A B . c o s A C . A B J J JJG J J JG 8 1 1 2 1 4 9 2 .1 1 .7 c o s A C , A B J J JG J J JG 8181 170 170 154 cos A C , A B J J JG J J JG 154.cos A C , A B J J JG J J JG 89 154 cos A C , A B
J J JG J J JG 89 cos AC , AB J J JJG J J JG 154 c o s A C , A B 0 , 5 7 8ﻭﻋﻠﻴﻪ Aˆ 54,7q : J J JG J J JG 54,7q AC ,ABﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ AC 2 BA2 BC 2 2 BA.BC .cos Bˆ : ˆ121 49 81 2.7.9cos B 1ˆcos B 14 9ﺃﻱ : ﻭ ﻤﻨﻪ 2.7.9cos Bˆ :ﻭ ﺒﺎﻟﺘﺎﻟﻲ Bˆ 85,9q :ﻟﻜﻥ Aˆ Bˆ Cˆ 180q :ﻭﻤﻨﻪ Cˆ 180q Aˆ Bˆ :ﺃﻱ Cˆ 180q -54,7q -85,9q : ﺇﺫﻥ . Cˆ 39,4q : ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ : S ﻟﺩﻴﻨﺎ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ﺘﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ :S 1 .9.7.sin 85,9q ﻭﻋﻠﻴﻪ : S 1 BC .BA.sin ˆB 2 2 ) ﻭﺤﺩﺓ ﻤﺴﺎﺤﺔ ( S 31, 4 ﺍﻟﺘﻤﺭﻴﻥ 4 -1ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ : M3 ، M2 ، M1ﻟﺩﻴﻨﺎ M3 o; y;z ، M2 x;o;z ، M1 x; y;o : -2ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ : M6 ، M5 ، M4ﻟﺩﻴﻨﺎ M 6 o;o;z ، M5 o; y;o ، M4 x;o;o :
5 ﺍﻟﺘﻤﺭﻴﻥ JJJG JJJG AB.BC .cos π : ﺤﺴﺎﺏ ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺴﻠﻤﻴﺔ AB.BC 2JJJG JJJG a.a.o 0AB.CD AB.CD.cos π a.a.1 a2 JJJG JJJG AB. AHJJJG JJJG AB.AH .cosJJπ2JG 0 JJJGAB.AG AB.AG.cos AB, AG AG2 AB2 BC 2 : ﻟﻜﻥAG a 2 : ﺃﻱAG 2 a 2 a 2 2a 2 : ﻭ ﻤﻨﻪJJJG JJJG a2 : ﻭﻤﻨﻪAB. AG a.a 2 .cos π a.a 2. 2 4 2JJJG JJJG JJJG JJJG JJJG JJJG AB.DF DC.DF DC.DF .cos DC, DFJJJG JJJG DF AG a 2 : ﻟﻜﻥAB.DF : ﻭﻤﻨﻪ a.a 2 cos π a2 4 6 ﺍﻟﺘﻤﺭﻴﻥ JJJG : ﻭﺤﻴﺩABJCJJG ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻭﻱ-1JJJG AC 1;0;1 ،JAJJGB JJJ1G;1;0 : ﻟﺩﻴﻨﺎAB ﺱ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺤﺎﻤل ﻜﻭﻥ ﺇﺤﺩﺍﺜﻴﺎﺕJﻟﻴJJAG C ﻭAB ﺒﻤﺎ ﺃﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ : ﻭﻤﻨﻪAC ﻟﻴﺴﺕ ﻤﺘﻨﺎﺴﺒﺔ ﻤﻊ ﺇﺤﺩﺍﺜﻴﺎﺕ . ABC ﻭﺤﻴﺩﺍJJﻭﻴﺎJG ﺘﺸﻜل ﻤﺴﺘA, B,C ﺍﻟﻨﻘﻁ ED 2;2;2JJJG: ﻟﺩﻴﻨﺎ ? ABC ﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻭﻱED ﻫل
JJJG JJJG JEJDJG .JAJJBG 21 21 2u 0 0 ED.ACJJJG2JJJG1 2u 0 2JJ1JG 0ﺍﻟﺸﻌﺎﻉ EDﻋﻤﻭﺩﻱ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ ABﻭ ACﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ABCﻭﻤﻨﻪ ﻓﻬﻭ ﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻭﻱ . ABC GG ﺍﻟﺘﻤﺭﻴﻥ 7 u.v 51 2.6 x 1 ﺘﻌﻴﻴﻥ : x 5GG12 x 7 xG G ﻴﺘﻌﺎﻤﺩ ﺍﻟﺸﻌﺎﻋﺎﻥ uﻭ vﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ u.v 0 ﻭﻋﻠﻴﻪ 7 x 0 :ﻭﻤﻨﻪ x 7 : ﺍﻟﺘﻤﺭﻴﻥ G G JG 8 ﺘﺒﻴﺎﻥ ﺃﻥ O;u, v, wﻤﻌﻠﻤﺎ ﻤﺘﻌﺎﻤﺩﺍ ﻤﺘﺠﺎﻨﺴﺎ : JG G G ﺍﻷﺸﻌﺔ w ، v ، uﻟﻴﺱ ﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺤﻭﺍﻤل . G § 2 ·2 § 6 ·2 § 9 ·2 ﻭﻟﺩﻴﻨﺎ 1 : v ¨© 11 ¸¹ ¨© 11 ¸¹ ©¨ 11 ¸¹ G § 6 ·2 § 7 ·2 § 6 ·2 1 u ©¨ 11 ¸¹ ©¨ 11 ¸¹ ¨© 11 ¸¹ JG § 9 ·2 § 6 ·2 § 2 ·2 1 w ©¨ 11 ¸¹ ©¨ 11 ¸¹ ¨© 11 ¸¹ GG § 6 · u § 2 · § 7 · § 6 · § 6 §· 9 · 0 u .v ©¨ 11 ¸¹ ©¨ 11 ¸¹ ©¨ 11 ¸¹ ¨© 11 ¸¹ ©¨ 11 ©¨ ¸¹ 11 ¸¹ 0JG JG 0u .w § 6 · u § 9 · § 7 §· 6 · § 6 §· 2 ·G JG ¨© 11 ¸¹ ¨© 11 ¸¹ ¨© 11 ¨© ¸¹ 11 ¸¹ ¨© 11 ¨© ¸¹ 21 ¸¹v .w § 2 · u § 9 · § 6 §· 6 · § 9 §· 2 · ©¨ 11 ¸¹ ¨© 11 ¸¹ ¨© 11 ©¨ ¸¹ 11 ¸¹ ¨© 11 ¨© ¸¹ 11 ¸¹
JG G Gﺇﺫﻥ ﺍﻷﺸﻌﺔ wG ،JvG ، uﻟGﻴﺱ ﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺤﻭﺍﻤل ﻭﻁﻭﻴﻠﺔ ﻜل ﻤﻨﻬﺎ ﺘﺴﺎﻭﻱ 1ﻭﻫﻲ ﻤﺘﻌﺎﻤﺩﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻭﺒﺎﻟﺘﺎﻟﻲ O;u, v, wﻤﻌﻠﻤﺎ ﻤﺘﻌﺎﻤﺩﺍ ﻤﺘﺠﺎﻨﺴﺎ ﻟﻠﻔﻀﺎﺀ . ﺍﻟﺘﻤﺭﻴﻥ 9 ﻤﻌﺎﺩﻟﺔ : P Pﻫﻭ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ M JJxJ;JGy;Gzﻤﻥ ﺍﻟﻔﻀﺎﺀ ﺒﺤﻴﺙ :G JJJJG AM .u 0ﺇﺫﻥ ﻟﺩﻴﻨﺎ u1;2;1 ، AM x 4; y 4;z 4 :ﻭﺒﺎﻟﺘﺎﻟﻲ 1 x 4 2 y 4 1z 4 0 : x 4 2y 8 z 4 0 x 2y z 8 0 ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ . P ﺍﻟﺘﻤﺭﻴﻥ 10 ﻤﻌﺎﺩﻟﺔ G : Pcﺍﻟﺸﻌﺎﻉ u 4;6G;5ﻫﻭ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻠﻤﺴﺘﻭﻱ Pﻭﺒﻤﺎ ﺃﻥ Pﻭ Pc ﻤﺘﻭﺍﺯﻴﺎﻥ ﻓﺈﻥ uﻋﻤﻭﺩﻱ ﻋﻠﻰ . Pc ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ Pcﻤﻥ ﺍﻟﺸﻜل 4 x 6 y 5 z c 0 : ﻭﺒﻤﺎ ﺃﻥ F Pcﻓﺈﻥ 4 2 6 4 5 4 c 0ﺇﺫﻥ c 12ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ Pcﻫﻲ 4 x 6 y 5 z 1 2 0 ﺍﻟﺘﻤﺭﻴﻥ 11 ﻤﻌﺎﺩﻟﺔ G : Pcﺍﻟﺸﻌﺎﻉ n2;3;1ﻋﻤﻭﺩGﻱ Jﻋﻠﻰ . Pﻨﻔﺭﺽ ﺃﻥ ﺍﻟﺸﻌﺎﻉ nc a;b;cﻋﻤﻭﺩGﻱ ﻋﻠﻰ . Pc JGﺒﻤﺎ ﺃﻥ JG Pﻭ PcGﻤﺘﻌﺎﻤﺩﺍﻥ ﻓﺈﻥ nﻭ ncﻤﺘﻌﺎﻤﺩﺍﻥ .ﻭﻋﻠﻴﻪ 2a 3b c 0 : ﻭﻤﻨﻪ n.nc 0
JJJG JG ﻭﻟﺩﻴﻨﺎ PcﻴJGﺸJﻤJل OJGﻭ Aﻭﻤﻨﻪ ncﻭ OAﻤﺘﻌﺎﻤﺩﺍﻥ .ﻭﻋﻠﻴﻪ nc.OA 0ﺇﺫﻥ o.a 1.b 3.c 0ﺃﻱ b 3c2a 8c 0 2a 3b c 0® ﺃﻱ ﺃﻥ : ®¯ b 3c ¯ b 3c ﺇﺫﻥ ﻟﺩﻴﻨﺎ : b aﻭ 3c ﻭﻋﻠﻴﻪ 4c : ﻨﻀﻊ c 1ﻓﻨJGﺠﺩ a 4 :ﻭ b 3 ﻭﻤﻨﻪ nc 4;3;1ﻫﻭ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻠﻤﺴﺘﻭﻱ Pc ﺍﻟﺫﻱ ﻴﺸﻤل Aﻭ . Oﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ Pcﻫﻲ ) 4 x 3 y z 0 :ﻷﻨﻪ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ ( O ﺍﻟﺘﻤﺭﻴﻥ 12 C 0;2;1 ، B3;1;0 ، A1;1;1 ﺘﻌﻴﻴﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Cﻭ : AB ﻟﺘﻜﻥ Hﺍﻟﻤﺴﻘﻁ ﺍﻟGﻌJﻤJﻭﺩJﻱ ﻟﻠﻨﻘﻁﺔ Cﻋﻠﻰ ﺍﻟﻤﺴGﺘJﻘﻴJﻡ AB J JJJG JJJG AC 1;3;0 ، AB 2;2;1 ﻟﺩﻴﻨﺎ A B . A C 2 1 2 3 1 .0 4 : J J JG J J JG J J JG J J J G ﻭﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ A B . A H : A B .A C A B .A H 2 2 2 2 1 2 . A H 9 . AH 3AH AH 4 3 AH ﻭﻋﻠﻴﻪ ﻤﻤﺎ ﺴﺒﻕ 4 : ﺇﺫﻥ 3 :ﻓﻲ ﺍﻟﻤﺜﻠﺙ ACHﺍﻟﻘﺎﺌﻡ ﻓﻲ Hﻟﺩﻴﻨﺎ AC 2 AH 2 CH 2 : ﻭﻤﻨﻪ CH 2 AC 2 AH 2 :AH 2 16 AC 2 12 32 02 ﺤﻴﺙ 10 9،
CH 74 CH 2ﻭﻤﻨﻪ : 10 16 74 3 9 ﻭﻤﻨﻪ 9 : ﺍﻟﺘﻤﺭﻴﻥ 13 ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﻓﺔ dﺒﻴﻥ Aﻭ : Pd 5 0 1 3 3 10 10 35 2 35 5 2 1 2 3 2 35 35 7 ﺍﻟﺘﻤﺭﻴﻥ 14 -ﻨﺒﻴﻥ ﺃﻥ A, B,CﺘﻌﻴJGﻥJﻤJﺴﺘﻭ ﻭﺤﻴﺩ JJJG : ﻟﺩﻴﻨﺎ AC J3J;JG 2;2 ، AB 1;3;2 : JJJG JJJG J J JG AC AB AC ABﻟﻴﺱ ﻟﻬﻤﺎ ﻭ ﻭﻋﻠﻴﻪ ﺍﻟﺸﻌﺎﻋﺎﻥ ﻟﻴﺴﺕ ﻤﺘﻨﺎﺴﺒﺔ ﻤﻊ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻨﻔﺱ ﺍﻟﺤﺎﻤل . ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁ A, B,Cﺘﻌﻴﻥ ﻤﺴﺘﻭﻴﺎ ﻭﺤﻴﺩﺍ . A B C -ﻨﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ : A B C ﻟﺘﻜﻥ M x; y; zﻨﻘﻁﺔ ﻤﻥ . ABC ﻤﻌﺎﺩﻟﺔ ABCﻤﻥ ﺍﻟﺸﻜل ax by cz d 0 : ﺒﻤﺎ ﺃﻥ A ABCﻓﺈﻥ )a 2b c d 0 . . . (1 ﺒﻤﺎ ﺃﻥ B ABCﻓﺈﻥ )b c d 0 . . .(2 ﺒﻤﺎ ﺃﻥ C ABCﻓﺈﻥ )2a c d 0 . . . (3 ﻨﻁﺭﺡ ) (3ﻤﻥ ) (2ﻨﺠﺩ b 2a 0 :ﻭﻤﻨﻪ b 2a : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ 5a c d 0 . . . (4) : d 3 a ﻭﻤﻨﻪ : 3a 2d ﺒﺠﻤﻊ ) (3ﻭ ) (4ﻨﺠﺩ 0 : 2 3 2a c 2 a ﻨﻌﻭﺽ bﻭ dﺒﻘﻴﻤﺘﻴﻬﻤﺎ ﻓﻲ ) (2ﻓﻨﺠﺩ 0 : c 7 a ﻭﻤﻨﻪ : 2 7 3 ax 2ay 2 a z 2 a ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻫﻲ 0 :
