ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻟﺙ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ : ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ؛ﺍﺴﺘﻘﻼل ﺍﻷﺤﺩﺍﺙ ﻗﻭﺍﻨﻴﻥ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺘﻘﻁﻌﺔ ﻭ ﺍﻟﻤﺴﺘﻤﺭﺓ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﻭ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻭ PPCM ﺍﻟﻤﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻭﻴﺔ ﻟﻠﺴﻁﻭﺡ
ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ؛ﺍﺴﺘﻘﻼل ﺍﻷﺤﺩﺍﺙ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -1 -ﺇﻴﺠﺎﺩ ﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﻟﻤﺘﻐﻴﺭ ﻋﺸﻭﺍﺌﻲ -2 -ﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺘﻭﻅﻑ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ،ﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎﻟﻬﺎ ،ﺍﻟﺘﺒﺎﻴﻥ ،ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ،ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ -3 -ﺘﻨﻅﻴﻡ ﻤﻌﻁﻴﺎﺕ ﻤﻥ ﺃﺠل ﻋﺩﻫﺎ . -4 -ﺍﺴﺘﺨﺭﺍﺝ ﻗﻭﺍﻨﻴﻥ ﺍﻟﺘﺤﻠﻴل ﺍﻟﺘﻭﻓﻴﻘﻲ :ﺍﻟﻘﻭﺍﺌﻡ – ﺍﻟﺘﺭﺘﻴﺒﺎﺕ– ﺍﻟﺘﺒﺩﻴﻼﺕ– ﺍﻟﺘﻭﻓﻴﻘﺎﺕ -5 -ﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻟﻌﺩ ﺒﺎﺴﺘﻌﻤﺎل ﻗﻭﺍﻨﻴﻥ ﺍﻟﺘﺤﻠﻴل ﺍﻟﺘﻭﻓﻴﻘﻲ . -6 -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﺴﺘﻘﻼل ﺃﻭ ﺍﺭﺘﺒﺎﻁ ﺤﺎﺩﺜﺘﻴﻥ -7 -ﺘﻭﻅﻴﻑ ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻟﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ -8 -ﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﻗﻭﺍﻨﻴﻥ ﺍﻟﺘﺤﻠﻴل ﺍﻟﺘﻭﻓﻴﻘﻲ -9 -ﺘﻭﻅﻴﻑ ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ -ﻨﻤﺫﺠﺔ ﻭﻀﻌﻴﺎﺕ ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﺭﺠﻌﻴﺔ ﻟﻠﺴﺤﺏ ﺃﻭ ﺍﻹﻟﻘﺎﺀ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺃﻨﺸﻁﺔ - Iﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺘﺴﺎﻭﻴﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﻤﻨﺘﻬﻴﺔ ) ﻤﺭﺍﺠﻌﺔ ( . - IIﺍﻟﻌﺩ : - IIIﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ : -VIﺩﺳﺘﻮﺭ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ : ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ :ﻴﺤﺘﻭﻯ ﻜﻴﺱ ﻋﻠﻰ 5ﻜﺭﺍﺕ ﺤﻤﺭﺍﺀ ﻭ 3ﻜﺭﺍﺕ ﺨﻀﺭﺍﺀ .ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ ﻜﺭﻴﺘﺎﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﺒﺤﻴﺙ :ﺒﻌﺩ ﻜل ﺴﺤﺏ ﻨﻌﻴﺩ ﺍﻟﻜﺭﺓ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺇﻟﻰ ﺍﻟﻜﻴﺱ ﻗﺒل ﺍﻟﺴﺤﺏ ﺍﻟﻤﻭﺍﻟﻲ . ﺍﺴﺘﻌﻤل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻟﻨﻤﺫﺠﺔ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ .ﻤﺎ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﻴﺘﻴﻥ ﻤﻥ ﻨﻔﺱ ﺍﻟﻠﻭﻥ ؟ ﻤﺎ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﻓﻲ ﺍﻟﺴﺤﺏ ﺍﻟﺜﺎﻨﻲ . 5 R 8 5 R 3 8 8 V• 5 8 R 3 V 8 3 8 V ﺍﻟﺴﺤﺒﺔ 1 ﺍﻟﺴﺤﺒﺔ 2 ﺘﻭﻀﻴﺢ ﺤﻭل ﺍﻟﺸﺠﺭﺓ: ﺍﻟﺴﺤﺒﺔ :1
ﻋﻨﺩ ﺴﺤﺏ ﻜﺭﺓ ﻤﻥ ﺍﻟﻜﻴﺱ ﻨﺤﺼل ﺇﻤﺎ ﻋﻠﻰ ﻜﺭﺓ ﺤﻤﺭﺍﺀ Rﺃﻭ ﻜﺭﺓ ﺨﻀﺭﺍﺀ Vﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻋﻠﻰ ( )pR = 5 ﻭ ﻟﺩﻴﻨﺎ : ﺍﻟﺸﺠﺭﺓ 8 ) ﻨﺴﺤﺏ 5ﻜﺭﺍﺕ ﺤﻤﺭﺍﺀ ﻤﻥ ﺒﻴﻥ 8ﻜﺭﺍﺕ ( ) pﻨﺴﺤﺏ 3ﻜﺭﺍﺕ ﺨﻀﺭﺍﺀ ﻤﻥ ﺒﻴﻥ 8ﻜﺭﺍﺕ () (V 3 ﻭ ﻟﺩﻴﻨﺎ = 8 : ﺍﻟﺴﺤﺒﺔ : 2ﺒﻌﺩ ﺴﺤﺏ ﺍﻟﻜﺭﺓ ﺍﻷﻭﻟﻰ ﻤﻥ ﺍﻟﻜﻴﺱ ﺜﻡ ﺇﻋﺎﺩﺘﻬﺎ ﻟﻠﻜﻴﺱ ﻨﺴﺤﺏ ﻜﺭﺓ ﺃﺨﺭﻯ .ﻓﺈﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻜﺭﺓ ﺍﻟﻤﺴﺤﻭﺒﺔ ﻓﻲ ﺃﻭل ﺴﺤﺒﺔ ﻫﻲ Rﻓﺈﻥ ﺍﻟﺴﺤﺒﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻫﻲ ﺇﻤﺎ Rﺃﻭ Vﻜﻤﺎ ﻴﻅﻬﺭ ( )pR R 5 ﻋﻠﻰ ﺍﻟﺸﺠﺭﺓ ﻭ ﻟﺩﻴﻨﺎ : =8 ﺃﻱ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ Rﻋﻠﻤﺎ ﺃﻨﻨﺎ ﺘﺤﺼﻠﻨﺎ ﻋﻠﻰ Rﻓﻲ ﺍﻟﺴﺤﺒﺔ . 1 pRﺃﻱ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ Vﻋﻠﻤﺎ ﺃﻨﻨﺎ ﺘﺤﺼﻠﻨﺎ ﻋﻠﻰ Rﻓﻲ ﺍﻟﺴﺤﺒﺔ ( ). 1V 3 ﻭ ﻟﺩﻴﻨﺎ = 8 :ﻭ ﻨﻔﺱ ﺍﻟﺸﻲﺀ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺴﺤﺒﺔ ﺍﻷﻭﻟﻰ ﻫﻲ Vﻓﻠﺩﻴﻨﺎ Rﺃﻭ Vﻓﻲ ﺍﻟﺴﺤﺒﺔ ﺍﻟﺜﺎﻨﻴﺔ . -ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﻴﺘﻴﻥ ﻤﻥ ﻨﻔﺱ ﺍﻟﻠﻭﻥ ﺃﻱ R; Rﺃﻭ ( ) ( )V;Vp1 = 5 × 5 + 3 × 3 = 34 = 17 ﻭ ﻟﻴﻜﻥ : p1 8 8 8 8 64 32 3 3 5 3 24 3p2 = 8 × 8 + 8 × 8 = 64 = 8 ﻭ ﻟﻴﻜﻥ : p2
- Iﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺘﺴﺎﻭﻴﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﻤﻨﺘﻬﻴﺔ ) ﻤﺭﺍﺠﻌﺔ ( . – 1ﻤﺼﻁﻠﺤﺎﺕ : -ﻨﺴﻤﻲ ﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻜل ﺘﺠﺭﺒﺔ ﻻ ﻴﻤﻜﻥ ﺘﻭﻗﻊ ﻨﺘﻴﺠﺘﻬﺎ ﺭﻏﻡ ﻤﻌﺭﻓﺔ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ .ﻨﺴﻤﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ ﺒﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻭ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ . Ω -ﻜل ﺠﺯﺀ Aﻤﻥ Ωﻴﺴﻤﻰ ﺤﺎﺩﺜﺔ . -ﺇﺫﺍ ﺍﺤﺘﻭﺕ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺠﺯﺌﻴﺔ Aﻤﻥ Ωﻋﻠﻰ ﻋﻨﺼﺭ ﻭﺤﻴﺩ ﻓﺈﻨﻬﺎ ﺘﺩﻋﻰ ﺤﺎﺩﺜﺔ ﺃﻭﻟﻴﺔ . -ﺍﻟﺤﺎﺩﺜﺔ ﺍﻷﻜﻴﺩﺓ ﻫﻲ Ωﻭ ﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﺴﺘﺤﻴﻠﺔ ﻫﻲ ∅ . -ﺇﺫﺍ ﻜﺎﻨﺕ Aﺤﺎﺩﺜﺔ ﻓﺈﻥ ﺤﺎﺩﺜﺘﻬﺎ ﺍﻟﻌﻜﺴﻴﺔ ﻫﻲ Aﻭ ﻫﻲ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﻜل ﻋﻨﺎﺼﺭ Ωﻤﺎ ﻋﺩﺍ ﻋﻨﺎﺼﺭ . A -ﻟﺘﻜﻥ Aﻭ Bﺤﺎﺩﺜﺘﺎﻥ ،ﻨﺭﻤﺯ ﺒـ A ∩ Bﻟﻠﺤﺎﺩﺜﺔ Aﻭ Bﻭ ﻫﻲ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻯ ﻋﻠﻰ ﻜل ﻋﻨﺎﺼﺭ Ωﻭ ﺍﻟﺘﻲ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﻜل ﻤﻥ Aﻭ Bﻤﻌﺎ . ﺇﺫﺍ ﻜﺎﻨﺕ A ∩ Bﺨﺎﻟﻴﺔ ﺃﻱ ∅ = A ∩ Bﻨﻘﻭل ﻋﻨﺩﺌﺫ ﺃﻥ ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ .ﻨﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ A ∪ Bﻟﻠﺤﺎﺩﺜﺔ Aﺃﻭ Bﻭ ﻫﻲ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻯ ﻋﻠﻰ ﻋﻨﺎﺼﺭ Aﻭ ﻋﻨﺎﺼﺭ Bﺃﻴﻀﺎ . – 2ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل :ﻟﺘﻜﻥ Ωﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﺤﻴﺙ Ω = e1;e2;...;ei :ﺤﻴﺙ} { ei ;...;e2;e1 :ﻫﻲ ﺇﻤﻜﺎﻨﻴﺎﺕ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﻭ ﺘﺴﻤﻰ ﺃﻴﻀﺎ ﻤﺨﺎﺭﺝ .ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﻟﻠﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ﻫﻭ ﺇﺭﻓﺎﻕ ﺒﺎﻟﻌﻨﺎﺼﺭ en;...;e2;e1ﺃﻋﺩﺍﺩﺍ ﺤﻘﻴﻘﻴﺔ ﻤﻭﺠﺒﺔ pn;...; p2; p1ﺘﺴﻤﻰ ﺍﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺨﺎﺭﺝ en;...;e2;e1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻭ ﻴﻜﻭﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻤﻌﺭﻑ ﺒﺎﻟﺠﺩﻭل : ﻗﻴﻢ Ω e1 e2 … en p1 p2 ... pnﺍﻻﺣﺘﻤﺎﻻﺕ ﻤﻼﺤﻅﺔ : 1
ﺒﻤﺎ ﺃﻥ ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ pn;...; p2; p1ﻤﻭﺠﺏ ﻓﻬﻭ ﺃﺼﻐﺭ ﻤﻥ ﺍﻟﻤﺠﻤﻭﻉ 1ﻭ ﻤﻨﻪ : 0 ≤ pi ≤ 1ﻤﻥ ﺃﺠل 1 ≤ i ≤ n ﻤﻼﺤﻅﺔ : 2 ﻨﻤﺫﺠﺔ ﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻴﻌﻨﻲ ﺇﺭﻓﺎﻗﻬﺎ ﺒﻤﺠﻤﻭﻋﺔ ﺇﻤﻜﺎﻨﻴﺎﺕ Ωﻭ ﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل pﻋﻠﻰ . Ω – 3ﺘﺴﺎﻭﻱ ﺍﻻﺤﺘﻤﺎل :ﻨﻘﻭل ﻋﻥ ﺘﺠﺭﺒﺔ ﺃﻨﻬﺎ ﻤﺴﺎﻭﻴﺔ ﺍﻻﺤﺘﻤﺎل ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻟﻜل ﺍﻟﺤﻭﺍﺩﺙ ﺍﻷﻭﻟﻴﺔ ﻨﻔﺱ ﺍﻻﺤﺘﻤﺎل .ﻨﻘﻭل ﻋﻨﺩﺌﺫ ﺃﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻤﺘﺴﺎﻭﻱ ﺍﻟﺘﻭﺯﻴﻊ .ﻓﺈﺫﺍ ﻜﺎﻨﺕ { }Ω = e1;e2;...;enﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻭ ﻜﺎﻨﺕ p1; p2;...; pnﺍﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺨﺎﺭﺝ e1;e2;...;enﻋﻠﻰ p1 = p2 = = ... pn = 1 ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ : nﺇﺫﺍ ﻜﺎﻨﺕ Aﺤﺎﺩﺜﺔ ﺘﺤﺘﻭﻱ ﻋﻠﻰ mﻋﻨﺼﺭﺍ ﻴﻜﻭﻥ ﺍﺤﺘﻤﺎﻟﻬﺎ ( )p Ap ( )A = m ﺃﻱ : )p( A = m. 1 ﺤﻴﺙ: n n ﻤﻼﺤﻅﺔ : 3ﺒﻤﺎ ﺃﻥ p1 + p2 + ... + pn = 1 :ﻓﺈﻥ ( )p Ω = 1 : ﻭ ﻨﻀﻊ . p(∅) = 0 : ﺨﻭﺍﺹ ﺍﻻﺤﺘﻤﺎﻻﺕ :ﻟﺘﻜﻥ Ωﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻟﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻨﺯﻭﺩ Ωﺒﺎﻻﺤﺘﻤﺎل . p -ﻤﻥ ﺃﺠل ﻜل ﺤﺎﺩﺜﺔ Aﻓﺈﻥ ( )0 ≤ p A ≤ 1 : -ﺇﺫﺍ ﻜﺎﻨﺕ Aﻭ Bﺤﺎﺩﺜﺘﻴﻥ ﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ ∅ = ( )A ∩ B ﻓﺈﻥ p( A ∪ B) = p( A) + p( B) : -ﺇﺫﺍ ﻜﺎﻨﺕ Aﻭ Bﺤﺎﺩﺜﺘﻴﻥ ﻜﻴﻔﻴﺘﻴﻥ ﻓﺈﻥ : )p( A∪ B) = p( A) + p(B) − p( A∩ B
-ﺇﺫﺍ ﻜﺎﻨﺕ Aﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺤﺎﺩﺜﺔ Aﻓﺈﻥ ( ) ( )p A = 1 − p A : p(Ω) = 1 -ﻭ p(∅) = 0 -ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺤﺎﺩﺜﺔ Aﺠﺯﺀﺍ ﻤﻥ ﺍﻟﺤﺎﺩﺜﺔ ( )A ⊂ B B ﻓﺈﻥ. p( A) ≤ p( B) : ﺘﻌﺎﺭ ﻴﻑ : Ωﻤﺠﻤﻭﻋﺔ ﺍﻻﻤﻜﺎﻨﻴﺎﺕ ﻟﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﺤﻴﺙ p . Ω = e1;e2;...;en :ﺍﺤﺘﻤﺎﻻ} { ﻤﻌﺭﻓﺎ ﻋﻠﻰ p1; p2;...; pn ، Ω ﺍﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺨﺎﺭﺝ e1;e2;...;enﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . -ﺃﻤل ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻫﻭ ﺍﻟﻌﺩﺩ Eﺤﻴﺙ : E = e1. p1 + e2 . p2 + ... + en . pn -ﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻫﻭ ﺍﻟﻌﺩﺩ Vﺤﻴﺙ : V=(e1 − E )2 . p1 + (e2 − E )2 . p2 + ... + (en − E )2 . pn -ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻫﻭ ﺍﻟﻌﺩﺩ Sﺤﻴﺙ S = V : ﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ Vﻋﻠﻰ ﺍﻟﺸﻜل : V = e12 . p1 + e22 . p2 + ... + en2 . pn − E 2 ﻤﻼﺤﻅﺔ : ﺍﻷﻤل ﻴﻤﺜل ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻓﻲ ﺴﻠﺴﻠﺔ ﺇﺤﺼﺎﺌﻴﺔ ﺇﺫﺍ ﺍﻋﺘﺒﺭﻨﺎ ﺃﻥ ﻗﻴﻡ ﺍﻟﻁﺒﻊ ﻫﻲ ﻋﻨﺎﺼﺭ Ωﻭ ﺍﻟﺘﻭﺘﺭﺍﺕ ﺍﻟﻨﻅﺭﻴﺔ ﻫﻲ ﺍﻟﻘﻴﻡ pi – 5ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : ﺘﻌﺭﻴﻑ : 1 Ωﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ p .ﺍﺤﺘﻤﺎل ﻤﻌﺭﻑ ﻋﻠﻰ . Ω ﻨﺴﻤﻰ ﻤﺘﻐﻴﺭﺍ ﻋﺸﻭﺍﺌﻴﺎ Xﻜل ﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ . Ω ﺘﻌﺭﻴﻑ : 2
Xﻤﺘﻐﻴﺭ ﻋﺸﻭﺍﺌﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Ωﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ .ﻭ ﻟﺘﻜﻥ Iﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ Xﺃﻱ { }I= x1; x2;...; xn : ﻭ ﻟﻴﻜﻥ piﺍﺤﺘﻤﺎل ﺍﻟﺤﺎﺩﺜﺔ \" Xﻴﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ \" xiﺃﻱ ( )X = xi ﺤﻴﺙ ﻟﺩﻴﻨﺎ p1 + p2 + ... + pn = 1 : ﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﻫﻭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Iﻭ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻗﻴﻤﺔ xiﻤﻥ Iﺍﻟﻌﺩﺩ ( )p X = xi ﺘﻌﺭﻴﻑ : 3 -ﺍﻷﻤل ﻟﺭﻴﺎﻀﻴﺎﺘﻲ ﻟﻠﻤﺘﻐﻴﺭ Xﻫﻭ ﺍﻟﻌﺩﺩ ( )E Xﺤﻴﺙ E ( X ) = x1 p1 + x2 p2 + .......... + xn pn :ﺍﻟﺘﺒﺎﻴﻥ ﻟﻠﻤﺘﻐﻴﺭ Xﻫﻭ ﺍﻟﻌﺩﺩ V Xﺤﻴﺙ) ( -V(X) =( x1 − E( X))2 p1 +( x2 − E( X))2 p2 +...+( xn − E( X))2 pn -ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﻴﺭ Xﻫﻭ ﺍﻟﻌﺩﺩ σ Xﺤﻴﺙ( ) ( ) ( )σ X = V X :( )( ) ( )V X = e12 p1 + e22 p2 + ....... + en2 pn − E X 2 -ﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ :ﺤﻴﺙ pi = p( X = xi ) :ﻤﻥ ﺃﺠل }i ∈{1, 2,......, n ﺘﻁﺒﻴﻕ :1ﻨﻘﺫﻑ ﻨﺭﺩﺍ ) ﺃﻭ ﺯﻫﺭ ﺍﻟﻨﺭﺩ ( ﻏﻴﺭ ﻤﺯﻴﻑ ﻭﺠﻭﻫﻪ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ 6ﻭ ﻨﺭﺍﻗﺏ ﺍﻟﻭﺠﻪ ﺍﻟﻌﻠﻭﻱ ﺍﻟﺫﻱ ﻴﻅﻬﺭ ﻋﻨﺩ ﻭﻗﻭﻋﻪ ﻋﻠﻰ ﺍﻷﺭﺽ . -ﻤﺎﺫﺍ ﻨﺴﻤﻰ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ؟ ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ؟ -ﻋﻴﻥ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻷﻭﻟﻴﺔ .ﻋﻴﻥ ﺤﺎﺩﺜﺘﻴﻥ ﻋﻜﺴﻴﺘﻴﻥ ؟ -ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻋﺩﺩ ﺯﻭﺠﻲ .ﻭ ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻋﺩﺩ ﻓﺭﺩﻱ . -ﻋﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻬﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ . -ﺍﺤﺴﺏ ﻜل ﻤﻥ ﺃﻤل ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ،ﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ،ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل . ﺍﻟﺤل : -ﻨﺴﻤﻰ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ :ﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ .
-ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ { }Ω = 1, 2, 3,4,5,6 : -ﺍﻟﺤﻭﺍﺩﺙ ﺍﻷﻭﻟﻴﺔ ﻫﻲ {6},{5},{4},{3},{2},{1} : -ﺍﻟﺤﺎﺩﺜﺘﻴﻥ 1;5ﻭ 2;3;4;6ﻫﻤﺎ ﺤﺎﺩﺜﺘﻴﻥ ﻋﻜﺴﻴﺘﻴﻥ { } { }. -ﻟﺘﻜﻥ Aﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻅﻬﻭﺭ ﻋﺩﺩ ﺯﻭﺠﻲ ﺃﻱ { }A = 2;4;6 (p )A = 3 = 1 ﻟﺩﻴﻨﺎ : 6 2 ﻟﺘﻜﻥ Bﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻅﻬﻭﺭ ﻋﺩﺩ ﻓﺭﺩﻱ ﺃﻱ { }B = 1;3;5 ﻭ ﻋﻠﻴﻪ Bﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺤﺎﺩﺜﺔ A )p(B =1− p( A) = 1− 1 = 1 ﻭ ﻤﻨﻪ : 2 2 1 -ﺘﻌﻴﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل :ﺍﺤﺘﻤﺎل ﻜل ﻭﺠﻪ ﻫﻭ 6 :ﻭ ﻋﻠﻴﻪ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻴﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ : 1 2 3 4 5 6ﻗﻴﻢ Ω 111111 ﺍﻻﺣﺘﻤﺎﻻﺕ 666666 -ﺃﻣﻞ ﻗﺎﻧﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ :E = 1 × 1 + 2 × 1 + 3 × 1 + 4 × 1 + 5 × 1 + 6 × 1 6 6 6 6 6 6 27 9 . E = 6 = 2 ﻭ ﻤﻨﻪ : -ﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل :V = 1 1 − 7 2 + 1 2 − 7 2 + 1 3 − 7 2 + 1 4 − 7 2 + 1 5 − 7 2 + 1 6 − 7 2 6 2 6 2 6 2 6 2 6 2 6 2 V = 1 25 + 9 + 1 + 1 + 9 + 25 ﻭ ﻤﻨﻪ : 6 4 4 4 4 4 4
. V = 35 ﺃﻱ : V = 1 × 70 : ﺇﺫﻥ 12 6 4=S =V 35 -ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل 12 : ﺇﺫﻥ S 3,42 : ﺘﻁﺒﻴﻕ : 2ﻴﺤﺘﻭﻯ ﻜﻴﺱ ﻋﻠﻰ 4ﻜﺭﻴﺎﺕ ﺒﻴﻀﺎﺀ ﻭ 3ﻜﺭﻴﺎﺕ ﺤﻤﺭﺍﺀ ﻭ 8ﻜﺭﻴﺎﺕ ﺼﻔﺭﺍﺀ ﻭ 5ﻜﺭﻴﺎﺕ ﺨﻀﺭﺍﺀ . ﻨﺴﺤﺏ ﺒﻼ ﺍﺨﺘﻴﺎﺭ ﻜﺭﺓ ﻤﻥ ﺍﻟﻜﻴﺱ . ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ Xﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻜﺭﺓ ﺒﻴﻀﺎﺀ ﺍﻟﻌﺩﺩ 2ﻭ ﺒﻜل ﻜﺭﺓ ﺤﻤﺭﺍﺀ ﺍﻟﻌﺩﺩ -3ﻭ ﺒﻜل ﻜﺭﺓ ﺼﻔﺭﺍﺀ ﺍﻟﻌﺩﺩ 1ﻭ ﺒﻜل ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﺍﻟﻌﺩﺩ . -1 ﺇﻥ Xﻫﻭ ﻤﺘﻐﻴﺭﺍ ﻋﺸﻭﺍﺌﻴﺎ . -ﻋﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ . X -ﺍﺤﺴﺏ ﻜل ﻤﻥ ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ ﻭ ﺍﻟﺘﺒﺎﻴﻥ ﻭ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ . X ﺍﻟﺤل : -ﺘﻌﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : X p1 = 4 = 1 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺒﻴﻀﺎﺀ ﻫﻭ : 20 5 3 p2 = 20 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺤﻤﺭﺍﺀ ﻫﻭ : p3 = 8 = 2 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺼﻔﺭﺍﺀ ﻫﻭ: 20 5 5 1p4 = 20 = 4 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﻫﻭ :
ﻗﻴﻡ X 2 ﻭ ﻴﻜﻭﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻜﻤﺎ ﻴﻠﻲ : -3 1 -1 ) p( X = xi 4 20 385 20 20 20 -ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : X E ( X ) = 2 × 4 + ( )−3 × 3 + 1 × 8 + ( )−1 × 5 20 20 20 20 8−9+8−5 2ﺇﺫﻥ E ( X ) = 0,1 : =)E(X 20 = 20 : ﻤﻨﻪ ﻭ -ﺍﻟﺘﺒﺎﻴﻥ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : X(V )X = 4 ( 2-0,1)2 + 3 ( )-3-0,1 2 + 8 )(1-0,1 2 + 5 ( -1-0,1)2 20 20 20 20 4 3 8 5 (V )X = 20 × 3, 61 + 20 × 9, 61 + 20 × 0,81 + 20 × 1,21 ﺃﻱ . V ( X) = 2,79 : )V(X = 55, 8 ﻭ ﻤﻨﻪ : 20 -ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : X σ ( X ) = V ( X) = 2,79ﻭ ﻤﻨﻪ σ ( X ) 1,67 :
- IIﺍﻟﻌﺩ : – 1ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ﻟﻠﻌﺩ :ﺇﺫﺍ ﻜﺎﻥ ﻫﻨﺎﻙ ﺇﺠﺭﺍﺀ ﻤﻌﻴﻥ ﻴﺘﻡ ﺒـ n1 :ﻁﺭﻴﻘﺔ ﻭ ﺇﺠﺭﺍﺀ ﺜﺎﻥ ﻴﺘﻡ ﺒـ n2ﻁﺭﻴﻘﺔ ، ... ،ﺜﻡ ﺇﺠﺭﺍﺀﻤﻥ ﺭﺘﺒﺔ kﻴﺘﻡ ﺏ nkﻁﺭﻴﻘﺔ ﻓﺈﻥ ﻫﺫﻩ ﺍﻹﺠﺭﺍﺀﺍﺕ ﺘﺘﻡ ﻋﻠﻰ ﺍﻟﺘﺘﺎﺒﻊ ﺒـ n1 × n2 × ... × nk ﻁﺭﻴﻘﺔ . ﻤﺜﺎل : ﻴﻘﺩﻡ ﻤﻁﻌﻡ 3ﺃﺼﻨﺎﻑ ﻤﻥ ﺍﻟﻠﺤﻡ ﻭ ﺼﻨﻔﻴﻥ ﻤﻥ ﺍﻟﺤﺴﺎﺀ ﻭ 4ﺃﺼﻨﺎﻑ ﻤﻥ ﺍﻟﻔﺎﻜﻬﺔ . -ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻟﻭﺠﺒﺎﺕ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﻟﻠﻤﻁﻌﻡ ﺘﻘﺩﻴﻤﻬﺎ ﺇﺫﺍ ﻜﺎﻨﺕ ﻜل ﻭﺠﺒﺔ ﻤﻜﻭﻨﺔ ﻤﻥ ﻟﺤﻡ ﻭ ﺤﺴﺎﺀﺍﺕ ﻭ ﻓﺎﻜﻬﺔ . ﺍﻟﺤل : -ﻟﺩﻴﻨﺎ 3ﻁﺭﺍﺌﻕ ﻟﺘﻘﺩﻴﻡ ﺍﻟﻠﺤﻡ ﻭ ﻁﺭﻴﻘﺘﻴﻥ ﻟﺘﻘﺩﻴﻡ ﺍﻟﺤﺴﺎﺀ ﻭ 4ﻁﺭﺍﺌﻕ ﻟﺘﻘﺩﻴﻡ ﺍﻟﻔﺎﻜﻬﺔ . ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ﻟﻠﻌﺩﺩ ﻓﺈﻥ ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﺍﻟﺘﻲ ﻴﻘﺩﻡ ﺒﻬﺎ ﺍﻟﻤﻁﻌﻡ ﺍﻟﻭﺠﺒﺎﺕ ﻟﻠﺯﺒﺎﺌﻥ ﻫﻭ 3 × 2 × 4 :ﺃﻱ ﺃﻥ ﻫﻨﺎﻙ 24ﻭﺠﺒﺔ ﻤﻤﻜﻨﺔ . – 2ﺍﻟﻘﻭﺍﺌﻡ : ﻤﺜﺎل : ﻜﻡ ﻋﺩﺩﺍ ﻤﻜﻭﻨﺎ ﻤﻥ 3ﺃﺭﻗﺎﻡ ﻴﻤﻜﻥ ﺘﻜﻭﻴﻨﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻷﺭﻗﺎﻡ 5 ، 4 ، 3 ، 2 ﺍﻟﺤل : ﻜل ﻋﺩﺩ ﻤﻜﻭﻨﺎ ﻤﻥ 3ﺃﺭﻗﺎﻡ ﻫﻭ ﻤﻥ ﺍﻟﺸﻜل . abcﻟﺩﻴﻨﺎ 4 :ﺇﻤﻜﺎﻨﻴﺎﺕ ﺃﻭ ﻁﺭﺍﺌﻕ ﻻﺨﺘﻴﺎﺭ ﺭﻗﻡ ﺍﻵﺤﺎﺩ cﻭ 4ﺇﻤﻜﺎﻨﻴﺎﺕ ﻻﺨﺘﻴﺎﺭ ﺭﻗﻡ ﺍﻟﻌﺸﺭﺍﺕ b ﻭ 4ﺇﻤﻜﺎﻨﻴﺎﺕ ﻻﺨﺘﻴﺎﺭ ﺭﻗﻡ ﺍﻟﻤﺌﺎﺕ aﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ﻟﻠﻌﺩ ﻻﺨﺘﻴﺎﺭ ﻫﺫﻩ ﺍﻷﺭﻗﺎﻡ ﻋﻠﻰ ﺍﻟﺘﺘﺎﺒﻊ ﻟﺩﻴﻨﺎ 4 × 4 × 4 :ﺇﻤﻜﺎﻨﻴﺔ ﺃﻱ 43 ﻁﺭﻴﻘﺔ . ﻭ ﻤﻨﻪ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺘﺸﻜﻴﻠﻬﺎ ﻫﻭ 64ﻋﺩﺩﺍ . ﺘﻌﺭﻴﻑ : nﻭ pﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ Eﻤﺠﻤﻭﻋﺔ ﺫﺍﺕ nﻋﻨﺼﺭﺍ .
ﻜل ﻋﻨﺼﺭ ﻤﻥ ﺍﻟﺸﻜل a1 , a2 , ..., a pﻴﺴﻤﻰ ﻗﺎﺌﻤﺔ ﺫﺍﺕ pﻋﻨﺼﺭﹰﺍ ﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Eﺤﻴﺙ) ( a1 , a2 , ..., a p :ﻫﻲ ﻋﻨﺎﺼﺭﻤﻥ Eﻟﻴﺴﺕ ﺠﻤﻴﻌﻬﺎ ﻤﺨﺘﻠﻔﺔ . ﻋﺩﺩ ﺍﻟﻘﻭﺍﺌﻡ : ﻟﺘﻜﻥ ﺍﻟﻘﺎﺌﻤﺔ . a1 , a2 , ..., a pﻟﺩﻴﻨﺎ nﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a1ﻤﻥ Eﻭ ﻟﺩﻴﻨﺎ ( )n ﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a2ﻤﻥ ... Eﻭ ﻟﺩﻴﻨﺎ nﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a pﻤﻥ . Eﻭ ﻋﻠﻴﻪ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺎﺼﺭ a1 , a2 , ..., a pﻴﺘﻡ ﻋﻠﻰ ﺍﻟﺘﺘﺎﺒﻊ ﺒـ n × n × ... × n :ﺃﻱ :ﻋﺩﺩ ﺍﻟﻘﻭﺍﺌﻡ ﺫﺍﺕ pﻋﻨﺼﺭﹰﺍ ﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Eﺫﺍﺕ nﻋﻨﺼﺭ ﻫﻭ . n p ﻤﺜﺎل : ﻜﻡ ﻋﺩﺩﺍ ﻤﻜﻭﻨﺎ ﻤﻥ 6ﺃﺭﻗﺎﻡ ﻴﻤﻜﻥ ﺘﺸﻜﻴﻠﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻷﻋﺩﺍﺩ 9, .....2,1 ﺍﻟﺤل : ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﻫﻭ 96ﺃﻱ 531441 :ﻋﺩﺩﺍ – 3ﺍﻟﺘﺭﺘﻴﺒﺎﺕ : ﺘﻌﺭﻴﻑ : nﻭ pﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﺤﻴﺙ . p ≤ n :ﻨﺴﻤﻰ ﺘﺭﺘﻴﺒﻪ ﺫﺍﺕ pﻋﻨﺼﺭﺍ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺫﺍﺕ n ﻋﻨﺼﺭﺍ ﻜل ﻗﺎﺌﻤﺔ ﺫﺍﺕ pﻋﻨﺼﺭﺍ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ . ﻋﺩﺩ ﺍﻟﺘﺭﺘﻴﺒﺎﺕ : ﻟﺘﻜﻥ ﺍﻟﺘﺭﺘﻴﺒﺔ ( ). a1,a2 ,...,a p ﻟﺩﻴﻨﺎ nﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a1ﻤﻥ E ﻭ ﻟﺩﻴﻨﺎ n − 1ﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a2ﻤﻥ ) Eﻋﺩﻡ ﺍﻟﺘﻜﺭﺍﺭ ( ﻭ ﻟﺩﻴﻨﺎ n − 2ﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a3ﻤﻥ E ﻭ ﻟﺩﻴﻨﺎ n − p − 1ﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺼﺭ a pﻤﻥ ( )E ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ﻟﻠﻌﺩﺩ ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﻻﺨﺘﻴﺎﺭ ﺍﻟﻌﻨﺎﺼﺭ a1 , a2 , ..., a pﺒﻬﺫﺍ ﺍﻟﺘﺭﺘﻴﺏ ﻫﻭ : n n − 1 n − 2 ... n − p + 1ﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ Anpﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﺍﻟﺘﺭﺘﻴﺒﺎﺕ) ( ) ( ) ( Anp = n( n − 1)( n − 2) × ...× ( n − p + 1) :
ﻤﺜﺎل :ﻜﻡ ﻋﺩﺩﺍ ﻤﻜﻭﻨﺎ ﻤﻥ 6ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﺃﻱ ﻏﻴﺭ ﻤﻜﺭﺭﺓ ﻴﻤﻜﻥ ﺘﻜﻭﻴﻨﻬﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻷﻋﺩﺍﺩ . 9 ، ... ، 2 ، 1 ﺍﻟﺤل :ﻜل ﻋﺩﺩ ﻴﻜﻭﻥ ﻤﻥ ﺍﻟﺸﻜل a1a2a3a4a5a6 :ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a5ﻫﻭ 8 ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a6ﻫﻭ 9ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a3ﻫﻭ 6 ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a4ﻫﻭ 7ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a1ﻫﻭ . 4 ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺨﺘﻴﺎﺭ a2ﻫﻭ 5ﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺘﺸﻜﻴﻠﻬﺎ ﻫﻭ 9 × 8 × 7 × 6 × 5 × 4 : ﺃﻱ 60480 :ﻋﺩﺩﺍ . – 4ﺍﻟﺘﺒﺩﻴﻼﺕ : ﺘﻌﺭﻴﻑ : nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﻨﺴﻤﻰ ﺘﺒﺩﻴﻠﺔ ﺍﻟﻤﺠﻤﻭﻋﺔ Eﺫﺍﺕ nﻋﻨﺼﺭﹰﺍ ﻜل ﺘﺭﺘﻴﺒﺔ ﺫﺍﺕ n ﻋﻨﺼﺭﺍ ﻤﻥ . E ﻋﺩﺩ ﺍﻟﺘﺒﺩﻴﻼﺕ ﻫﻭAnn = n( n − 1)( n − 2) ...( n − n + 1) : ﺇﺫﻥ Ann = n( n − 1)( n − 2) × ...× 1 : ﻤﺜﺎل : ﻜﻡ ﻋﺩﺩﺍ ﻤﻜﻭﻨﺎ ﻤﻥ 9ﺃﺭﻗﺎﻡ ﻴﻤﻜﻥ ﺘﺸﻜﻴﻠﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻷﻋﺩﺍﺩ 9 ، … ، 2 ، 1 ﺩﻭﻥ ﺘﻜﺭﺍﺭ ﺃﺭﻗﺎﻡ ﻫﺫﺍ ﺍﻟﻌﺩﺩ . ﺍﻟﺤل : ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﻫﻭ 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 : ﺃﻱ 362880 :ﻋﺩﺩﺍ . ﺍﻟﺭﻤﺯ ﻋﺎﻤﻠﻲ : ﺍﻟﻌﺩﺩ n n − 1 n − 2 × ... × 2 × 1ﻴﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ! nﻭ ﻨﻜﺘﺏ ( ) ( ): n! = n( n − 1) × ...× 2 × 1 ﺍﻟﺭﻤﺯ ! nﻴﻘﺭﺃ n :ﻋﺎﻤﻠﻲ .