a § x 2 y 7 z 3 · 0 ©¨ 2 2 ¸¹ 2 x 4 y 7z 3 0 : ﻭﻋﻠﻴﻪ 2 x 4 y 7z 3 0 : ﻫﻲABC ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ : d ﻭﻟﺘﻜﻥABC ﻭD ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ-d 2 1 4 1 7 9 3 66 2 2 4 2 7 2 69 d 66 69 22 69 69 23 15 ﺍﻟﺘﻤﺭﻴﻥ JJJG : M ﺘﻌﻴﻴﻥ ﻤﺤل ﺍﻟﻨﻘﻁJJJG ، MJJAJJG5 x;2 y;4 z : ﻟﺩﻴﻨﺎMB 2 x;3 y;z J J JJG M D 3 x;1 y;2 z ، MC x;5 y;1 zMA2 5 x 2 2 y2 4 z 2 : ﻭﻤﻨﻪMA2 25 10x x2 4 4 y y2 16 8z z2x 2 y 2 z 2 10x 4y 8z 45MB2 2 x2 3 y2 z2 4 4x x2 9 6y y2 z2 x2 y2 z2 4x 6 y 13MC 2 x2 5 y2 1 z2 x2 25 10 y y2 1 2z z2 x2 y2 z2 10 y 2z 26MD2 3 x2 1 y2 2 z2 x2 y2 z2 6x 2 y 4z 14
2MA2 MB2 MC 2 MD2 20 : ﻭﻟﺩﻴﻨﺎ : ﻭﻤﻨﻪ 2 x2 y2 z2 10x4y 8z 45 x2 y2 z2 4x6y13 x2 y2 z2 10y2z 26 x2 y2 z2 6x2y4z 14 20x2 y2 z2 10 x 10 y 18z 55 0 : ﺃﻱ ﺃﻥ x 52 25 y 52 25 z 92 81 55 0 x 52 y 52 z 92 76 IM 2 76 : ﻓﻴﻜﻭﻥI 5;5;9 ﻨﻔﺭﺽ ﺍﻟﻨﻘﻁﺔ ﻭﻨﺼﻑI ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺴﻁﺢ ﻜﺭﺓ ﻤﺭﻜﺯﻫﺎ R 2 19 . R 76 ﻗﻁﺭﻫﺎ 16 ﺍﻟﺘﻤﺭﻴﻥJJJG JJJJG : ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁJAJCJG 2;2;3 ، BJJMJJG x 3; y 1;z 4 : ﻟﺩﻴﻨﺎJJJG BC 2;1;0 ، AJJMJJG x 1; y 2;z 1MB 3 x;1 y;4 z ، MC 1 x; y;4 z J J JG M A x 1 ; y 2 ; z 1 JJJJG JJJG 1) BM .AC 0 x 3u 2 y 1u 2 z 4u 3 0 2x 6 2 y 2 3z 12 0 JJJG2x 2 y 3z JJ2J0G 0 . AC ﺃﻱ ﺸﻌﺎﻋﻪ ﺍﻟﻨﺎﻅﻤﻲAC ﻭ ﻴﻌﺎﻤﺩB ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻭ ﻴﺸﻤل
JJJJG JJJG 2)AM .BC 10 x 12 y 21 z 1u 0 10 2x 2 y 12 0 2x y 14 J0JJG . BC ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻭ ﺸﻌﺎﻋﻪ ﺍﻟﻨﺎﻅﻤﻲ 3) A M 2 B C 2 100 x 12 y 22 z 12 22 12 100 x 12 y 22 z 12 95 . JRJJG JJ9J5JG ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎA ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﻜﺭﺓ ﻤﺭﻜﺯﻫﺎ 4) MB.MC 0 3 x1 x 1 y y 4 z4 z 0 3 4x x2 y y2 16 8z z2 0 x2 y2 z2 4x y 8z 19 0 x 2 2 § y 1 ·2 1 z 4 2 16 19 0 ©¨ 2 ¸¹ 4 x 2 2 § y 1 ·2 z 4 2 16 19 1 ©¨ 2 ¸¹ 4 x 2 2 § y 1 ·2 z 4 2 13 ©¨ 2 ¹¸ 4 J J JG J J JG . ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ 5 ) M A .M B BC 2x 13 x y 21 y z 14 z §©¨ 2 2 12 02 ¸¹·2x 2 2x 3 y 2 y 2 z 2 5z 4 5x 1 2 1 § y 1 ·2 1 § z 5 ·2 25 1 5 ¨© 2 ¸¹ 4 ©¨ 2 ¹¸ 4
x 1 2 § y 1 ·2 § z 5 ·2 5 2 13 ¨© 2 ¹¸ ©¨ 2 ¸¹ 2x 1 2 § y 1 ·2 § z 5 ·2 1 ¨© 2 ¹¸ ©¨ 2 ¹¸ 2 2 ﻗﻁﺭﻫﺎ ﻭﻨﺼﻑ ω § 1; 1 ; 5 · ﻤﺭﻜﺯﻫﺎ ﻜﺭﺓ ﺴﻁﺢ ﻫﻲ ﺍﻟﻨﻘﻁ ﻤﺠﻤﻭﻋﺔ 2 ¨© 2 2 ¹¸ J J J G J J JG 17 ﺍﻟﺘﻤﺭﻴﻥ A H .B F : ( ﺤﺴﺎﺏ1 J J J G J J JG J J J G J J JJG A H .B F A H .D H J J JG J J JG H A . H D J JJG JJJG H A.H D .cos H A; H D ﻭH A H D m ﻭﻟﺩﻴﻨﺎ HD 2 AD 2 2m 2 m2 J J JG J J JG cos π 2ﻭ 4 cos H A .H D 2 J J JG J J JG m 2 .m . 2 m 2 : ﻭﻤﻨﻪ AH .BF JJ2JG JJJG : HB.BA ( ﺤﺴﺎﺏ2 : ﻭﻋﻠﻴﻪA ﻫﻲ ﺍﻟﻨﻘﻁﺔAB ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡH ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ J J JG J J JG J J JG J J JG H B .B A B A .B H B A .B A m .m m 2 J J JG JJ JG ( ﺤﺴﺎﺏ3 : A B .A O I O I > @ AB A B JGﺍﻟﻤﺴﺘﻘﻴﻡ ﻋﻠﻰ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ ﻤﻨﺘﺼﻑ ﻓﺘﻜﻭﻥJ J ﻟﺘﻜﻥ JG JJ A B . A O A B . A I m . m m 2 : ﻭﻋﻠﻴﻪ J2J JG J J2JG : A EJ .JBJGGJ JﺏJG( ﺤﺴﺎ4 J J JG J J JG J J JG J J JG A E .B G B F .B G B F .B G .cos B F ; B G m .m 2. 2 m2 2 18 ﺍﻟﺘﻤﺭﻴﻥ
G G JG D;i, j,k : ﻟﺩﻴﻨﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ D o;o;o ; A m;o;o ; B m;m;o C o; m ; o ; E m ; o; m ; F m ; m ; m G o;m ;m ; H o;o; m ; O § m ; m ; m · ©¨ 2 2 2 ¹¸JJJG JJJG JJJG : ﻭﻋﻠﻴﻪ ﻨﺴﺘﻨﺘﺞAG m;m;m ; DG o;m;m ; DC o;m;o JAJJOJJGJG§¨© JJJG JJJG m ; m ; m · ; ; 2 2 2 ¹¸ AB o;m;o EC m;m;m JJJG JJJGGC o;o;m ; HF m;m;o ; BG m;o;m J J JG J J JG J J JG J J JG : ﻭﺒﺎﻟﺘﺎﻟﻲ 1) DC .DG m 2 2) AG .EC m2 JJJG JJJG m2 JJJG JJJG 3) AB.AO 4) AB.BG 0 2 J J J G J J JG 5 ) H F .G C 0
ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻓﻲ Z ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -ﺇﺜﺒﺎﺕ ﺃﻥ ﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ ﻴﻘﺴﻡ ﺁﺨﺭ. -ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ. -ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺇﻗﻠﻴﺩﺱ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ. -ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺇﻗﻠﻴﺩﺱ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ. -ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. – 1ﺘﻌﺭﻴﻑ. – 2ﺍﻟﻘﺴﻤﺔ ﺍﻻﻗﻠﻴﺩﻴﺔ ﻓﻲ .Z – 3ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ. -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. -ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : ﻟﺘﻜﻥ Bﻋﻠﺒﺔ ﻋﻠﻰ ﺸﻜل ﻤﺘﻭﺍﺯﻱ ﻤﺴﺘﻁﻴﻼﺕ ﺍﺭﺘﻔﺎﻋﻬﺎ .Hﻭ ﻗﺎﻋﺩﺘﻬﺎ ﻤﺭﺒﻌﺔ ﻁﻭل ﻀﻠﻌﻬﺎ . L ﺤﻴﺙ Hﻭ Lﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻤﻊ . L < H ﻨﺭﻴﺩ ﻤﻸ ﺍﻟﻌﻠﺒﺔ Bﺒﻤﻜﻌﺒﺎﺕ ﺤﺭﻑ ﻜل ﻤﻨﻬﺎ a) aﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ( ﺩﻭﻥ ﺘﺭﻙ ﺃﻱ ﻓﺭﺍﻍ . ﻨﻔﺭﺽ L = 240ﻭ H = 380 -1ﻤﺎ ﻫﻲ ﺃﻜﺒﺭ ﻗﻴﻤﺔ ﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ . a -2ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ . a ﺍﻟﺤل : (1ﺘﻌﻴﻴﻥ ﺃﻜﺒﺭ ﻗﻴﻤﺔ ﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ : a ﻴﺘﻡ ﻤﻸ ﻤﺘﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻁﻴﻼﺕ ﺒﺎﻟﻤﻜﻌﺒﺎﺕ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a :ﻴﻘﺴﻡ H ﻭ Lﻤﻌﺎ. ﻭﻋﻠﻴﻪ ﺃﻜﺒﺭ ﻗﻴﻤﺔ ﻟﻠﻌﺩﺩ aﻫﻲ PGCD (H ; L) : ﺇﺫﻥ a = PGCD (380 ; 240 ) : 240 = 24 × 3 × 5ﻭ 380 = 22 × 5 × 19 ﻭﻋﻠﻴﻪ P G C D ( 3 8 0 ; 2 4 0 ) = 2 2 × 5 = 2 0 : (2ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ aﻫﻲ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ 20ﻭﻋﻠﻴﻪ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ aﻫﻲ 5 ، 10 ، 20 : . 1،2،4،
ﺘﻌﺭﻴﻑﻨﻘﻭل ﻋﻥ ﻋﺩﺩ ﺼﺤﻴﺢ αﺃﻨﻪ ﻴﻘﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺼﺤﻴﺢ xﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩx = αq ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ :ﻭﻨﻘﻭل ﺃﻴﻀﺎ ﺃﻥ xﻤﻀﺎﻋﻑ αﻭﻨﻜﺘﺏ ﺍﺼﻁﻼﺤﺎ . α / x ﺃﻤﺜﻠﺔ : 3ﻴﻘﺴﻡ 2007ﻷﻥ 2 0 0 7 = 3 × 6 6 9 : ) (2-ﻴﻘﺴﻡ 1954ﻷﻥ 1 9 5 4 = ( - 2 ) ( - 9 7 7 ) : 1ﻴﻘﺴﻡ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ. 0ﻻ ﻴﻘﺴﻡ ﺃﻱ ﻋﺩﺩ ﺼﺤﻴﺢ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . 5ﻻ ﻴﻘﺴﻡ 1962ﻷﻨﻪ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ. 1962 = 5q : ﻤﺒﺭﻫﻨﺔ : 1 γ , β , αﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ . ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ αﺍﻟﻌﺩﺩ βﻭ ﻜﺎﻥ βﻗﺎﺴﻤﺎ ﻟﻠﻌﺩﺩ γﻓﺈﻥ αﻴﻘﺴﻡ . γ ﺍﻟﺒﺭﻫﺎﻥ :ﻟﺩﻴﻨﺎ αﻴﻘﺴﻡ βﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ q1ﺒﺤﻴﺙ . (1) . . . β = q1α : ﻭﻟﺩﻴﻨﺎ βﻴﻘﺴﻡ γﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ q2 ﺒﺤﻴﺙ (2) . . . γ = q2β : ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ γ = (q2q1 )α :ﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ q ﺒﺤﻴﺙ (q = q2 . q1 ) γ = qα :ﻭﻫﺫﺍ ﻴﻜﺎﻓﻲ α :ﻴﻘﺴﻡ . γ ﻤﺒﺭﻫﻨﺔ : 2 x , β , αﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ .ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ αﺍﻟﻌﺩﺩ xﻓﺈﻥ αﻴﻘﺴﻡ . βx ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ αﻴﻘﺴﻡ xﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ q1 ﺒﺤﻴﺙ . x = αq1 : ﻭﻤﻨﻪ βx = (αβ) q1 :ﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ : βx = αqﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ α :ﻴﻘﺴﻡ . βx
ﻤﺒﺭﻫﻨﺔ : 3 x , β , αﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ αﺍﻟﻌﺩﺩ xﻓﺈﻥ ﺍﻟﻌﺩﺩ αβﻴﻘﺴﻡ . βx ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ αﻴﻘﺴﻡ xﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ q ﺒﺤﻴﺙ x = αq :ﻭ ﺒﺎﻟﺘﺎﻟﻲ βx = (αβ)q : ﻭﻤﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ βx = (αβ)q : ﻭﻋﻠﻴﻪ αβ :ﻴﻘﺴﻡ . βx ﻤﺒﺭﻫﻨﺔ : 4 y , x , b , a , αﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ αﻜل ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﺼﺤﻴﺤﻴﻥ aﻭ b ﻓﺈﻨﻪ ﻴﻘﺴﻡ ax = by : ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ αﻴﻘﺴﻡ aﻭ bﻭﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ) (1ﻓﺈﻥ αﻴﻘﺴﻡ axﻭ . by ﻭﻤﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ q1و q2ﺒﺤﻴﺙ : ax = αq1ﻭ by = αq2ﺇﺫﻥ ax + by = αq1 + αq2 : ﻭﻋﻠﻴﻪ ax + by = α(q1 + q2 ) :ﺒﻭﻀﻊq1 + q2 = q : ﻨﺠﺩ ax + by = αq :ﻭﻤﻨﻪ α :ﻴﻘﺴﻡ . ax + by ﻤﺒﺭﻫﻨﺔ : 5 aﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ. aﻴﻘﺴﻡ bﻭ bﻴﻘﺴﻡ aﺘﻜﺎﻓﺊ a = bﺃﻭ . a = -b ﺍﻟﺒﺭﻫﺎﻥ : aﺘﻘﺴﻡ bﺘﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ k1ﺒﺤﻴﺙ b = a . k1 : bﺘﻘﺴﻡ aﺘﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ k 2ﺒﺤﻴﺙ b = a . k 2 : ﻭﻋﻠﻴﻪ b = b . k1k 2 : ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ k1 . k1 = 1ﻭﻋﻠﻴﻪ ﺇﻤﺎ k1 = 1ﻭ k 2 = 1 ﺃﻭ k1 = -1ﻭ k 2 = -1 ﻭﻋﻠﻴﻪ a = b :ﺃﻭ a = -b
ﻤﻼﺤﻅﺔ : ﻟﻠﻌﺩﺩ 1ﻗﺎﺴﻤﺎﻥ ﻓﻘﻁ ﻓﻲ Zﻫﻤﺎ 1ﻭ . -1 ﻟﻠﻌﺩﺩ -1ﻗﺎﺴﻤﺎﻥ ﻓﻘﻁ ﻓﻲ Zﻫﻤﺎ 1ﻭ . -1 ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ Z ﺃ -ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﺩﻴﺔ ﻓﻲ ` : ﻤﺒﺭﻫﻨﺔ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ aﻭ bﺤﻴﺙ b ≠ 0ﺘﻭﺠﺩ ﺜﻨﺎﺌﻴﺔ ﻭﺤﻴﺩﺓ ) (q ; rﺤﻴﺙ r , q :ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ . ﺒﺤﻴﺙ a = bq + r :ﻭ . 0 ≤ r < b ﺍﻟﺒﺭﻫﺎﻥ : ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ aﻋﻠﻰ ﺍﻟﻌﺩﺩ bﻫﻭ ﺒﺎﻟﺘﻌﺭﻴﻑ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ r ﺒﺤﻴﺙ ﻴﻜﻭﻥ a – r :ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ bﻭ 0 ≤ r < b a - r = qb ﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ qﺒﺤﻴﺙ : 0 ≤ r<b . a = bq + r ﺇﺫﻥ : ≤ r<b 0 ﺏ -ﺍﻟﻘﺴﻤﺔ ﺍﻻﻗﻠﻴﺩﻴﺔ ﻓﻲ : Z ﻤﺒﺭﻫﻨﺔ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ bﻭ aﺤﻴﺙ b ≠ 0ﺘﻭﺠﺩ ﺜﻨﺎﺌﻴﺔ ﻭ ﺤﻴﺩﺓa = bq + r ) a ) ، (q ; rﻭ rﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ( ﺤﻴﺙ : 0 ≤ r<b ﺍﻟﺒﺭﻫﺎﻥ : xﺇﺫﺍ ﻜﺎﻥ aﻋﺩﺩ ﻁﺒﻴﻌﻲ )ﺴﺒﻕ ﺍﻟﺒﺭﻫﺎﻥ( . xﺇﺫﺍ ﻜﺎﻥ a < 0ﻓﺈﻥ -a > 0 :ﻭﻋﻠﻴﻪ ﺘﻭﺠﺩ ﺜﻨﺎﺌﻴﺔ ﻭﺤﻴﺩﺓ )(q′ ; r′
-a = bq′ + r′ ﺒﺤﻴﺙ : 0 ≤ r′ < bﻓﺈﺫﺍ ﻜﺎﻥ r′ = 0 :ﻓﺈﻥ a = b (-q′) :ﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ.ﻓﺈﺫﺍ ﻜﺎﻥ : r′ ≠ 0ﻓﺈﻥ a = b (-q′) - r′ﺇﺫﻥ a = b (-q′) - b + b - r′ :ﺃﻱa = b (-q′ - 1) + b - r′ : ﺤﻴﺙ 0 < r′ < b :ﻭﻤﻨﻪ-b < -r′ < 0 :ﻭﻤﻨﻪ 0 < b - r′ < b :ﺒﻭﻀﻊ b - r′ = r :ﻭ -q′ - 1 = q a = bq + r ﻨﺠﺩ : 0 ≤ r<b ﻤﺜﺎل : 12007 = 208 × 9 + 135 : b = 208 , a = 2007ﻭﻋﻠﻴﻪ r = 135 :و q = 9 ﻤﺜﺎل : 2-1830 = 54 (-34) + 6 : b = 54 , a = -1830 ﻭﻤﻨﻪ q = -34 :و r = 6 ﻤﺜﺎل : 3 b = 166 , a = -1518-1815 = 166(-10) + 144ﻭﻤﻨﻪ q = -10 :و r = 144
ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥﺃ -ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ : ﺘﻌﺭﻴﻑ :ﻨﺭﻤﺯ ﺇﻟﻰ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ aﺒﺎﻟﺭﻤﺯ . Da D1 = 1؛ ` = { }D0 ﻭﻟﺩﻴﻨﺎ ﻤﺜﻼ :}D28 = {1 ; 2 ; 4 ; 7 ; 14 ; 28 ﻤﻼﺤﻅﺔ :1 Da xﻏﻴﺭ ﺨﺎﻟﻴﺔ ﻷﻥ 1 ∈ Daﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . a ﻤﻼﺤﻅﺔ :2 Daﺘﻘﺒل ﺃﻜﺒﺭ ﻋﻨﺼﺭ ﻭﻫﻭ aﺇﺫﺍ ﻜﺎﻥ . a ≠ 0ﺏ -ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ : ﺘﻌﺭﻴﻑ :ﻨﺴﻤﻲ ﻗﺎﺴﻤﺎ ﻤﺸﺘﺭﻜﺎ ﻟﻠﻌﺩﺩﻴﻥ ﺍﻟﻁﺒﻴﻌﻴﻴﻥ aﻭ bﻜل ﻋﺩﺩ ﻴﻘﺴﻤﻬﺎ. ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻲ : Da ∩ Dbﻭﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ . Da,b ﻤﺜﺎل :{ }D30,25 = 1 , 5 Da,0 = Daﺤﻴﺙa ≠ 0 : ﺤﺎﻟﺔ ﺨﺎﺼﺔ :ﺠـ -ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺘﻌﺭﻴﻑ : aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ Da,b .ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻤﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻜﺔ .ﺃﻜﺒﺭ ﻋﻨﺼﺭ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ Da,bﻴﺴﻤﻰ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ . PGCD (a ; b) :ﻤﺜﺎل PGCD (30 ; 25) = 5 :
ﺤﺎﻟﺔ ﺨﺎﺼﺔ :ﺇﺫﺍ ﻜﺎﻥ PGCD (a ; b) = 1ﻨﻘﻭل ﺇﻥ ﺍﻟﻌﺩﺩﻴﻥ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻤﺜﺎل : PGCD(28 , 9) = 1ﻭ ﻤﻨﻪ َ 28ﻭ 9ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .ﺩ -ﺍﻟﺒﺤﺙ ﻋﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ : aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻨﻔﺭﺽ a > b a = bq + r0 ﻟﺩﻴﻨﺎ : 0 ≤ r0 <bﻜل ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻭ ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bqﺃﻱ ﻴﻘﺴﻡ r0ﻭﻋﻠﻴﻪ ﻓﻬﻭ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ bﻭ . r0ﻜل ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ bﻭ r0ﻫﻭ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ bqﻭ r0ﻭﻋﻠﻴﻪ ﻫﻭ ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩ a ﻭﻤﻨﻪ ﻓﻬﻭ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ. b ﻭﻤﻨﻪ Da,b = Db,r0 : xﺇﺫﺍ ﻜﺎﻥ r0 = 0ﻓﺈﻥ Da,b = Db,0 = Db :ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻲ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ . b xﺇﺫﺍ ﻜﺎﻥ : r0 ≠ 0ﻟﺩﻴﻨﺎ b = r0q1 + r1 :؛ 0 ≤ r1 < r0 D = Db,r0 r0 ,r1 ﻭﻴﻜﻭﻥ : D = Da,b r0 ,r1 ﻭﻤﻨﻪ : ﻓﺈﺫﺍ ﻜﺎﻥ r1 = 0ﻓﺈﻥ Da,b = Dr0 : ﻭﺇﺫﺍ ﻜﺎﻥ r1 ≠ 0ﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﻴﻕ : Da,b = Db,r0ﻭ a = bq + r0 , r0 < b D = Db,r0 r0 ,r1ﻭ b = r0 . q1 + r1 , r1 < r0r0 = r1 . q2 + r2 , r2 < r1 ﻭ D = Dr0 ,r1 r1 ,r2 #