ﻓﻤﺜﻼ :6! = 6 × 5 × 4 × 3 × 2 × 1 ، 4! = 4 × 3 × 2 × 1 = 24 ﺍﺼﻁﻼﺤﺎ 1! = 1 :ﻭ 0! = 1 = Anp !n ! n− p !( )Ann = n ﻭ ﻭ ﻤﻨﻪ :A96 = !9 = !9 = ×9 ×8 7 × ×6 ×5 ×4 !3 ﻤﺜﺎل : !3 !3 ﻭ ﻋﻠﻴﻪ: (9 !)− 6 A96 = 9 × 8 × 7 × 6 × 5 × 4ﺃﻱA96 = 60480 : – 5ﺍﻟﺘﻭﻓﻴﻘﺎﺕ : ﺘﻌﺭﻴﻑ : nﻭ pﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ) .( p ≤ nﻟﺘﻜﻥ Eﻤﺠﻤﻭﻋﺔ ﺫﺍﺕ nﻋﻨﺼﺭﺍ .ﻨﺴﻤﻰ ﺘﻭﻓﻴﻘﺔ ﺫﺍﺕ pﻋﻨﺼﺭﺍ ﻤﻥ Eﻜل ﺠﺯﺀ ﻤﻥ Eﻴﺸﻤل pﻋﻨﺼﺭﺍ ﻤﻥ . E C p = Anp Eﺒﺎﻟﻌﺒﺎﺭﺓ : ﻋﺩﺩ ﺍﻟﺘﻭﻓﻴﻘﺎﺕ : n !p ﻴﻌﻁﻲ ﻋﺩﺩ ﺍﻟﺘﻭﻓﻴﻘﺎﺕ ﺫﺍﺕ pﻋﻨﺼﺭﺍ ﻤﻥ C p = (n − !n !p : ﺃﻱ n ×!)p ﻷﻥ ﺍﻟﺠﺯﺀ ﻻ ﺘﺭﺘﺏ ﻋﻨﺎﺼﺭﻩ ﻭ ﻻ ﺘﻜﺭﺭ . ﻤﻼﺤﻅﺔ : n ﺃﻭ C p ﻨﺭﻤﺯ ﻟﻌﺩﺩ ﺍﻟﺘﻭﻓﻴﻘﺎﺕ ﺒﺎﻟﺭﻤﺯ : n p ﻤﺜﺎل : ﻴﺘﻜﻭﻥ ﻗﺴﻡ ﺩﺭﺍﺴﻲ ﻤﻥ 40ﺘﻠﻤﻴﺫﺍ .ﺃﺭﺍﺩﻭﺍ ﺍﺨﺘﻴﺎﺭ 3ﻤﻤﺜﻠﻴﻥ ﻟﻠﻘﺴﻡ . ﺒﻜﻡ ﻁﺭﻴﻘﺔ ﻴﺘﻡ ﺍﺨﺘﻴﺎﺭﻫﻡ .
ﺍﻟﺤل :ﺇﻥ ﺍﺨﺘﻴﺎﺭ 3ﻤﻤﺜﻠﻴﻥ ﻫﻭ ﺍﺨﺘﻴﺎﺭ ﺠﺯﺀ ﻤﻜﻭﻥ 3ﻋﻨﺎﺼﺭ ﻤﻥ 40ﻋﻨﺼﺭ .ﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﻫﻭ : C430 = !40 × 39 × 38 × 37 37!× 3 × 2 × 1 × 40 × 39 38 C430 = 3×2 = × 20 × 13 38 = 9880 ﺇﺫﻥ ﻫﻨﺎﻙ 9880ﻁﺭﻴﻘﺔ ﻻﺨﺘﻴﺎﺭ 3ﻤﻤﺜﻠﻴﻥ ﻟﻬﺫﺍ ﺍﻟﻘﺴﻡ . ﺨﻭﺍﺹ : Cnp ﻟﺩﻴﻨﺎ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺘﺎﻟﻴﺔ ﻟﻠﻌﺩﺩ : Cnp Cnp = C n− p Cnn = 1؛ ؛ C 1 = n ؛ C 0 = 1 n n n C p = C p−1 + Cp n n−1 n−1 p !n n ﻭ ﻴﻤﻜﻥ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻴﻬﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺘﻌﺭﻴﻑ n − p ! p! : ( )C = ﺃﻤﺜﻠﺔ : C40 = 1 C51 = 5 C77 = 1 C84 = C73 + C74 C52 = C 3 5 ﺍﻟﻤﺜﻠﺙ ﺍﻟﻌﺩﺩﻱ : ﻭ ﻴﻌﺘﻤﺩ ﻓﻲ ﺤﺴﺎﺏ Cnpﻋﻠﻰ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺨﻤﺴﺔ ﺍﻟﺴﺎﺒﻘﺔ :p 0 1 2 3 … p-1 p … n-1 nn0100000000011100 021210 0
313310 0p-1 1 10 0 1 0p1n-1 1 CC p-1 p 10n1 n-1 n-1 1 C p n -ﺍﻟﻌﻤﻭﺩ ﺍﻷﻭل ﻟﻬﺫﺍ ﺍﻟﻤﺜﻠﺙ ﻤﻜﻭﻥ ﻤﻥ ﺃﻋﺩﺍﺩ ﻜل ﻤﻨﻬﺎ ﻴﺴﺎﻭﻱ 1ﻭ ﺫﻟﻙ ﻤﻥ . Cn0 = 1 . C n = 1 ﻤﻥ ﺫﻟﻙ ﻭ 1 ﻤﻨﻬﺎ ﻜل ﻴﺴﺎﻭﻱ ﺃﻋﺩﺍﺩﺍ ﻤﻥ ﻤﻜﻭﻥ ﺍﻟﻤﺜﻠﺙ ﻗﻁﺭ - nﺍﻟﺫﻱ ﻴﻘﻊ ﻓﻭﻗﻪ ﻭ ﺍﻟﻌﺩﺩ Cp Cnpﻫﻭ ﻤﺠﻤﻭﻉ ﺍﻟﻌﺩﺩ -ﺃﻤﺎ ﺍﻷﻋﺩﺍﺩ ﺍﻷﺨﺭﻯ ﺩﺍﺨل ﺍﻟﻤﺜﻠﺙ ﻓﻜل ﻋﺩﺩ n−1 . ﺍﻟﻴﻤﻴﻥ ﻤﻥ Cp ﺍﻟﻌﺩﺩ ﻴﻠﻲ ﺍﻟﺫﻱ C p−1 n−1 n−1 Cnp = C p−1 + Cp ﺍﻟﺨﺎﺼﻴﺔ ﻤﻥ ﺫﻟﻙ ﻭ n−1 n−1 C p = 0 -ﺃﻤﺎ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺨﺎﺭﺠﺔ ﻤﻥ ﺍﻟﻤﺜﻠﺙ ﻓﻤﻌﺩﻭﻤﺔ , p > n n ﻤﺜﺎل : n=5 p 0 12345 n 0 100000 1 110000 2 121000 3 133100 4 146410 5 1 5 10 10 5 1
ﺩﺴﺘﻭﺭ ﺜﻨﺎﺌﻲ ﺍﻟﺤﺩ : ﺇﺫﺍ ﻜﺎﻥ aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻓﺈﻥ:( )a + b n = Cn0a bn−0 0 + Cn1a bn−1 1 + ..... + Cnnan−nbn =n i=n i an−ibi ﻭ ﻴﺴﻤﻰ ﺩﺴﺘﻭﺭ ﺜﻨﺎﺌﻲ ﺍﻟﺤﺩ ( ) ∑. n a+b C ﺇﺫﻥ : i=0 ﻤﺜﺎل :( ) ( )x + 2 5 = C50 x5−02 0 + C 1 x5−1 21 + C52 x5−2 22 5 +C 3 x 5−3 23 + C54 x5−4 24 + C55 x5−5 25 5( x + 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x + 32 ﻭ ﻤﻨﻪ:. ﺍﻟﻌﺩﺩﻱ ﺍﻟﻤﺜﻠﺙ ﺒﺎﺴﺘﻌﻤﺎل ﺘﺴﺘﺨﺭﺝ C55 , C54 , C53 , C52 , C 1 , C50 ﺍﻷﻋﺩﺍﺩ 5 - IIIﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺸﺭﻁﻴﺔ : -ﺍﻷﺤﺩﺍﺙ ﺍﻟﻤﺴﺘﻘﻠﺔ : ﺘﻤﻬﻴﺩ : ﻟﺘﻜﻥ Ωﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ . pﺍﺤﺘﻤﺎل ﻤﻌﺭﻑ ﻋﻠﻰ A ، Ωﻭ Bﺤﺎﺩﺜﺘﺎﻥ ﺤﻴﺙ ( )p A ≠ 0 : ﺘﻌﺭﻴﻑ : 1 ﻨﺴﻤﻲ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺎﺩﺜﺔ Bﻋﻠﻤﺎ ﺃﻥ ﺍﻟﺤﺎﺩﺜﺔ Aﻤﺤﻘﻘﺔ ﺍﻟﻌﺩﺩ ( )pA B = )pA ( B )p(A∩ B ﻭ ﻫﻭ ﻤﻌﺭﻑ ﺒﺎﻟﻌﺒﺎﺭﺓ : )p( A= )pA (Ω )p(Ω ∩ A = )p( A =1 -ﻤﻥ ﺍﻟﺘﻌﺭﻴﻑ ﻟﺩﻴﻨﺎ : )p( A )p( A
-ﺇﺫﺍ ﻜﺎﻨﺕ B2 , B1ﺤﺎﺩﺜﺘﺎﻥ ﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ ﻓﺈﻥ : ) (pA B1 ∪ B2 ) = pA ( B1 ) + pA ( B2 )p( A ∩ B) = p( B) × pB ( A) = p( A) × pA ( B ﺘﻌﺭﻴﻑ : 2 ﻨﻘﻭل ﻋﻥ ﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﺃﻨﻬﻤﺎ ﻤﺴﺘﻘﻠﺘﺎﻥ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ :) pA ( B) = p( Bﺃﻱp( A ∩ B) = p( A). p( B) : ﻤﺒﺭﻫﻨﺔ : ﺇﺫﺍ ﻜﺎﻨﺕ Aﻭ Bﺤﺎﺩﺜﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ ﻓﺈﻥ Aﻭ Bﻤﺴﺘﻘﻠﺘﻴﻥ . ﺘﻁﺒﻴﻕ : 1ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ 6ﻗﺭﻴﺼﺎﺕ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ 6ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ ﻗﺭﻴﺼﺘﻴﻥ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ . -ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﻗﺭﻴﺼﺘﻴﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ . 7 -ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﻗﺭﻴﺼﺘﻴﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ 7ﻭ ﻋﻠﻤﺎ ﺃﻥ ﻓﺭﻗﻬﻤﺎ . 3 ﺍﻟﺤل : -ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺴﺤﺏ ﻗﺭﻴﺼﺘﺎﻥ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻜﻴﺱ ﻫﻭ ﻋﺩﺩﺍﻟﺘﻭﻓﻴﻘﺎﺕ ﺫﺍﺕ ﻋﻨﺼﺭﻴﻥ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺫﺍﺕ 6ﻋﻨﺎﺼﺭ ﻭ ﻋﺩﺩﻫﺎ : C62 = (6 − !6 !2 = 15 ×!)2 ﻟﺘﻜﻥ Aﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺠﻤﻭﻉ ﺍﻟﺭﻗﻤﻴﻥ ﻴﺴﺎﻭﻱ 7 } A = {1,6},{2,5},{3,4ﻭ ﻤﻨﻪ ﻋﺩﺩ ﺇﻤﻜﺎﻨﻴﺎﺘﻬﺎ ﻫﻭ { }. 3 P ( )A = 1 ﺃﻱ : P ( )A = 3 ﻭ ﻤﻨﻪ : 3 15 -2ﻟﺘﻜﻥ Bﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﺭﻗﻤﻴﻥ ﻴﺴﺎﻭﻱ 3}} B = {{1,4},{2,5},{3,6؛ }}A ∩ B = {{2,5 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ Bﻋﻠﻤﺎ ﺃﻥ Aﻤﺤﻘﻘﺔ ﻫﻭ :P ( )A = 1 ﻭﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﺒﻕ : )PA ( B = )P(A∩ B 3 )P( A