rp = rp+1 . qp+2 + rp+2 , rp+2 < rp+1 ﻭ D = Drp ,rp+1 rp+1 ,rp+2 ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﺒﻭﺍﻗﻲ rp+2 , . . . , r1 , r0ﺘﺤﻘﻕ b > r0 > r1 > . . . > rp+2 > . . . :ﻓﺈﻨﻪ ﺒﻌﺩ ﺇﺠﺭﺍﺀ bﻗﺴﻤﺔ ،ﻋﻠﻰ ﺍﻷﻜﺜﺭ ،ﺘﺤﺼل ﻋﻠﻰ ﺒﺎﻕ ﻤﻌﺩﻭﻡ. ﻨﻔﺭﺽ rﻫﻭ ﺁﺨﺭ ﺒﺎﻕ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . ﻭﺘﻜﻭﻥ ﻟﺩﻴﻨﺎ Da,b = Db,r0 = . . . = Dr,0 = Dr :ﻭﻨﺴﺘﻨﺘﺞ ﺃﻥ :ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻲ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ . rﻭﺒﻤﺎ ﺃﻥ rﻫﻭ ﺃﻜﺒﺭ ﻋﻨﺼﺭ ﻓﻲ Dr ﻨﺴﺘﻨﺘﺞ ﺃﻥ PGCD (a ; b) = r :ﻭﻋﻠﻴﻪ : ﻤﺒﺭﻫﻨﺔ :1ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻫﻭ ﺁﺨﺭ ﺒﺎﻕ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻟﻠﻘﺴﻤﺎﺕ ﺍﻟﻤﺘﺘﺎﺒﻌﺔ ﺍﻟﻤﻨﺠﺯﺓ ﻓﻲ ﺨﻭﺍﺭﺯﻤﻴﺔ ﺇﻗﻠﻴﺩﺱ. ﻤﺒﺭﻫﻨﺔ : 2ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﻗﺎﺴﻤﻬﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ. ﻤﺜﺎل :1ﻋﻴﻥ ) PGCD (1260 ; 440ﺜﻡ ﺍﺴﺘﻨﺘﺞ D1260,440 1260 = 440 × 2 + 360 ﺍﻟﺤل : 440 = 380 × 1 + 60 ﻭﻤﻨﻪ : 380 = 60 × 6 + 20 60 = 20 × 3 + 0 PGCD (1260 ; 440) = 20ﻭﻤﻨﻪ { }D1260,440 = D20 = 1 , 2 , 4 , 5 , 10 , 20 :
ﻤﺜﺎل :2 ﻋﻴﻥ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ 1954 , 2008 ﺍﻟﺤل : xﻨﺒﺤﺙ ﺃﻭﻻ ﻋﻥ )PGCD (2008 ; 1954 2008 = 1954 × 1 + 54 1954 = 54 + 36 + 10 54 = 10 × 5 = 4 10 = 4 × 2 + 2 4=2 × 2+0 ﻭﻤﻨﻪ PGCD (2008 ; 1954) = 2 : ﻭﻋﻠﻴﻪ { }D2008,1954 = D2 = 1 , 2 : ﻤﺜﺎل :3 ﺒﺭﻫﻥ ﺍﻟﻌﺩﺩﻴﻥ 18641ﻭ 783ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. ﺍﻟﺤل : ﻨﺒﺤﺙ ﻋﻥ ): PGCD (18641 , 78318641 = 783 × 23 + 632783 = 632 × 1 + 151 ﺇﺫﻥ PGCD (18641 , 783) = 1 :632 = 151 × 4 + 28151 = 28 × 5 + 1128 = 11 × 2 + 611 = 6 × 1 + 56=5 × 1+15=1 × 5+0 ﻭﻋﻠﻴﻪ ﺍﻟﻌﺩﺩﺍﻥ 18641ﻭ 783ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. ﻤﺒﺭﻫﻨﺔ :3 λ , b , aﺃﻋﺩﺍﺩ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ.ﻟﺩﻴﻨﺎ PGCD (λa ; λb) = λPGCD (a ; b) :
: ﺍﻟﺒﺭﻫﺎﻥ PGCD(a ; b) = rn ﻨﻔﺭﺽa = bq + r0 , r0 < bb = r0q1 + r1 , r1 < r0r0 = r1q2 + r2 , r2 < r1 #rn-2 = rn-1qn + rn , rn < rn-1rn-1 = rn . qn+1 + 0 : ﻭﻋﻠﻴﻪλa = (λb) q0 + λr0 , λr0 < λbλb = (λr0 ) q1 + λr1 , λr1 < λr0λr0 = (λr1 ) q2 + λr2 , λr2 < λr1 #λrn-2 = (λrn-1 ) qn + λrn , λrn < λrn-1λrn-1 = (λrn ) qn+1 + 0 P G C D ( λ a ; λ b ) = λ r n : ﺇﺫﻥP G C D ( λ a ; λ b ) = λ P G C D ( a ; b ) : ﺃﻱ ﺃﻥ : 4 ﻤﺒﺭﻫﻨﺔ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻬﻤﺎ ﻟﺩﻴﻨﺎc ، ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥB , aPG C D (a ; b ) = c . P G C D a ; b c c : ﺍﻟﺒﺭﻫﺎﻥ : ﻨﺠﺩb = c . b′ وa = c . a′ : ﺒﻭﻀﻊP G C D (a ; b ) = P G C D (c a ′ ; c b ′)= c × P G C D (a ′ ; b ′)= c× PGCD a ; b c c
ﻤﺒﺭﻫﻨﺔ : 5 c , b , aﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ . a = C . a′ P G C D ( a ; b ) = Cﻴﻜﺎﻓﺊ b = C . b′ P G C D ( a ′ ; b ′ ) = 1 a = c . a′ ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ P G C D ( a ; b ) = cﻓﻬﺫﺍ ﻴﻜﺎﻓﺊ : b = c . b′ ﻭﻤﻨﻪ P G C D ( a ; b ) = P G C D ( c . a ′ ; c . b ′ ) : ﺇﺫﻥ c = c . PGCD (a′ ; b′) : = )P G C D (a′ ; b′ c =1 ﻭﻋﻠﻴﻪ : c a = c . a′ ﻭﻋﻠﻴﻪ : b = c . b′ P G C D ( a ′ ; b ′ ) = 1 ﻤﺜﺎل : ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ aﻭ bﺤﻴﺙ P G C D ( a ; b ) = 1 2 ﻭ a + b = 120 ﺍﻟﺤل :a = 12a′ ﺒﻤﺎ ﺃﻥ P G C D ( a ; b ) = 1 2ﻓﺈﻥ : b = 12b′ P G C D (a ′ ; b ′) = 1 ﻟﻜﻥ a + b = 120ﻭﻤﻨﻪ 12a′ + 12b′ = 120 : ﺃﻱ 12(a′ + b′) = 120 :ﻭﻋﻠﻴﻪ a′ + b′ = 10 : a = 1 xﻭ b′ = 9ﻭﻤﻨﻪ a = 12 :ﻭ b = 108 b′ = 7 a′ = 3 xﻭﻤﻨﻪ a = 36 :ﻭ b = 84 ﻭﻋﻠﻴﻪ ﺍﻟﻌﺩﺩﺍﻥ ﻫﻤﺎ 12ﻭ 108ﺃﻭ 36ﻭ . 84
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ 1 ﻋﻴﻥ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ xﻭ yﺒﺤﻴﺙ x y - 2 x - 4 y + 8 = 1 0 : ﺍﻟﺘﻤﺭﻴﻥ 2 ﻋﻴﻥ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﺍﻟﻤﻭﺠﺒﺔ xﻭ yﺒﺤﻴﺙ x 2 - y 2 = 4 0 : ﺍﻟﺘﻤﺭﻴﻥ 3ﻋﻨﺩ ﺇﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻟﻠﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ aﻋﻠﻰ ﺍﻟﻌﺩﺩ 37ﻜﺎﻥ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ qﻭ ﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ . 11q + 7 ﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ . a ﺍﻟﺘﻤﺭﻴﻥ 4 aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﻴﺎﻥ ﺤﻴﺙ b ≠ 0 ﻋﻨﺩ ﺇﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻟﻠﻌﺩﺩ aﻋﻠﻰ ﺍﻟﻌﺩﺩ b3ﻭﺠﺩﻨﺎ ﺍﻟﺤﺎﺼل qﻭ ﺍﻟﺒﺎﻗﻲ . r ﻋﻴﻥ ﺤﺎﺼل ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ . b ﺍﻟﺘﻤﺭﻴﻥ 5 nﻋﺩﺩ ﺼﺤﻴﺢ a .ﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ. ﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ qﺤﺎﺼل ﻗﺴﻤﺔ nﻋﻠﻰ . a ﻭﻜﺎﻥ q′ﺤﺎﺼل ﻗﺴﻤﺔ qﻋﻠﻰ bﻓﺈﻥ q′ :ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ nﻋﻠﻰ . ab ﺍﻟﺘﻤﺭﻴﻥ 6 ﻋﻨﺩ ﻗﺴﻤﺔ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻋﻠﻰ 110ﻜﺎﻥ ﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﻴﺴﺎﻭﻱ ﻤﺭﺒﻊ ﺤﺎﺼﻠﻬﺎ. ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻬﺫﺍ ﺍﻟﻌﺩﺩ ؟ ﺍﻟﺘﻤﺭﻴﻥ 7 aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﺤﻴﺙ a × b = 2 5 0 0 : ﻭ P G C D (a ; b) = 10 ﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ. b ﺍﻟﺘﻤﺭﻴﻥ 8 aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﺤﻴﺙ a 2 - b 2 = 5760 : ﻭ P G C D (a ; b ) = 1 2ﻭ a < b
ﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭb ﺍﻟﺘﻤﺭﻴﻥ 9 aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﺤﻴﺙ : 2a2 + 3b2 = 3500ﻭ P G C D (a ; b ) = 1 0 ﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ. b ﺍﻟﺘﻤﺭﻴﻥ 10 ﺃﺭﻀﻴﺔ ﻤﺴﺘﻁﻴﻠﺔ ﺍﻟﺸﻜل ﻤﺤﻴﻁﻬﺎ 7080 cmﻁﻭﻟﻬﺎ aﻭﻋﺭﻀﻬﺎ .bﻨﺭﻴﺩ ﺘﺒﻠﻴﻁﻬﺎ ﺒﺒﻼﻁﺎﺕ ﻤﺴﺘﻁﻴﻠﺔﺍﻟﺸﻜل ﺤﻴﺙ ﻁﻭﻟﻬﺎ ﻭﻋﺭﻀﻬﺎ ﻋﺩﺩﺍﻥ ﻤﺘﺘﺎﺒﻌﺎﻥ ﻭﻴﻜﻭﻥ ﻋﺩﺩﻫﺎ ﻤﻥ ﺠﻬﺔ ﺍﻟﻁﻭل ﻭ ﺍﻟﻌﺭﺽ ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ . 60 -ﺍﺤﺴﺏ ﻜل ﻤﻥ ﻗﻴﻡ aﻭ bﺍﻟﻤﻤﻜﻨﺔ.