P ( A ∩ )B = 1 ﻭ ﻟﺩﻴﻨﺎ : 15 1PA ( )B = 15 = 1 × 3 = 1 ﻭ ﻋﻠﻴﻪ : 1 15 1 5 31ﺇﺫﻥ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﺭﻗﻤﻴﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ 7ﻋﻠﻤﺎ ﺃﻥ ﻓﺭﻗﻬﻤﺎ 3ﻫﻭ 5 ﺘﻁﺒﻴﻕ : 2 ﻴﺤﺘﻭﻱ ﻭﻋﺎﺀ ﻋﻠﻰ 4ﻜﺭﺍﺕ ﺼﻔﺭﺍﺀ ﻭ 8ﻜﺭﺍﺕ ﺨﻀﺭﺍﺀ ﻨﺴﺤﺏ ﻜﺭﻴﺘﻴﻴﻥ ) ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﻭ ﺒﺩﻭﻥ ﺇﻋﺎﺩﺓ ( -1ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺼﻔﺭﺍﺀ ﺜﻡ ﻜﺭﺓ ﺨﻀﺭﺍﺀ . -ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﺜﻡ ﻜﺭﺓ ﺼﻔﺭﺍﺀ . -ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻠﻭﻨﻴﻥ ﻤﻌﺎ. -2ﺍﺴﺘﻌﻤل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻟﻨﻤﺫﺠﺔ ﻜل ﻤﻥ ﺍﻟﻭﻀﻌﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻭ ﺤﺴﺎﺏ ﺍﻻﺤﺘﻤﺎﻻﺕ . ﺍﻟﺤل : -1ﻨﻔﺭﺽ J1ﺤﺎﺩﺜﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺼﻔﺭﺍﺀ ﻓﻲ ﺃﻭل ﺴﺤﺏ ﻭ V2ﺤﺎﺩﺜﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﻓﻲ ﺃﻭل ﺴﺤﺏ ﻭ J2ﺤﺎﺩﺜﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺼﻔﺭﺍﺀ ﻓﻲ ﺜﺎﻨﻲ ﺴﺤﺏ ﻭ ﻨﻔﺭﺽ V2ﺤﺎﺩﺜﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﻓﻲ ﺜﺎﻨﻲ ﺴﺤﺏ
P ( J1 ∩ V2 ) = P ( J1 ) .PJ1 ( V2 ) = 4 × 8 = 8 12 11 33P ( V1 ∩ J2 ) = P ( V1 ) .PV1 (J2 ) = 8 × 4 = 8 12 11 33P( J1 ∩ J2 ) + P( V1 ∩ V2 ) = P( J1 ) .PJ1 ( J2 ) + P( V1 ) .PV1 ( V2 ) = 4 × 3 + 8 × 7 12 11 12 11 = 1 + 14 = 17 11 33 33
-2ﻨﻤﺫﺠﺔ ﺍﻟﻭﻀﻌﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ : ﺍﻟﺴﺤﺐ ﺍﻷﻭﻝ ﺍﻟﺴﺤﺐ ﺍﻟﺜﺎﱐ pJ1 ( J2 ) = 3 )p(J1∩J2) =p(J1)×pJ1(J2 11 43 1 4 = 12 × 11 = 11 12p ( J1 ) = pJ1 ( V2 ) = 8 )p(J1∩V2) =p(J1)×pJ1(V2 11 4 8 8 = 12 × 11 = 33 p V1 ( J 2 ) = 4 )p(V1∩J2) =p(V1)×pV1(J2 11 8 4 8 = 12 × 11 = 33 p ( v1 ) = 8 12 p v1 ( V2 ) = 7 )p(V1∩V2) =p(V1)×pV1(V2 11 8 7 14 = 12 × 11 = 33
-VIﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ : Ωﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ P .ﺍﺤﺘﻤﺎل ﻤﻌﺭﻑ ﻋﻠﻰ . Ω ﺘﻌﺭﻴﻑ : ﻨﻘﻭل ﻋﻥ ﺍﻟﺤﻭﺍﺩﺙ A1 , A2 , ..., Anﺃﻨﻬﺎ ﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ Ωﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ : -1ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﺤﻭﺍﺩﺙ ﻏﻴﺭ ﻤﺴﺘﺤﻴﻠﺔ . -2ﻜل ﺤﺎﺩﺜﺘﻴﻥ ﻤﻥ ﻫﺫﻩ ﺍﻟﺤﻭﺍﺩﺙ ﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ . -3ﺍﺘﺤﺎﺩ ﻫﺫﻩ ﺍﻟﺤﻭﺍﺩﺙ ﻴﺴﺎﻭﻱ . Ω ﻤﺜﺎل :ﻋﻨﺩ ﺭﻤﻲ ﺍﻟﻨﺭﺩ ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﻨﺠﺩ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻫﻲ { }Ω = 1, 2, 3, 4, 5, 6 : ﻟﺘﻜﻥ ﺍﻟﺤﻭﺍﺩﺙ C , B, Aﺤﻴﺙ \" A :ﻅﻬﻭﺭ ﺭﻗﻡ ﺃﻭﻟﻰ \" \" Bﻅﻬﻭﺭ ﺭﻗﻡ ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \" 4؛ \" Cﻅﻬﻭﺭ ﺍﻟﻌﺩﺩ 1ﺃﻭ \" 6 ﻟﺩﻴﻨﺎ C = {1,6} , B = {4} , A = {2,3,5} :ﻨﻼﺤﻅ ﺃﻥ A, B,Cﺤﻭﺍﺩﺙ ﻏﻴﺭ ﻤﺴﺘﺤﻴﻠﺔ ﻭ ﻜل ﺤﺎﺩﺜﺘﻴﻥ ﻤﻨﻬﺎ ﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ ﻭ ﺍﺘﺤﺎﺩﻫﺎ ﻫﻭ . Ωﻭ ﻋﻠﻴﻪ ﺍﻟﺤﻭﺍﺩﺙ A, B,Cﺘﺸﻜل ﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ . Ω ﻤﺒﺭﻫﻨﺔ ) :ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ ( Ωﻤﺠﻤﻭﻋﺔ ﺍﻻﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ . Pﺍﺤﺘﻤﺎل ﻤﻌﺭﻑ ﻋﻠﻰ A1 , A2 , ..., An . Ωﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ ( ). Ω ﺇﺫﺍ ﻜﺎﻨﺕ Aﺤﺎﺩﺜﺔ ﻤﻥ Ωﻓﺈﻥ :) P( A) = PA1 ( A).P( A1) + PA2 ( A).P( A2 ) + ... + PAn ( A).P( An ﻭ ﻴﺴﻤﻰ ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ . ﻤﺜﺎل : 1 ﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ { }Ω = 1, 2, 3,4,5,6 :}A = {2,3,5 A, B,Cﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ Ωﺤﻴﺙ ( ):}B = {4}C = {1,6
ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺎﺩﺜﺔ E = 3, 4, 5,6ﺒﻁﺭﻴﻘﺘﻴﻥ { }. ﺍﻟﺤل : ( )PE 42 -1ﺍﻟﻁﺭﻴﻘﺔ ﺍﻷﻭﻟﻰ = 6 = 3 : -2ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﺒﺎﺴﺘﻌﻤﺎل ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ :) P ( E ) = PA ( E ).P ( A) + PB ( E ).P ( B) + PC ( E ).P (C P (C ) = 2 , P ( B ) = 1 , P ( )A = 3 ﺤﻴﺙ : 6 6 6 )P( E ∩ A 2 )P( A ) PA ( E = = 6 = 2 ﻟﺩﻴﻨﺎ: 3 3 6. P ( E ∩ )A = 2 ﻷﻥ E ∩ A = {3,5} :ﻭ ﻋﻠﻴﻪ : 6 )P(E ∩ B 1 )P(B PB )(E = = 6 = 1 ﻟﺩﻴﻨﺎ: 1 6 (p E ∩ )B = 1 ﻭ ﻤﻨﻪ : ﻷﻥ E ∩ B = {4} : 6 )p(E ∩C 1 )p(C = ) pC ( E = 6 = 1 ﻟﺩﻴﻨﺎ : 2 2 6 (p E ∩ C ) = 1 ﻷﻥ E ∩ C = 6 :ﻭ ﻋﻠﻴﻪ { }: 6ﺇﺫﻥ p( E ) = pA ( E ). p( A) + p( E ). p( B) + pc ( E ) . p(C ) :
. )p(E = 2 : ﻭﻤﻨﻪ (p E ) = 2 . 3 + 1. + 1 + 1 × 2 3 3 6 6 2 6 ﻤﺜﺎل : 2 ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ 5ﻜﺭﺍﺕ ﺤﻤﺭﺍﺀ ﻭ 3ﻜﺭﺍﺕ ﺨﻀﺭﺍﺀ ﻭ ﻜﺭﺘﺎﻥ ﺒﻴﻀﺎﻭﻴﻴﻥ . ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ ﻜﺭﺘﻴﻥ ﻋﺸﻭﺍﺌﻴﺎ ) ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﻭ ﺩﻭﻥ ﺇﺭﺠﺎﻉ ( . ﻤﺜل ﺍﻟﻭﻀﻌﻴﺔ ﺒﺸﺠﺭﺓ . -ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺒﻴﻀﺎﺀ ﻓﻲ ﺍﻟﺴﺤﺏ ﺍﻟﺜﺎﻨﻲ . ﺍﻟﺤل : -ﻨﻤﺫﺠﺔ ﻫﺫﻩ ﺍﻟﻭﻀﻌﻴﺔ ﺒﻭﺍﺴﻁﺔ ﺸﺠﺭﺓ : ﻨﺭﻤﺯ ﺒـ V :ﻟﻜﺭﺓ ﺒﻴﻀﺎﺀ B ،ﻜﺭﺓ ﺨﻀﺭﺍﺀ R ،ﻜﺭﺓ ﺤﻤﺭﺍﺀ . V = ) pV1 ( V2 2 9 2 V B pV1 (B2 ) = 9p ( V1 ) = 3 R pV1 (R2 ) = 5 10 9 3 V ( )pB1 V2 = 9 B B pB1 (B2 ) = 1 9 2 5 p ( B1 ) = 10 R pB1 (R2 ) = 9 V pR1 ( V2 ) = 3 9 5 2 p ( R1 ) = 10 R B pR1 (B2 ) = 9 R pR1 (R2 ) = 4 9
ﺍﻟﺴﺤﺐ ﺍﻷﻭﻝ ﺍﻟﺴﺤﺐ ﺍﻟﺜﺎﱐ -ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺭﺓ ﺨﻀﺭﺍﺀ ﻓﻲ ﺍﻟﺴﺤﺏ ﺍﻟﺜﺎﻨﻲ :)p( V2 ) = pV1 (V2 ) × P( V1) + pB1 (V2 ). p( B1) + pR1 (V2 ). p( R1 (p v2 ) = 2 × 3 + 3 × 2 + 3 × 5 9 10 9 10 9 10 = 6+ 6+ 15 90 (p v2 ) = 27 = 3 90 10
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﺯﻫﺭﺘﻲ ﻨﺭﺩ ﻏﻴﺭ ﻤﺯﻴﻔﺘﻴﻥ ﻟﻭﻨﻬﻤﺎ ﻤﺨﺘﻠﻔﺎﻥ ﻭ ﺃﻭﺠﻪ ﻜل ﻤﻨﻬﻤﺎ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ . 6 ﻨﺭﻤﻲ ﻫﺫﻴﻥ ﺍﻟﻨﺭﺩﻴﻥ ﻭ ﻨﺴﺠل ﺍﻟﺭﻗﻤﻴﻥ ﺍﻟﺫﻴﻥ ﻴﻅﻬﺭﺍﻥ ﻋﻠﻰ ﺍﻟﻭﺠﻬﻴﻥ ﺍﻟﻌﻠﻭﻴﻴﻥ . - 1ﻋﻴﻥ ﻋﻠﻰ ﺸﻜل ﺠﺩﻭل ﻤﺠﻤﻭﻋﺔ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﺤﺩﻭﺙ . - 2ﻋﻴﻥ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺘﺎﻟﻴﺔ : : Aﻅﻬﻭﺭ ﺭﻗﻤﻴﻥ ﻓﺭﺩﻴﻴﻥ : Bﻅﻬﻭﺭ ﺭﻗﻤﻴﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ ﺃﻜﺒﺭ ﻤﻥ . 7 : Cﻅﻬﻭﺭ ﺭﻗﻤﻴﻥ ﺃﻭﻟﻴﺎﻥ . : Dﻅﻬﻭﺭ ﺭﻗﻤﻴﻥ ﺃﺤﺩﻫﻤﺎ ﻓﺭﺩﻱ ﻭ ﺍﻵﺨﺭ ﺯﻭﺠﻲ . B∩ D , B , D , A∩C , A∩B – 2ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎﻻﺕ ﻜل ﻤﻥ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺴﺎﺒﻘﺔ . ﺍﻟﺘﻤﺭﻴﻥ. 2ﺯﻫﺭﺓ ﻨﺭﺩ ﻤﺯﻴﻔﺔ ﺃﻭﺠﻬﻬﺎ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ . 6ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﺯﻭﺠﻲ ﻀﻌﻑ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﻓﺭﺩﻱ . (1ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﺯﻭﺠﻲ ﺜﻡ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﻓﺭﺩﻱ . (2ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﺭﻗﻡ 2ﻭ ﺍﻟﺭﻗﻡ . 5 ﺍﻟﺘﻤﺭﻴﻥ. 3 ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ 6ﻜﺭﻴﺎﺕ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ 6ﻻ ﻨﻔﺭﻕ ﺒﻴﻨﻬﺎ ﻋﻨﺩ ﺍﻟﻠﻤﺱ .ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ ﻜﺭﻴﺘﻴﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﺒﺤﻴﺙ ﺒﻌﺩ ﻜل ﺴﺤﺏ ﻨﻌﻴﺩ ﺍﻟﻜﺭﻴﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺇﻟﻰ ﺍﻟﻜﻴﺱ ﻗﺒل ﺍﻟﺴﺤﺏ ﺍﻟﻤﻭﺍﻟﻲ . (1ﺃﻨﺸﺊ ﻤﺨﻁﻁ ﻴﺒﻴﻥ ﻜل ﺍﻟﺤﺎﻻﺕ . (2ﺃﺤﺴﺏ ﺍﻻﺤﺘﻤﺎل ﻷﻥ ﺘﻜﻭﻥ ﺍﻟﻜﺭﻴﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺘﺤﻤل ﺭﻗﻡ . 5 (3ﺃﻋﺩ ﻨﻔﺱ ﺍﻷﺴﺌﻠﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻤﻊ ﻋﺩﻡ ﺭﺩ ﺍﻟﻜﺭﻴﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺇﻟﻰ ﺍﻟﻜﻴﺱ ﻗﺒل ﺍﻟﺴﺤﺏ ﺍﻟﻤﻭﺍﻟﻲ . ﺍﻟﺘﻤﺭﻴﻥ. 4 ﺼﻤﻡ ﻤﻜﻌﺏ ﻏﻴﺭ ﻤﺘﺠﺎﻨﺱ ﻭ ﻜﺘﺒﺕ ﻋﻠﻰ ﺃﻭﺠﻬﻪ ﺍﻷﻋﺩﺍﺩ 6, 5, 4, 3, 2,1ﺒﺤﻴﺙ ﺇﺫﺍ ﺃﻟﻘﻲ ﻋﻠﻰ ﻤﺴﺘﻭﻯ ﺃﻓﻘﻲ ﻴﻜﻭﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺃﻱ ﻋﺩﺩ ﻤﺘﻨﺎﺴﺒﺎ ﻤﻊ ﺫﻟﻙ ﺍﻟﻌﺩﺩ . – 1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ Ω – 2ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎﻻﺕ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺒﺴﻴﻁﺔ .
– 3ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﻋﺩﺩ ﺃﻭﻟﻲ . – 4ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﻋﺩﺩ ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ . 5 ﺍﻟﺘﻤﺭﻴﻥ. 5 ﻨﺴﺤﺏ ﻭﺭﻗﺘﻴﻥ ﻋﺸﻭﺍﺌﻴﺎ ﻤﻥ ﺒﻴﻥ 20ﻭﺭﻗﺔ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ . 20 ﺃﻭﺠﺩ ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺠﻤﻭﻉ ﻓﺭﺩﻴﺎ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : – 1ﺴﺤﺏ ﺍﻟﻭﺭﻗﺘﻴﻥ ﻤﻌﺎ . – 2ﺴﺤﺏ ﺍﻟﻭﺭﻗﺘﻴﻥ ﺍﻟﻭﺍﺤﺩﺓ ﺒﻌﺩ ﺍﻷﺨﺭﻯ ﺩﻭﻥ ﺇﻋﺎﺩﺓ ﺍﻟﻭﺭﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﻗﺒل ﺴﺤﺏ ﺍﻟﻭﺭﻗﺔ ﺍﻟﺜﺎﻨﻴﺔ . – 3ﺴﺤﺏ ﺍﻟﻭﺭﻗﺘﺎﻥ ﺍﻟﻭﺍﺤﺩﺓ ﺒﻌﺩ ﺍﻷﺨﺭﻯ ﻤﻊ ﺇﻋﺎﺩﺓ ﺍﻟﻭﺭﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﻗﺒل ﺴﺤﺏ ﺍﻟﻭﺭﻗﺔ ﺍﻟﺜﺎﻨﻴﺔ . ﺍﻟﺘﻤﺭﻴﻥ. 6ﻴﺘﻜﻭﻥ ﻗﺴﻡ ﺩﺭﺍﺴﻲ ﻤﻥ 10ﺘﻼﻤﻴﺫ ﺃﻋﻤﺎﺭﻫﻡ 16ﺴﻨﺔ ﻭ 5ﺘﻼﻤﻴﺫ ﺃﻋﻤﺎﺭﻫﻡ 17ﺴﻨﺔ ﻭ 20ﺘﻠﻤﻴﺫﺍ ﺃﻋﻤﺎﺭﻫﻡ 18ﺴﻨﺔ ،ﺃﺭﺍﺩﻭﺍ ﺘﺸﻜﻴل ﻟﺠﻨﺔ ﻤﻜﻭﻨﺔ ﻤﻥ ﺘﻠﻤﻴﺫﻴﻥ . – 1ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﻻﺨﺘﻴﺎﺭ ﻫﺫﻴﻥ ﺍﻟﺘﻠﻤﻴﺫﻴﻥ . – 2ﻤﺎ ﺍﺤﺘﻤﺎل ﺍﺨﺘﻴﺎﺭ ﺘﻠﻤﻴﺫﻴﻥ ﻤﺠﻤﻭﻉ ﺴﻨﻬﻤﺎ 34ﺴﻨﺔ . – 3ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﺍﻟﺫﻴﻥ ﻴﺭﻓﻕ ﺒﻜل ﻤﻥ ﻫﺫﻩ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻻﺨﺘﻴﺎﺭ ﺘﻠﻤﻴﺫﻴﻥ ﻤﺠﻤﻭﻉ ﺴﻨﻲ ﻫﺫﻴﻥ ﺍﻟﺘﻠﻤﻴﺫﻴﻥ . -ﺃﻜﺘﺏ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻬﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ . -ﺃﺤﺴﺏ ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ . -ﺃﺤﺴﺏ ﺍﻟﺘﺒﺎﻴﻥ ﻭ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ . ﺍﻟﺘﻤﺭﻴﻥ. 7 Cnp = C p−1 + Cp : ﺍﻟﺨﺎﺼﻴﺔ ﺼﺤﺔ ﻋﻠﻰ ﺒﺭﻫﻥ n−1 n−1 ﺜﻡ ﺤل ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ : x2 − C p x + C p−1 .C p = 0 n n−1 n−1 ﺍﻟﺘﻤﺭﻴﻥ. 8 Cn0 + C 1 + ........ + Cnn = 2n – 1ﺒﺭﻫﻥ ﺃﻥ : n pCnp = nC p−1 : ﺃﻥ ﺃﺜﺒﺕ – 2 n−1S = Cn1 + 2C 2 + 3C 3 + ... + nC n ﺍﻟﻤﺠﻤﻭﻉ ﺃﺤﺴﺏ – 3 n n n ﺍﻟﺘﻤﺭﻴﻥ. 9 ﻋﻨﺩ ﻨﺸﺭ a + b 100ﻤﺎ ﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺤﺩ ( )a70 .b30
ﻤﺎ ﻫﻲ ﺭﺘﺒﺔ ﺍﻟﺤﺩ a41 × b59 ﺍﻟﺘﻤﺭﻴﻥ. 10 ﺍﻨﺸﺭ ﻜل ﻤﻥ 1 + 1 nﻭ 1 − 1 nﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﺎﻤﻴﻊ ( ) ( ): S1 = Cn0 + Cn1 + ... + Cnn S2 = Cn0 + Cn2 + C 4 + ... n S3 = C 1 + Cn3 + Cn5 + ... n ﺍﻟﺘﻤﺭﻴﻥ. 1111 ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻓﺈﻥ :n! ≤ 2n−1 ﺍﻟﺘﻤﺭﻴﻥ. 12ﻜﻡ ﻋﺩﺩﺍ ﻴﻤﻜﻥ ﺘﺸﻜﻴﻠﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻷﺭﻗﺎﻡ 9, 8, 7, 6, 5, 4, 3, 2,1, 0ﺇﺫﺍ ﻜﺎﻨﺕ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﻤﻜﻭﻨﺔ ﻤﻥ : 6 (1ﺃﺭﻗﺎﻡ 6 (2ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ 6 (3ﺃﺭﻗﺎﻡ ﻭ ﻤﻀﺎﻋﻔﺔ ≥ 5 3 (4ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻭ ﻓﺭﺩﻴﺔ . ﺍﻟﺘﻤﺭﻴﻥ. 13ﻴﺤﺘﻭﻯ ﻜﻴﺱ ﻋﻠﻰ 20ﻗﺭﻴﺼﺔ ﻤﺭﻗﻤﺔ ﻤﻥ 1ﺇﻟﻰ . 20ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ ﻗﺭﻴﺼﺘﻴﻥ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻭ ﺒﻼ ﺍﺨﺘﻴﺎﺭ . -ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﻗﺭﻴﺼﺘﻴﻥ ﻤﺠﻤﻭﻉ ﺭﻗﻤﻴﻬﻤﺎ . 10 -ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﻗﺭﻴﺼﺘﻴﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺭﻗﻤﻴﻬﻤﺎ ﻴﺴﺎﻭﻱ . 4 -ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺴﺤﺏ ﻗﺭﻴﺼﺘﻴﻥ ﻤﺠﻤﻭﻉ ﺭﻗﻤﻴﻬﻤﺎ 10ﻋﻠﻤﺎ ﺃﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻨﻬﻤﺎ . 4 ﺍﻟﺘﻤﺭﻴﻥ. 14ﻗﻁﻌﺔ ﻨﻘﻭﺩ ﺼﻨﻌﺕ ﻤﺯﻴﻔﺔ ﺒﺤﻴﺙ ﻋﻨﺩ ﺭﻤﻴﻬﺎ ﻴﻜﻭﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﻭﺠﻪ ﺍﻟﺫﻱ ﻴﺤﻤل ﺍﻟﺤﺭﻑ Aﻀﻌﻑ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﻭﺠﻪ ﺍﻵﺨﺭ ﻭ ﺍﻟﺫﻱ ﻴﺤﻤل ﺍﻟﺤﺭﻑ . B – 1ﺃﺤﺴﺏ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : )p( A∩ B) , p( A ), p(B) , p( A