ﺍﻟﺤـﻠــﻭل ﺍﻟﺘﻤﺭﻴﻥ 1 ﺘﻌﻴﻴﻥ xﻭy ﻟﺩﻴﻨﺎ xy - 2x - 4y + 8 = 10 : ﻭﻋﻠﻴﻪ x (y - 2) - 4 (y - 2) = 10 : ﺃﻱ (y - 2) (x - 4) = 10 : x - 4 = 1 xﻭ y - 2 = 10ﻭﻤﻨﻪ x = 5ﻭ . y = 12 x - 4 = 2 xﻭ y - 2 = 5ﻭﻤﻨﻪ x = 6ﻭ . y = 7 x - 4 = 10 xﻭ y - 2 = 1ﻭﻤﻨﻪ x = 14ﻭ . y = 3 x - 4 = 5 xﻭ y - 2 = 2ﻭﻤﻨﻪ x = 9ﻭ . y = 4 x - 4 = -1 xﻭ y - 2 = -10ﻭﻤﻨﻪ x = 3ﻭ . y = -8 x - 4 = -2 xﻭ y - 2 = -5ﻭﻤﻨﻪ x = 2ﻭ . y = -3 x - 4 = -10 xﻭ y - 2 = -1ﻭﻤﻨﻪ x = -6ﻭ . y = 1 x - 4 = -5 xﻭ y - 2 = - 2ﻭﻤﻨﻪ x = -1ﻭ . y = 0 ﺍﻟﺘﻤﺭﻴﻥ 2 ﺘﻌﻴﻴﻥ xﻭ yﺒﺤﻴﺙ x2 - y2 = 40 : ﺃﻱ ( x - y) (x + y) = 40 :ﺤﻴﺙ x - y < x + y : x - y = 1 (1ﻭ x + y = 40ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2 x = 41 :ﻤﺭﻓﻭﺽ . x - y = 2 (2ﻭ x + y = 20ﻭ ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ . 2 x = 22 : ﻭﻤﻨﻪ x = 11 :ﻭ . y = 9 x - y = 4 (3ﻭ x + y = 10ﻭﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2 x = 14 : ﻭﻤﻨﻪ x = 7 :ﻭ . y = 3 x - y = 5 (4ﻭ x + y = 8ﻭﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ ) 2 x = 13 :ﻤﺭﻓﻭﺽ(
ﺍﻟﺘﻤﺭﻴﻥ 3 ﺘﻌﻴﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ : a a = 37q + 11q + 7 ﻟﺩﻴﻨﺎ : 0 ≤ 11q + 7 < 37 ﻟﺩﻴﻨﺎ : ﺇﺫﻥ :-7 ≤ 11q < 30 0 ≤ 11q + 7 < 37ﻭﻤﻨﻪ : -7 ≤ <q 30 11 11 -0 ,6 3 ≤ q < 2 ,7 2 ﻭﻋﻠﻴﻪ : ﻭﻋﻠﻴﻪ q ∈ {0 ; 1 ; 2} : ﻭﻤﻨﻪ : ﻟﻤﺎ a = 7 : q = 0a = 103 ﻟﻤﺎ a = 37 + 11 + 7 : q = 1ﺃﻱ a = 55 ﻟﻤﺎ a = 37(2) + 11 × 2 + 7 : q = 2ﻭﻤﻨﻪ : ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻥ ﻟﻠﻌﺩ aﻫﻲ . 103 , 55 , 7 : ﺍﻟﺘﻤﺭﻴﻥ 4 ﺘﻌﻴﻴﻥ ﺤﺎﺼل ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ . b a = b ( b 2 q ) + r ﻭﻤﻨﻪ : a = b 3 q + r ﻟﺩﻴﻨﺎ : 0 ≤ r < b3 0 ≤ r < b3r = bq1 + r1 ﻨﺠﺭﻱ ﻋﻤﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻟﻠﻌﺩﺩ rﻋﻠﻰ bﻨﺠﺩ : 0 ≤ r1 < b a = b(b 2q) + bq1 + r1 ﻭﻤﻨﻪ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : ≤ r1 < b 0 a = b(b 2q + )q1 + r1 ﻭﻋﻠﻴﻪ : ≤ r1 < b 0ﻭﻤﻨﻪ r1ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ bﻭ b2q + q1ﻫﻭ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ.
ﺍﻟﺘﻤﺭﻴﻥ 5q = bq′ + r′ ﻭ n = aq + r ﻟﺩﻴﻨﺎ : 0 ≤ r′ ≤ b-1 0 ≤ r ≤ a-1 n = a (bq′ + r′) + r ﻭﻋﻠﻴﻪ : n = (ab)q′ + ar′ + rﻭ ﺒﻤﺎ ﺃﻥ 0 ≤ r′ ≤ b - 1ﻓﺈﻥ 0 ≤ ar′ ≤ a(b - 1) : ﻭﻤﻨﻪ 0 ≤ ar′ + r ≤ a(b - 1) + a - 1 : ﺇﺫﻥ 0 ≤ ar′ + r ≤ ab - a : 0 ≤ ar′ + r < ab ﺇﺫﻥ : ﻷﻥ ab - a < ab : )n = (ab) . q′ + (ar′ + r ﻭﻋﻠﻴﻪ : 0 ≤ ar′ + r < ab ﻭﻤﻨﻪ :ﺒﺎﻗﻲ ﻗﺴﻤﺔ nﻋﻠﻰ abﻫﻭ . q′ ﺍﻟﺘﻤﺭﻴﻥ 6 ﻟﻴﻜﻥ aﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ .ﻭﻟﻴﻜﻥ rﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﻭ qﺤﺎﺼﻠﻬﺎ ﻭﻋﻠﻴﻪ : a = 1 1 0 × q + q 2 ﻭﻤﻨﻪ : q 2 < 110 ﺒﻤﺎ ﺃﻥ q2 < 110ﻓﺈﻥ q < 10,48 : ﺇﺫﻥ q ∈ {0 ; 1 ; . . . ; 10} : ﻟﻜﻥ )a = q(110 + q ﻭﻋﻠﻴﻪ : (1ﻟﻤﺎ a = 0 : q = 0؛ (2ﻟﻤﺎ a = 111 : q = 1 (3ﻟﻤﺎ a = 224 : q = 2؛ (4ﻟﻤﺎ a = 339 : q = 3 (5ﻟﻤﺎ a = 456 : q = 4؛ (6ﻟﻤﺎ a = 575 : q = 5 (7ﻟﻤﺎ a = 696 : q = 6؛ (8ﻟﻤﺎ a = 819 : q = 7
(9ﻟﻤﺎ a = 944 : q = 8؛ (10ﻟﻤﺎ a = 1071 : q = 9 (11ﻟﻤﺎ a = 1200 : q = 10 ﺍﻟﺘﻤﺭﻴﻥ 7 ﺘﻌﻴﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭb ﻟﺩﻴﻨﺎ a = 10a′ﻭ b = 10b′ ﻤﻊ a′و b′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. ﻟﻜﻥ a × b = 2500ﻭﻤﻨﻪ 10a′ . 10b′ = 2500 : ﻭﻋﻠﻴﻪ a′ . b′ = 25 a′ = 1 xﻭ b′ = 25ﻭﻤﻨﻪ a = 10ﻭ b = 250 a′ = 25 xﻭ b′ = 1ﻭﻤﻨﻪ a = 250ﻭ b = 10 ﺍﻟﺘﻤﺭﻴﻥ 8 ﺘﻌﻴﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ: bﻟﺩﻴﻨﺎ a = 12 a′ :ﻭ b = 12 b′ﻤﻊ a′و b′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻭﺒﻤﺎ ﺃﻥ a < b :ﻓﺈﻥ a′ < b′ : ﻭﻤﻨﻪ ﺒﻤﺎ ﺃﻥ a2 - b2 = 5760 : ﻓﺈﻥ (12a′)2 - (12b′)2 = 5760 : ﻭﻋﻠﻴﻪ (12)2 a′2 - b′2 = 5760 : ﺃﻱ ﺃﻥ (144 a′2 - b′2 = 5760 : ﻭﻋﻠﻴﻪ a′2 - b′2 = 40 : ﻭﺒﺎﻟﺘﺎﻟﻲ (a′ - b′) (a′ + b′) = 40 : xﻟﻤﺎ a′ - b′ = 1 :ﻭ a′ + b′ = 40ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2a′ = 41 ﻤﺭﻓﻭﺽ . xﻟﻤﺎ a′ - b′ = 2 :و a′ + b′ = 20ﺑﺎﻟﺠﻤﻊ ﻧﺠﺪ 2a′ = 22 xوﻡﻨﻪ a′ = 11 :وﻋﻠﻴﻪ . b′ = 9 : إذن b = 12 × 9 = 108 , a = 12 × 11 = 132 :
xﻟﻤﺎ a′ - b′ = 4ﻭ ، a′ + b′ = 8ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2a′ = 14 : ﻭﻤﻨﻪ a′ = 7 :و b′ = 3 ﺇﺫﻥ b = 12 × 3 = 36 , a = 12 × 7 = 84 : xﻟﻤﺎ a′ - b′ = 5 :و a′ + b′ = 8ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2a′ = 13 : ﻤﺭﻓﻭﺽ . ﺍﻟﺘﻤﺭﻴﻥ 9 ﺘﻌﻴﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ: bﻟﺩﻴﻨﺎ a = 10a′ :ﻭ b = 10b′ﺤﻴﺙ a′و b′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. ﻭﻤﻨﻪ ﻟﺩﻴﻨﺎ 2(10a′)2 + 3(10b′)2 = 3500 : 1 0 2 2 a ′ 2 + 3 b ′ 2 = 3 5 0 0 ﺇﺫﻥ : ﻭﻋﻠﻴﻪ : 2a′2 + 3b′2 = 35 ﺇﺫﻥ : 3b′2 = 35 - 2a′2 ﻭﻤﻨﻪ :a′2 ≤ 35 35 - 2a′2 ≥ 0ﻭﻋﻠﻴﻪ: 2 a′ ≤ 4 ﻭﻋﻠﻴﻪ : ≤ a′ 35 2 3b′2 = 33 : a′ = 1 xﻭﻋﻠﻴﻪ b′2 = 11 :ﻤﺭﻓﻭﺽ. 3b′2 = 27 : a′ = 2 xﻭﻤﻨﻪ b′2 = 9 :ﻭ ﻤﻨﻪ b′ = 3 : ﺇﺫﻥ a = 20 :ﻭ b = 30 3b′2 = 17 : a′ = 3 xﻭﻤﻨﻪ ﻤﺭﻓﻭﺽ. 3b′2 = 3 : a′ = 4 xﻭﻤﻨﻪ b′2 =1 : ﻭﻋﻠﻴﻪ b′ = 1 : ﻭﻤﻨﻪ a = 40 :ﻭ . b = 10
ﺍﻟﺘﻤﺭﻴﻥ 10 ﻨﺼﻑ ﺍﻟﻤﺤﻴﻁ ﻫﻭ 3540 ﻭﻤﻨﻪ . a + b = 3540ﻨﻔﺭﺽ a′ﻁﻭل ﺍﻟﺒﻼﻁﺔ ﻭ b′ﻋﺭﺽ ﺍﻟﺒﻼﻁﺔ ﻭ ﻫﻤﺎ ﻋﺩﺩﺍﻥ ﻤﺘﺘﺎﺒﻌﺎﻥ ﻓﻬﻤﺎ ﺇﺫﻥ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ.ﺒﻤﺎ ﺃﻥ ﻋﺩﺩ ﺍﻟﺒﻼﻁﺎﺕ ﻤﻥ ﺠﻬﺔ ﺍﻟﻁﻭل ﻭ ﺍﻟﻌﺭﺽ . 60a = 60 a′ ﻓﺈﻥ : b = 60 b′ a′ﻭ b′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .ﻭﻋﻠﻴﻪ 60 a′ + 60 b′ = 3540 :ﺃﻱ 60(a′ + b′) = 3540 :ﻭﻋﻠﻴﻪ a′ + b′ = 59 :ﻭﻟﺩﻴﻨﺎ a′ = b′ + 1 :ﻭﻤﻨﻪ b′ + 1 + b′ = 59 :ﻭﻋﻠﻴﻪ 2b′ = 58 :ﻭﻤﻨﻪ b′ = 29 ﻭﻋﻠﻴﻪ a′ = 30 :ﺇﺫﻥ b = 60 × 29 , a = 60 × 30 :ﻭﻤﻨﻪ . b = 1760 , a = 1800 :
ﺍﻟﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ] ﻭ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : ﻤﻌﺭﻓﺔ ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻟﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ]. -1 ﻨﺸﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻭﻓﻕ ﺃﺴﺎﺱ. -2 -3ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ αﺇﻟﻰ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ .βﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. – Iﺍﻟﻤﻭﺍﻓﻘﺎﺕ. – IIﺍﻟﺘﻌﺩﺍﺩ. -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. -ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ -ﻨﺸﺎﻁ : nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺤﻴﺙ n ≥ 2 : xﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺤﻴﺙ ﺒﺎﻗﻲ ﻗﺴﻤﺔ xﻋﻠﻰ nﻫﻭ x ) 1ﻏﻴﺭ ﻤﻌﺩﻭﻡ (.ﺒﺭﻫﻥ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x pﻋﻠﻰ nﻫﻭ 1ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل p ≥ 0ﻋﻠﻰ ( )n2 2008 2007 ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﺤل :ﺒﻤﺎ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ xﻋﻠﻰ nﻫﻭ 1ﻓﺈﻥ x − 1 :ﻤﻀﺎﻋﻑ nﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ k ﺒﺤﻴﺙ x − 1 = kn :ﻭ ﻤﻨﻪ x = kn + 1 : ﻟﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ : ﺒﺎﻗﻲ ﻗﺴﻤﺔ x pﻋﻠﻰ nﻫﻭ : 1 -ﺒﺩﺍﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ :ﻤﻥ ﺃﺠل x0 = 1 : p = 0ﻭ ﻤﻨﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x0ﻋﻠﻰ nﻫﻭ . 1 -ﻨﺒﺭﻫﻥ ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻭﺭﺍﺜﻴﺔ : ﻨﻔﺭﺽ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x pﻋﻠﻰ nﻫﻭ 1 ﻭ ﻨﺒﺭﻫﻥ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x p+1ﻋﻠﻰ nﻫﻭ 1 ﺒﻤﺎ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x pﻋﻠﻰ nﻫﻭ 1ﻓﺈﻥ x p − 1 :ﻤﻀﺎﻋﻑ n ﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ q1ﺒﺤﻴﺙx p − 1 = q1n :
ﻭ ﻤﻨﻪ x p = q1n + 1 :ﻟﻜﻥx p+1 = x p .x :ﺇﺫﻥ x p+1 = (q1n + 1) .( kn + 1) :ﻭ ﻤﻨﻪ x p+1 = q1kn2 + q1n + kn + 1 :ﺇﺫﻥ ( )x p+1 − 1 = q1kn + q1 + k n :ﻭ ﻤﻨﻪ x p+1 − 1 :ﻤﻀﺎﻋﻑ . nﻭ ﻋﻠﻴﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ x p+1ﻋﻠﻰ nﻫﻭ . 1ﻋﻠﻰ ( ): 2 20082007 -ﺍﺴﺘﻨﺘﺎﺝ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻟﺩﻴﻨﺎ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2007ﻋﻠﻰ 2ﻫﻭ . 1ﻭ ﻋﻠﻴﻪ ﻤﻤﺎ ﺴﺒﻕ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2007 2008ﻋﻠﻰ 2ﻫﻭ ( ). 1
ﺍﻟﻤﻭﺍﻓﻘﺎﺕ -ﺘﻌﺭﻴﻑ : xﻭ yﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ n ،ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻭ ﻴﺨﺘﻠﻑ ﻋﻥ . 1ﻨﻘﻭل ﺇﻥ xﻭ yﻤﺘﻭﺍﻓﻘﺎﺕ ﺒﺘﺭﺩﻴﺩ nﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ nﻴﻘﺴﻡ ) x − yﺃﻱ x − yﻤﻀﺎﻋﻑ . ( n ﺍﺼﻁﻼﺤﺎ ﻨﻜﺘﺏ [ ]x ≡ y n : ﻭ ﻨﻘﺭﺃ xﺘﻭﺍﻓﻕ yﺒﺘﺭﺩﻴﺩ . n ﺃﻤﺜﻠﺔ : 7 ≡ 4 3 (1ﻷﻥ 7 − 4 = 3 :ﻭ ﻫﻭ ﻤﻀﺎﻋﻑ [ ]. 3 7 ≡ 1 3 (2ﻷﻥ 7 − 1 = 6 :ﻭ ﻫﻭ ﻤﻀﺎﻋﻑ [ ]. 3 10 ≡ 10 8 (3ﻷﻥ 10 − 10 = 0 :ﻭ ﻫﻭ ﻤﻀﺎﻋﻑ [ ]. 8 ( − 3 9 ) ≡ − 5 [ 2 ] (4ﻷﻥ − 3 9 − ( − 5 ) = − 3 4 :ﻭ ﻫﻭ ﻤﻀﺎﻋﻑ .2 -ﺨﻭﺍﺹ : nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ ﻴﺨﺘﻠﻑ ﻋﻥ 1 (1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ xﻓﺈﻥ [ ]x ≡ x n : ﻭ ﻫﺫﺍ ﻭﺍﻀﺢ ﻟﻜﻭﻥ 0 ، x − x = 0ﻤﻀﺎﻋﻑ n (2ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ xﻭ : y ﺇﺫﺍ ﻜﺎﻥ x ≡ y[n] :ﻓﺈﻥ y ≡ x[n] : ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ x ≡ y n :ﻓﺈﻥ x − y :ﻤﻀﺎﻋﻑ nﻭ ﻤﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ] [ ﺼﺤﻴﺢ kﺒﺤﻴﺙ x − y = kn :ﻭ ﻋﻠﻴﻪ y − x = ( −k ) n : ﻭ ﺒﺎﻟﺘﺎﻟﻲ y − x :ﻤﻀﺎﻋﻑ nﺇﺫﻥ[ ]y ≡ x n : (3ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ x, y, z :ﻓﺈﻥ : ﺇﺫﺍ ﻜﺎﻥ [ ]x ≡ y n :ﻭ ] y ≡ z[nﻓﺈﻥ x ≡ z[n] : ﺍﻟﺒﺭﻫﺎﻥ :
ﺒﻤﺎ ﺃﻥ ] x ≡ y[nﻭ ] y ≡ z[nﻓﺈﻥ x − y :ﻭ y − zﻤﻀﺎﻋﻔﺎﺕ ﻟﻠﻌﺩﺩ nﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ pﻭ qﺒﺤﻴﺙ x − y = pn :ﻭ y − z = qn ﻭ ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ x − z = p + q n :ﻭ ﻋﻠﻴﻪ x − z :ﻤﻀﺎﻋﻑ ( )n ﺇﺫﻥ x ≡ z[n] : (4ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ a, b, x, y :ﻓﺈﻥ :ﺇﺫﺍ ﻜﺎﻥ x ≡ y[n] :ﻭ ] a ≡ b[nﻓﺈﻥ. x + a ≡ y + b[n] : (5ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ a, x, y : ﺇﺫﺍ ﻜﺎﻥ [ ]x ≡ y n :ﻓﺈﻥ. x + a ≡ y + a[n] : ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ x ≡ y n :ﻭ a ≡ a nﻤﻥ ﺍﻟﺨﺎﺼﻴﺔ [ ] [ ]1 ﻭ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ 4ﻓﺈﻥ[ ]. x + a ≡ y + a n : (6ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔa, b, x, y :ﺇﺫﺍ ﻜﺎﻥ x ≡ [ ]y n :ﻭ ] a ≡ b[nﻓﺈﻥa.x ≡ by[n] : ﺍﻟﺒﺭﻫﺎﻥ :ﺒﻤﺎ ﺃﻥ x ≡ y n :ﻭ a ≡ b nﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ] [ ] [ pﻭ qﺒﺤﻴﺙ x − y = p.n :ﻭ a − b = qnax − by = ax − bx + bx − by ﻭ ﻟﺩﻴﻨﺎ := (a − b) x + ( x − y)b= qnx + pnb= (qx + pb) nﻭ ﻋﻠﻴﻪ ax − by :ﻤﻀﺎﻋﻑ nﺇﺫﻥ[ ]. ax ≡ by n : (7ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ : a, x, y : ﺇﺫﺍ ﻜﺎﻥ x ≡ y[n] :ﻓﺈﻥ ax ≡ ay[n] :
ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ x ≡ y n :ﻭ a ≡ a nﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ )[ ] [ ]. (1 ﻭ ﻋﻠﻴﻪ :ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ 7ﻓﺈﻥ [ ]ax ≡ ay n (8ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﻴﻥ xﻭ yﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲﻏﻴﺭ ﻤﻌﺩﻭﻡ . λﺇﺫﺍ ﻜﺎﻥ x ≡ y [ n ] :ﻓﺈﻥ. λ x ≡ λ y [λ n ] : ﺍﻟﺒﺭﻫﺎﻥ :ﻟﺩﻴﻨﺎ x ≡ y n :ﻭ ﻤﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ pﺤﻴﺙ[ ]x − y = pn : ﻭ ﻋﻠﻴﻪ λ ( x − y ) = λ p n :ﺃﻱ λ x − λ y = p ( λ n ) : ﻭ ﻤﻨﻪ λx − λy :ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ λn ﻭ ﺒﺎﻟﺘﺎﻟﻲ λ x ≡ λ y [λ n ] : (9ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﻴﻥ ﺼﺤﻴﺤﻴﻥ xﻭ yﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . pﺇﺫﺍ ﻜﺎﻥ x ≡ y n :ﻓﺈﻥ[ ] [ ]. x p ≡ y p n : ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل : p ≥ 1 -ﻤﻥ ﺃﺠل : p = 1ﺇﺫﺍ ﻜﺎﻥ x ≡ y nﻓﺈﻥ x ≡ y n :ﻭ ﻫﺫﺍ ﺼﺤﻴﺢ ﻭ ﻋﻠﻴﻪ] [ ] [ ﺒﺩﺍﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ ﺼﺤﻴﺤﺔ . -ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺘﻬﺎ ﻤﻥ ﺃﺠل k + 1ﺃﻱ ﻨﻔﺭﺽ ﺃﻨﻪ: ﺇﺫﺍ ﻜﺎﻥ x ≡ y n :ﻓﺈﻥ[ ]x k ≡ y k [n] :ﻭ ﻨﺒﺭﻫﻥ ﺃﻨﻪ :ﺇﺫﺍ ﻜﺎﻥ ] x ≡ y [ nﻓﺈﻥ x k + 1 ≡ y k + 1 [ n ] :ﺇﺫﺍ ﻜﺎﻥ ] x ≡ y [ nﻓﺈﻥ x k ≡ y k [ n ] :ﺼﺤﻴﺤﺔ .ﻭ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ [ ]xk .x ≡ yk . y n : 6 ﻭ ﻋﻠﻴﻪ x k + 1 ≡ y k + 1 n :ﺇﺫﻥ ﺍﻟﺨﺎﺼﻴﺔ ﻭﺭﺍﺜﻴﺔ[ ].ﻭ ﻤﻨﻪ ﺍﻟﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ p -ﺇﺫﺍ ﻜﺎﻥ p = 0ﻭ xﻭ yﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻓﺈﻥ :] x ≡ y [nﺘﻜﺎﻓﺊ ] x 0 ≡ y 0 [nﺼﺤﻴﺤﺔ . r ) (10ﻫﻭ ﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻟﻠﻌﺩﺩ aﻋﻠﻰ ( nﺘﻜﺎﻓﺊ a ≡ r [n ] 0 ≤ r < n
ﺍﻟﺒﺭﻫﺎﻥ : -ﺇﺫﺍ ﻜﺎﻥ : x < nﺒﺎﻗﻲ ﻗﺴﻤﺔ xﻋﻠﻰ nﻫﻭ x ﻭ ﻋﻠﻴﻪ ) x ≡ x nﺼﺤﻴﺢ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ [ ](1 -ﺇﺫﺍ ﻜﺎﻥ : x ≥ nﺒﺈﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻟﻠﻌﺩﺩ xﻋﻠﻰ nx − r = nq x = nq + r ﻭ ﻋﻠﻴﻪ: ﻨﺠﺩ: 0 ≤ r < n ﻭ ﻤﻨﻪx ≡ r [n] : (11ﻟﺩﻴﻨﺎ a ≡ 0 n :ﻴﻜﺎﻓﺊ aﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ [ ]nﻭ ﻫﺫﺍ ﺒﺩﻴﻬﻲ ﻓﺈﻥ ﻜﺎﻥ a ≡ 0 nﻓﺈﻥ aﻤﻀﺎﻋﻑ [ ]n ﻭ ﺇﺫﺍ ﻜﺎﻥ aﻤﻀﺎﻋﻑ nﻓﺈﻥ aﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ . n ﺘﻁﺒﻴﻕ : 1ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ 2007 2008 :ﻋﻠﻰ ( ): 2 ﺍﻟﺤل :ﻟﺩﻴﻨﺎ 2007 ≡ 1 2 :ﻭ ﻋﻠﻴﻪ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ )[ ](9( ) [ ] [ ]2007 2008 ≡ 1 2ﻭ ﺒﺎﻟﺘﺎﻟﻲ: ( )2 0 0 7 ≡ 12 00 8 2008 2 ﻓﺈﻥ: ﺘﻁﺒﻴﻕ : 2 -1ﺍﺩﺭﺱ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ 2nﻋﻠﻰ . 7ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 1962ﻋﻠﻰ . 7 -2ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻌﺩﺩ 12.23n+1 + 212n + 10 :ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ 7ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n ﺍﻟﺤل : -1ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ 2nﻋﻠﻰ : 7 ]20 ≡ 1[7] ; 21 ≡ 2[7] ; 22 ≡ 4[7] ; 23 ≡ 1[7 ﻭ ﻤﻨﻪ ﻤﻥ ﺍﻟﻌﻼﻗﺔ 23 ≡ 1 7ﻭ ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ 9ﻟﺩﻴﻨﺎ [ ]: 23 p ≡ 1 7ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ [ ]. p ﻟﻜﻥ 2 ≡ 2 7 :ﻭ ﻋﻠﻴﻪ 23 p.2 ≡ 1.2 7 :ﺇﺫﻥ[ ] [ ] [ ]23 p+1 = 2 7 :
ﻭ ﻜﺫﻟﻙ 22 ≡ 4 7 :ﻭ ﻋﻠﻴﻪ [ ] [ ]23 p.22 ≡ 1.4 7 :ﺇﺫﻥ [ ]23 p+2 ≡ 4 7 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻟﻤﺎ [ ]2n ≡ 1 7 : n = 3 p :ﻭ ﻟﻤﺎ 2n ≡ 2[7] : n = 3 p + 1 :ﻭ ﻟﻤﺎ 2n ≡ 4[7] : n = 3 p + 2 : -ﺍﺴﺘﻨﺘﺎﺝ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 21962ﻋﻠﻰ : 7ﻟﺩﻴﻨﺎ 1962 = 3 × 654 :ﻭ ﻤﻨﻪ 1962 = 3 p : ﻭ ﻤﻨﻪ [ ]21962 ≡ 1 7 : -2ﺇﺜﺒﺎﺕ ﺃﻥ [ ]12.23n+1 + 10.212n + 8 ≡ 0 7 :ﻟﺩﻴﻨﺎ 12 ≡ 5 7 :ﻭ [ ] [ ]23n+1 ≡ 2 7ﻭ ﻋﻠﻴﻪ[ ]12.23n+1 ≡ 2 × 5 7 :ﺇﺫﻥ [ ](1)... 12.23n+1 ≡ 3 7 :ﻷﻥ 10 ≡ 3[7] :[ ] ( )23n ≡ 1 7 23n 4= 212nﻭ ﻋﻠﻴﻪ ﻭﺒﻤﺎ ﺃﻥ : ﻭ ﻟﺩﻴﻨﺎ :ﻓﺈﻥ 2 3 n 4 ≡ (1 )4 [7 ] :ﺃﻱ( )( 2 )... 2 12 n ≡ 1 [7 ] :ﻭ ﻋﻠﻴﻪ ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ[ ]12.23n+1 + 212n + 10 ≡ 4 + 10 7 :ﺇﺫﻥ [ ]. 12.23n+1 + 212n + 10 ≡ 0 7 :
ﺍﻟﺘﻌﺩﺍﺩ – 1ﻨﺸﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻭﻓﻕ ﺃﺴﺎﺱ : ﻤﺒﺭﻫﻨﺔ : xﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺤﻴﺙ . x ≥ 2 ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ Nﻴﻜﺘﺏ ﺒﻁﺭﻴﻘﺔ ﻭﺤﻴﺩﺓ ﻋﻠﻰ ﺍﻟﺸﻜل : N = a0 + a1 x + a2 x 2 + ... + an x nﺤﻴﺙ a0 , a1 , a2 , ..., an :ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ ﻭ ﻜل ﻤﻨﻬﺎ ﺃﺼﻐﺭ ﺘﻤﺎﻤﺎ ﻤﻥ ( a n ≠ 0 ) x ﻤﺜﺎل : 1ﻭ ﻋﻠﻴﻪ . x = 1 0 : ﺍﻟﻌﺩﺩ 1954ﺍﻟﻤﻜﺘﻭﺏ ﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﺘﺏ: 1954 = 1.10 3 + 9.10 2 + 5.101 + 4 1954 = 4 + 5.101 + 9.10 2 + 1.10 3 ﻤﺜﺎل : 2 ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ 47ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ : 2 ﺍﻟﺤل : 47 = 23 × 2 + 1 23 = 11 × 2 + 1 11 = 5 × 2 + 1 5 = 2× 2+ 1 2 = 1× 2 + 0 1= 0×2+1ﻭ ﻤﻨﻪ ﺍﻟﻌﺩﺩ 47ﻴﻜﺘﺏ ﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺜﻨﺎﺌﻲ ﻫﻜﺫﺍ 1 0 1 1 1 1 2 ﻭ ﻴﻘﺭﺃ ﻭﺍﺤﺩ ﺼﻔﺭ ﻭﺍﺤﺩ . ﻤﺜﺎل: 3 ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ 2007ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 8
ﺍﻟﺤل : 2007 = 250 × 8 + 7 250 = 31 × 8 + 2 31 = 3 × 8 + 7 3 = 0×8+ 3 ﻭ ﻋﻠﻴﻪ ﺍﻟﻌﺩﺩ 2007ﻴﻜﺘﺏ ﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 8 ﻋﻠﻰ ﺍﻟﺸﻜل 3 7 2 7 8 : – 2ﻜﺘﺎﺒﺔ ﻋﺩﺩ ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ : x xﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺤﻴﺙ N . x ≥ 2 :ﻋﺩﺩ ﻁﺒﻴﻌﻲ . -ﺇﺫﺍ ﻜﺎﻥ N < xﻓﺈﻥ Nﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل . N = a 0 : ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ : x -ﺇﺫﺍ ﻜﺎﻥ N = xﻓﺈﻥN = 0 + 1 . x : ﻭ ﻨﻜﺘﺏ N = 0 1 :ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ . x -ﺇﺫﺍ ﻜﺎﻥ N > xﻓﺈﻥ Nﻴﻨﺸﺭ ﻭﻓﻕ ﺍﻷﺴﺎﺱ xﻜﻤﺎ ﻴﻠﻲ :N = a 0 + a1 x + a 2 x 2 + ... + a n x n ﺤﻴﺙ ﻴﻜﺘﺏ ﺍﺨﺘﺼﺎﺭﺍ N = a n a n − 1 . . . a 1 a 0 x : ﻭ ﻫﻲ ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻤﺨﺘﺼﺭﺓ ﻟﻠﻌﺩﺩ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ . x ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﺍﻷﺼﻐﺭ ﺘﻤﺎﻤﺎ ﻤﻥ xﺘﻤﺜل ﻜل ﻭﺍﺤﺩﺓ ﺒﺭﻤﺯ ﺨﺎﺹ ﺒﻪ. ﻭ ﻋﺩﺩ ﻫﺫﻩ ﺍﻟﺭﻤﻭﺯ ﻫﻭ xﻭ ﺘﺴﻤﻰ ﺃﺴﺎﺱ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ . x ﻤﻼﺤﻅﺔ : ﺇﺫﺍ ﻜﺎﻥ Nﻤﻜﺘﻭﺏ ﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 10ﻋﻠﻰ ﺍﻟﺸﻜل : N = a 0 + a 1 + 1 0 + a 2 .1 0 2 + ... + a n 1 0 n ﻓﺈﻥ Nﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل N = anan−1 ...a1a0 : ﺒﺩﻻ ﻤﻥ N = anan−1 ...a1a0 10ﻭ ﺫﻟﻙ ﻟﻜﺜﺭﺓ ﺍﻻﺴﺘﻌﻤﺎل . –3ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ xﺇﻟﻰ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ :
ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ Nﺍﻟﻤﻜﺘﻭﺏ ﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 3ﻜﻤﺎ ﻴﻠﻲ . N = 2 0 0 2 0 1 2 3 :ﺍﻜﺘﺏ Nﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ . ﺍﻟﺤل : N = 2 .3 0 + 1 .3 1 + 0 .3 2 + 2 .3 3 + 0 .3 4 + 0 .3 5 + 2 .3 6 N = 2 + 3 + 0 + 45 + 0 + 0 + 1458 N = 1517 – 4ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ αﺇﻟﻰ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ : β ﻨﻌﻠﻡ ﺃﻥ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 10ﺴﻬل ﺍﻻﺴﺘﻌﻤﺎل ﻭ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻓﻴﻪ ﺴﻬﻠﺔ ﻭ ﻟﻬﺫﺍ :ﺇﺫﺍ ﻜﺎﻥ Nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻜﺘﻭﺏ ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ αﻭ ﻨﺭﻴﺩ ﺃﻥ ﻨﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ βﻓﻨﻘﻭﻡ ﺒﻤﺎ ﻴﻠﻲ : -ﻨﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ ) 10ﻜﻤﺎ ﺴﺒﻕ ( -ﻨﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ β ﻤﺜﺎل : ﻋﺩﺩ Nﻤﻜﺘﻭﺏ ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ 2 ﻜﻤﺎ ﻴﻠﻲ . 111011012 :ﺍﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ . 5 ﺍﻟﺤل : -ﻨﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ : 10N = 1 .2 0 + 0 .2 1 + 1 .2 2 + 1 .2 3 + 0 .2 4 + 1 .2 5 + 1 .2 6 + 1 .2 7N = 1 + 4 + 8 + 32 + 64 + 128N = 237 -ﻨﻜﺘﺏ Nﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ : 5 237 = 47 × 5 + 2 47 = 9 × 5 + 2 9 = 1× 5 + 4 1= 0× 5+ 1 ﻭ ﻤﻨﻪ Nﻴﻜﺘﺏ 14225 :
ﻤﻼﺤﻅﺎﺕ : -ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ ﻫﻭ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻤﺴﺘﻌﻤل ﻟﺩﻯ ﺍﻟﺒﺸﺭ ﻭ ﺃﺴﺎﺴﻪ ﻋﺸﺭﺓ ، ﺃﻤﺎ ﺃﺭﻗﺎﻤﻪ ﻓﻬﻲ . 9،8،7،6،5،4،3،2،1،0 : -ﺍﻟﻨﻅﺎﻡ ﺍﻟﺜﻨﺎﺌﻲ ﻫﻭ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻤﺴﺘﻌﻤل ﻟﺩﻯ ﺍﻵﻻﺕ ﻭ ﺃﺭﻗﺎﻤﻪ ﻫﻲ . 1،0 -ﺍﻟﻨﻅﺎﻡ ﺫﻭ ﺍﻷﺴﺎﺱ ، 8ﺃﺭﻗﺎﻤﻪ 7،6،5،4،3،2،1،0 : -ﺍﻟﻨﻅﺎﻡ ﺫﻭ ﺍﻷﺴﺎﺱ ، 11ﺃﺭﻗﺎﻤﻪ : ) α ، 7،6،5،4،3،2،1،0،8،9ﺤﻴﺙ . ( α = 10 : -ﺍﻟﻨﻅﺎﻡ ﺫﻭ ﺍﻷﺴﺎﺱ ، 12ﺃﺭﻗﺎﻤﻪ : β ، α ،7،6،5،4،3،2،1،0،8،9ﺤﻴﺙ α = 10 :ﻭ . β = 11 ﻤﺜﺎل : ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ 1954ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ . 12 ﺍﻟﺤل : 1954 = 162 × 12 + 10 162 = 13 × 12 + 6 13 = 1 × 12 + 1 1 = 0 × 12 + 1 ﻭ ﻋﻠﻴﻪ ﺍﻟﻌﺩﺩ 1954ﻴﻜﺘﺏ ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺍﻟﺫﻱ ﺃﺴﺎﺴﻪ 12ﻫﻜﺫﺍ : 1 1 6 α 1 2ﺤﻴﺙ α = 10 : -5ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ : Nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻴﻜﺘﺏ ﻓﻲ ﻨﻅﺎﻡ ﺍﻟﺘﻌﺩﺍﺩ ﺫﻭ ﺍﻷﺴﺎﺱ : 10 N = anan−1...a2a1a0 ﺇﺫﻥ N = a 0 + a 1 .1 0 + a 2 .1 0 2 + ... + a n 1 0 n : -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 2ﻟﺩﻴﻨﺎ 1 0 p ≡ 0 [2 ] :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ pﻭ ﻋﻠﻴﻪ N ≡ a 0 [2 ] : ﻭ ﺒﺎﻟﺘﺎﻟﻲ N ≡ 0 [ 2 ] :ﺘﻜﺎﻓﺊ a 0 ≡ 0 [ 2 ] : ﻭ ﻤﻨﻪ a 0 ∈ {0 , 2 , 4 , 6 , 8 } : -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 5ﻟﺩﻴﻨﺎ 10 p ≡ 0 5 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ pﻭ] [ ﻋﻠﻴﻪ N ≡ a 0 [5 ] : ﻭ ﺒﺎﻟﺘﺎﻟﻲ N ≡ 0 [5 ] :ﺘﻜﺎﻓﺊ a 0 ≡ 0 [5 ] :ﻭ ﻤﻨﻪ a 0 ∈ {0 , 5} :
-ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 4ﻟﺩﻴﻨﺎ 10 p ≡ 0 4 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ pﺤﻴﺙ] [ p ≥ 2 :ﻭ ﻋﻠﻴﻪ [ ]N ≡ a0 + a1.10 4 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ N ≡ 0 4ﺘﻜﺎﻓﺊ [ ] [ ]a1a0 ≡ 0 4 : ﺃﻱ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻜﻭﻥ ﻤﻥ ﺭﻗﻡ ﺍﻵﺤﺎﺩ ﻭ ﺍﻟﻌﺸﺭﺍﺕ ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ . 4 -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 25ﻟﺩﻴﻨﺎ : :ﻟﺩﻴﻨﺎ 10 p ≡ 0 25 :ﻤﻥ ﺃﺠل] [ ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ pﺤﻴﺙ p ≥ 2 :ﻭ ﻋﻠﻴﻪ[ ]N ≡ a0 + a1.10 25 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ N ≡ 0 25ﺘﻜﺎﻓﺊ [ ] [ ]a1a0 ≡ 0 25 : ﺃﻱ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻜﻭﻥ ﻤﻥ ﺭﻗﻡ ﺍﻵﺤﺎﺩ ﻭ ﺍﻟﻌﺸﺭﺍﺕ ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ . 25 -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 3ﻟﺩﻴﻨﺎ 10 p ≡ 1 3 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ [ ]p ﺤﻴﺙ p ≥ 1 :ﻭ ﻋﻠﻴﻪ [ ]N ≡ 0 3 : ﺘﻜﺎﻓﺊ (a0 + a1 + ... + an ) ≡ 0[3] : -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 9ﻟﺩﻴﻨﺎ 10 p ≡ 1 9 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ pﺤﻴﺙ p ≥ 1 :ﻭ] [ ﻋﻠﻴﻪ N ≡ 0 [9 ] : ﺘﻜﺎﻓﺊ ( a0 + a1 + ... + an ) ≡ 0[9] : -ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ : 11ﻟﺩﻴﻨﺎ 1 0 p ≡ − 1 [1 1 ] :ﺇﺫﺍ ﻜﺎﻥ pﻓﺭﺩﻴﺎ ﻭ ] N ≡ 1 [1 1ﺇﺫﺍ ﻜﺎﻥ pﺯﻭﺠﻴﺎ .ﻭ ﻤﻨﻪ N ≡ 0 [1 1 ] : a 0 − a1 + a2 − a3 + ... + (−1)n a n ≡ ]0 [1 1 : ﺘﻜﺎﻓﺊ
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 4 . 7 n − 8ﺤﻴﺙ nﻋﺩﺩ ﻁﺒﻴﻌﻲ. ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ ﻋﻠﻰ : 3 4 1 1 1 1830 ( ), 2 1 9 5 4 , 4 2 0 0 7 , ﺍﻟﺘﻤﺭﻴﻥ. 2 ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﺍﻻﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ 7ﻟﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ :( ) ( )8 6 3 1 8 0 0 × 8 0 3 0 1 2 6 0 , 1 9 5 2 2 × 2 3 9 8 7 , 2 0 1 8 6 4 5 ﺍﻟﺘﻤﺭﻴﻥ. 3 ﺃﺜﺒﺕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻴﻜﻭﻥ [ ]1 0 3 n ≡ 1 3 7 :ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ 1010 + 1020 + 1030 :ﻋﻠﻰ . 37]1) n7 ≡ n[7 ﺍﻟﺘﻤﺭﻴﻥ 4 ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ : ] 2 ) (n n 2 − 1 ) ≡ 0 [3 4) 32n+2 − 2n+1 ≡ 0 7[ ] [ ]3 ) 3 × 5 2 n + 1 + 2 3 n + 1 ≡ 0 1 7 ﺍﻟﺘﻤﺭﻴﻥ 5 ﺍﺩﺭﺱ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﺒﺎﻗﻲ ﻗﺴﻤﺔ 7nﻋﻠﻰ . 9 ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ( 5 6 2 1 2 )1 9 5 4ﻋﻠﻰ .9 -ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ nﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ:] 1 6 3n + 1 6 n − 2 ≡ 0 [9 ﺍﻟﺘﻤﺭﻴﻥ 6ﺍﺩﺭﺱ ،ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ ، nﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻟﻜﻥ ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ 5nﻭ 3nﻋﻠﻰ 11ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ 5n − 3n ﻋﻠﻰ . 11ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ nﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ : ] 5 n − 3 n − 1 6 ≡ 0 [1 1
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218