– 3ﻨﻔﺭﺽ ﺃﻥ ﻅﻬﻭﺭ ﺍﻟﻭﺠﻪ Aﻴﻌﻁﻲ ﺭﺒﺢ 100ﺩﺝ ﻭ ﻅﻬﻭﺭ ﺍﻟﻭﺠﻪ Bﻴﻌﻁﻲ ﺨﺴﺎﺭﺓ 50 ﺩﺝ . ﻟﻴﻜﻥ Xﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ ﺍﻟﺫﻱ ﻴﺄﺨﺫ ﻗﻴﻡ ﺍﻟﺭﺒﺢ ﺃﻭ ﺍﻟﺨﺴﺎﺭﺓ . -ﺃﻜﺘﺏ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ X -ﺃﺤﺴﺏ ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ ﻟﻠﻤﺘﻐﻴﺭ X -ﺃﺤﺴﺏ ﺍﻟﺘﺒﺎﻴﻥ ﻭ ﺍﻹﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﻴﺭ X ﺍﻟﺘﻤﺭﻴﻥ. 15ﻴﺘﻜﻭﻥ ﻤﺼﻨﻊ ﻹﻨﺘﺎﺝ ﺍﻟﺜﻼﺠﺎﺕ ﻤﻥ 3ﺃﻗﺴﺎﻡ ﺤﻴﺙ ﺘﺴﺎﻫﻡ ﺒـ 10 % 60% ، 30%ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﺍﻹﻨﺘﺎﺝ ﺍﻟﻜﻠﻲ ﻟﻠﻤﺼﻨﻊ ﻭ ﺍﺤﺘﻤﺎﻻﺕ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﺜﻼﺠﺔ ﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل ﻋﻠﻤﺎ ﺃﻨﻬﺎ ﺼﻨﻌﺕ ﻓﻲ ﺍﻷﻗﺴﺎﻡ ﺍﻟﺜﻼﺜﺔ ﻫﻲ 0, 90 , 0, 85 , 0, 75ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﺜﻼﺠﺔ ﺍﻟﻤﺼﻨﻭﻋﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺼﻨﻊ ﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل . ﺍﻟﺘﻤﺭﻴﻥ. 16 ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ 6ﻜﺭﺍﺕ ﺤﻤﺭﺍﺀ ﻭ 4ﻜﺭﺍﺕ ﺴﻭﺩﺍﺀ . ﻨﺴﺤﺏ ﻤﻥ ﻫﺫﺍ ﺍﻟﻜﻴﺱ 3ﻜﺭﺍﺕ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﻭ ﺩﻭﻥ ﺇﺭﺠﺎﻉ . – 1ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺘﺤﻘﻕ ﻜل ﻤﻥ ﺍﻟﺤﺩﺜﻴﻥ Aﻭ Bﺤﻴﺙ : : Aﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻠﻭﻨﻴﻥ ﻤﻌﺎ . : Bﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻟﻭﻥ ﻭﺍﺤﺩ . – 2ﺍﺴﺘﻌﻤل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻟﻨﻤﺫﺠﺔ ﻜل ﻤﻥ ﺍﻟﻭﻀﻌﻴﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ ﻟﺤﺴﺎﺏ ﺍﺤﺘﻤﺎل ﺘﺤﻘﻕ ﻜل ﻤﻥ ﺍﻟﺤﺩﺜﻴﻥ Aﻭ . B ﺍﻟﺘﻤﺭﻴﻥ. 17 ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ 5ﻜﺭﺍﺕ ﺨﻀﺭﺍﺀ ﻭ 3ﻜﺭﺍﺕ ﺼﻔﺭﺍﺀ .ﻨﺴﺤﺏ ﻤﻥ ﺍﻟﻜﻴﺱ 3ﻜﺭﺍﺕ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﺒﺤﻴﺙ ﺒﻌﺩ ﻜل ﺴﺤﺏ ﻨﻌﻴﺩ ﺍﻟﻜﺭﺓ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺇﻟﻰ ﺍﻟﻜﻴﺱ ﻗﺒل ﺍﻟﺴﺤﺏ ﺍﻟﻤﻭﺍﻟﻲ . – 1ﺍﺤﺴﺏ ﺍﺤﺘﻤﺎل ﺘﺤﻘﻕ ﻜل ﻤﻥ ﺍﻟﺤﺩﺜﻴﻥ Cﻭ Dﺤﻴﺙ : : Cﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻠﻭﻨﻴﻥ ﻤﻌﺎ
: Dﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻟﻭﻥ ﻭﺍﺤﺩ . – 2ﺍﺴﺘﻌﻤل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻟﻨﻤﺫﺠﺔ ﻜل ﻤﻥ ﺍﻟﻭﻀﻌﻴﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ ﻭ ﻟﺤﺴﺎﺏ ﺘﺤﻘﻕ ﻜل ﻤﻥ ﺍﻟﺤﺩﺜﻴﻥ Cﻭ . D ﺍﻟﺤـﻠــــــﻭل D1 1 ﺍﻟﺘﻤﺭﻴﻥ. 1D2 – 1ﺘﻌﻴﻴﻥ ﻓﻲ ﺠﺩﻭل ﻤﺠﻤﻭﻋﺔ ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﺤﺩﻭﺙ :ﻟﻴﻜﻥ ﺍﻟﻨﺭﺩﻴﻥ )(1;1 1 )( 2;1 D1ﻭ D2 2 )( 3;1 3 )( 4;1 23456 4 )( 5;1 5 )( 6;1 )(1;2) (1;3) (1;4) (1;5) (1;6 6 )(2;2) (2;3) (2;4) (2;5) (2;6 )(3;2) (3;3) (3;4) (3;5) (3;6 )(4;2) (4;3) (4;4) (4;5) (4;6 )(5;2) (5;3) (5;4) (5;5) (5;6 )(6;2) (6;3) (6;4) (6;5) (6;6 -2ﺘﻌﻴﻴﻥ ﺍﻟﺤﻭﺍﺩﺙ : })A = {(1;1),(1;3),(1;5),(3;3),(3;5),(5;1),(5;3),(5;5B = { (2;6),(3;5),(3;6),(4;4),(4;5),(4;6),(5;3),(5;4), } )(5;5),(5;6),(6;2),(6;3),(6;4),(6;5),(6;6
C = {(2;2),(2;3),(2;5),(3;2),(3;3),(3;5),(5;2),(5;3),(5;5)}D ={ (1;2),(1;4),(1;6),(2;1),(2;3),(2;5),(3;2),(3;4),(3;6) (4;1),(4;3),(4;5),(5;2),(5;4),(5;6)(6;1),(6;3),(6;5) }A ∩ B = {(3;5),(5;3),(5;5)} D = { (1;1),(1;3),(1;5),(2;2),(2;4),(2;6),(3;1),(3;3),( 3;5) , ( 3;5) , ( 4; 2) , ( 4;4) , ( 4;6) , ( 5;1) , ( 5, 3) , (5;5),(6;2),(6;4),(6;6) }B = { (1;1),(1;2),(1;3),(1;4),(1;5),(1;6),(2;1),(2;2), ( 2; 3) , ( 2;4) , ( 2;5) , ( 3;1) , ( 3; 2) , ( 3; 3) , ( 3, 4) , ( 5;1) (4;1),(4;2),(4;3),(5;1),(5;2),(6,1) }B ∩ D = { (1;1),(1;3),(1;5),(2;2),(2;4),(3;1),(3;3), (4;2),(5;1) } : ﺤﺴﺎﺏ ﺍﻻﺤﺘﻤﺎﻻﺕ-3 p( A) = 9 = 3 , p( B ) = 15 = 5 36 12 36 12 p(C ) = 9 = 3 , p ( D) = 18 = 1 36 12 36 2p( A ∩ C ) = 4 = 1 ؛ p( A ∩ B) = 3 = 1 36 9 36 12 ( )p B = 21 = 7 ( )؛p D = 18 = 1 36 12 36 2
( )p 9 1 B∩D = 36 = 4 ﺍﻟﺘﻤﺭﻴﻥ. 2 (1ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ Ωﻫﻲ { }Ω = 1, 2, 3,4,5,6 : ﺤﻴﺙ ﺇﺫﺍ ﻜﺎﻥ pﺍﺤﺘﻤﺎل ﻋﻠﻰ Ωﻓﺈﻥ ( )p Ω = 1 : ﺇﺫﻥ ( )p {1,2,3,4,5,6} = 1 :ﻭ ﻤﻨﻪ p({1,3,5} ∪ {2,4,6}) = 1 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ p({1,3,5}) + p({2,4,6}) = 1 ( )... 1 :ﻷﻥ{2,4,6} ∩ {1,3,5} = ∅ :ﻭ ﺒﻤﺎ ﺃﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﺯﻭﺠﻲ ﻀﻌﻑ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﻓﺭﺩﻱ ﻓﺈﻥ: )}p({2,4,6}) = 2 p({1,3,5ﺒﻭﻀﻊ p {1,3,5} = a :ﻨﺠﺩ ( ) ( )p {2,4,6} = 2a :ﻭ ﻤﻨﻪ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ a + 2a = 1 : a = 1 ﺃﻱ 3a =1 ﻭ ﻋﻠﻴﻪ : 3= )}p({2,4,6 2 ﻭ = )}p({1,3,5 1 ﺇﺫﻥ : 3 3 1ﺃﻱ ﺃﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﻓﺭﺩﻱ ﻫﻭ 3ﻭ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﺯﻭﺠﻲ
2 ﻫﻭ 3 ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﺭﻗﻡ : 2 ( )p 2 }{2, 4, 6 = 3 ﻟﺩﻴﻨﺎ : = )}p({2} ∪ {4} ∪ {6 2 ﻭ ﻋﻠﻴﻪ : 3 )}p({2 + )}p({4 + )}p({6 = 2 3ﻟﻜﻥ p({2}) = p({4}) = p({6}) = h : h = 2 ﺇﺫﻥ : 3h = 2 ﻭ ﻤﻨﻪ : 9 3 2 ﺇﺫﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﺭﻗﻡ 2ﻫﻭ 9({ })p 11, 3, 5 ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﺭﻗﻡ : 5ﻟﺩﻴﻨﺎ = 3 : - }p({1 }∪ {3 )}∪ {5 = 1 : ﻤﻨﻪ ﻭ 3)}p({1 + )}p({3 + )}p({5 = 1 : ﺇﺫﻥ 3ﻟﻜﻥ p({1}) = p({3}) = p({5}) = m :
=m 1 ﻭ ﻤﻨﻪ : = 3m 1 ﺇﺫﻥ : 9 3 1 ﺇﺫﻥ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﺭﻗﻡ 5ﻫﻭ 9ﺍﻟﺘﻤﺭﻴﻥ1 . 3234 156123 2456123 34561234 4561234 5561234 656
ﺍﻟﺴﺤﺒﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺴﺤﺒﺔ ﺍﻷﻭﱃ2 – 2ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ :34 ﻋﺪﺩ ﺍﳊﺎﻻﺕ ﺍﳌﻤﻜﻨﺔ ﻫﻮ 6 × 6 = 36 :56 ﻋﺪﺩ ﺍﳊﺎﻻﺕ ﺍﳌﻼﺋﻤﺔ ﻫﻮ 6 × 1 = 6 :13 p = 6 = 1 ﺍﻻﺣﺘﻤﺎﻝ :4 36 656 –3ﺍﻟﺴﺤﺐ ﺩﻭﻥ ﺇﺭﺟﺎﻉ :12 ﳐﻄﻂ ﺍﻟﺴﺤﺐ :45 161 22 335 4621 53 64612345
-ﺤﺴﺎﺏ ﺍﻻﺤﺘﻤﺎل : ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻤﻜﻨﺔ 6 × 5 = 30 : ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ 6 × 1 = 6 : =p 6 = 1 ﺍﻻﺤﺘﻤﺎل : 36 5 ﺍﻟﺘﻤﺭﻴﻥ. 4 – 1ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ { }Ω = 1, 2, 3,4,5,6 : – 2ﺤﺴﺎﺏ ﺍﺤﺘﻤﺎﻻﺕ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺒﺴﻴﻁﺔ : ﻟﺩﻴﻨﺎ p Ω = 1 :ﺃﻱ ( ):p({1}) + p({2}) + p({3}) + p({4}) + p({5}) + p({6}) = 1 ﻭ ﻋﻠﻴﻪ p1 + p2 + p3 + p4 + p5 + p6 = 1 : p1 = p2 = p3 = p4 = p5 = p6 =α ﻟﻜﻥ : 1 2 3 4 5 6ﻭ p5 = 5α ﺇﺫﻥ p1 = 1α :ﻭ p2 = 2αﻭ p3 = 3αﻭ p4 = 4α p6 = 6α ﻭ ﺒﺎﻟﺘﺎﻟﻲ α + 2α + 3α + 4α + 5α + 6α = 1 : α = 1 ﺃﻱ ﺃﻥ : ﻭ ﻤﻨﻪ 21α = 1 : 21 1 2 3 1 ، p1 = 21 ، p2 = 21 ، p3 = 21 = 7 ﻭ ﻋﻠﻴﻪ : p4 = 4 ، p5 = 5 ، = p6 6 = 2 21 21 21 7 -3ﺤﺴﺎﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﻋﺩﺩ ﺃﻭﻟﻲ : )}p({2,3,5}) = p({2}) + p({3}) + p({5 = 2 + 3 + 5 = 10 21 21 21 21 – 4ﺤﺴﺎﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﻋﺩﺩ ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ : 5
p({5,6}) = p({5}) + p({6}) = p5 + p6 = 5 + 6 = 11 21 21 21 ﺍﻟﺘﻤﺭﻴﻥ. 5ﻴﻜﻭﻥ ﺍﻟﻤﺠﻤﻭﻉ ﻓﺭﺩﻴﺎ ﺇﺫﺍ ﻜﺎﻨﺕ ﻭﺭﻗﺔ ﺘﺤﻤل ﺭﻗﻤﺎ ﺯﻭﺠﻴﺎ ﻭ ﺍﻷﺨﺭﻯ ﻓﺭﺩﻴﺎ .C 2 = 190 – 1ﻋﺩﺩ ﺍﻟﻁﺭﻕ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺴﺤﺏ ﺍﻟﻭﺭﻗﺘﻴﻥ ﻤﻌﺎ : 20ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﺴﺤﺏ ﻭﺭﻗﺘﻴﻥ ﺇﺤﺩﺍﻫﻤﺎ ﺘﺤﻤل ﺭﻗﻡ ﺯﻭﺠﻲ ﻭ ﺍﻷﺨﺭﻯ ﻓﺭﺩﻱ ﺃﻱ ﻤﺠﻤﻭﻉ ﺍﻟﺭﻗﻤﻴﻥ ﻓﺭﺩﻱ ﻫﻭ C110 × C110 = 100 : p1 = 100 = 10 ﺍﻻﺤﺘﻤﺎل : 190 19 – 2ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺴﺤﺏ ﺍﻟﻭﺭﻗﺘﻴﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﺩﻭﻥ ﺍﻹﻋﺎﺩﺓ : A220 = 20 × 19 = 380 -ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﺴﺤﺏ ﻭﺭﻗﺘﻴﻥ ﻤﺠﻤﻭﻋﻬﺎ ﻓﺭﺩﻱ ،ﺃﻱ ﺃﻥ ﺘﻜﻭﻥ ﺍﻷﻭﻟﻰ ﺯﻭﺠﻴﺔ ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﻓﺭﺩﻴﺔﺃﻭ ﺍﻷﻭﻟﻰ ﻓﺭﺩﻴﺔ ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﺯﻭﺠﻴﺔ ﻭ ﻋﺩﺩﻫﺎ 10 × 10 + 10 × 10 = 200 : p2 = 200 = 10 ﺍﻻﺤﺘﻤﺎل : 380 19 – 3ﻋﺩﺩ ﻁﺭﺍﺌﻕ ﺴﺤﺏ ﻭﺭﻗﺘﻴﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ ﻤﻊ ﺍﻹﺭﺠﺎﻉ ﻫﻭ : 20 × 20 = 400 -ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﺍﻟﻤﻼﺌﻤﺔ 10 × 10 + 10 × 10 = 200 :ﻷﻥ ﺇﻤﺎ ﺃﻥ ﺘﻜﻭﻥ ﺍﻷﻭﻟﻰ ﻓﺭﺩﻴﺔ ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﺯﻭﺠﻴﺔ ﺃﻭ ﺃﻥ ﺘﻜﻭﻥ ﺍﻷﻭﻟﻰ ﺯﻭﺠﻴﺔ ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﻓﺭﺩﻴﺔ . p3 = 200 = 1 ﺍﻻﺤﺘﻤﺎل ﻫﻭ : 400 2 ﺍﻟﺘﻤﺭﻴﻥ. 6 – 1ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﻻﺨﺘﻴﺎﺭ ﻫﺫﻴﻥ ﺍﻟﺘﻠﻤﻴﺫﻴﻥ : C 2 = ( 35 !35 !2 35 ×!)− 2C325 = !35 × 34 × 33 = 35 × 17 = 595 33!× 2
– 2ﺍﺤﺘﻤﺎل ﺍﺨﺘﻴﺎﺭ ﺘﻠﻤﻴﺫﻴﻥ ﻤﺠﻤﻭﻉ ﺴﻨﻴﻬﻤﺎ 34ﺴﻨﺔ : ﻋﺩﺩ ﺍﻟﻁﺭﺍﺌﻕ ﺍﻟﻤﻼﺌﻤﺔ C110 × C210 + C52 = 210 : ) ﺃﻱ ﺘﻠﻤﻴﺫ ﻋﻤﺭﻩ 16ﺴﻨﺔ ﻭ ﺁﺨﺭ 18ﺴﻨﺔ ﺃﻭ ﺘﻠﻤﻴﺫﻴﻥ ﻋﻤﺭ ﻜل ﻤﻨﻬﻤﺎ 17ﺴﻨﺔ ( . 210 6 ﺍﻻﺤﺘﻤﺎل ﻫﻭ 595 = 17 : – 3ﻗﻴﻡ Xﻫﻲ 36, 35, 34, 33, 32 : p[ X = ]32 = C120 = 45 = 9 595 595 119 p[ X = = ]33 C110 × C51 = 50 = 10 595 595 119 p[ X = ]34 = C110 × C210 + C52 = 210 = 42 595 595 119 p[ X = = ]35 C51 × C 1 = 100 = 20 20 595 119 595 p[ X = ]36 = C220 = 190 = 38 595 595 119ﻗﻴﻡ X ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل : 32 33 34 35 36p 9 10 42 20 38 119 119 119 119 119 -ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ :E ( X ) = 32 × 9 + 33 × 10 + 34 × 42 + 35 × 20 + 36 × 38 119 119 119 119 119 288 330 1428 700 1368 4114 E ( X ) = + + 119 + + = 119 ﺇﺫﻥ. E ( X ) 34,57 : -ﺍﻟﺘﺒﺎﻴﻥ :
V ( 32-35 ) 2 × 9 + ( 33-35 ) 2 × 10 + ( 34-35 )2 × 42 119 119 119+ ( 35-35) 2 × 20 + ( 36-35 ) 2 × 38 119 119 V 81+40+42+0+38 119 201 V 119 V 1,7 : ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ- σ= V σ 1,3 . 7ﺍﻟﺘﻤﺭﻴﻥ Cnp = C p−1 + Cp : ﺍﻟﺨﺎﺼﻴﺔ ﺼﺤﺔ ﻋﻠﻰ ﺍﻟﺒﺭﻫﺎﻥ - n−1 n−1C p−1 + Cp = ( n − 1) (n − 1)! p − 1) + [n (n− 1)! n−1 n−1 p( p − 1)!( p]!. p! −1− (n − 1)! (n − 1)! = (n − p)!.( p − 1)! + (n − p)!. p!= (n − p) (n − 1)! p − 1) + (n − p (n − 1)! p − 1) .(n − p − 1)!.( − 1)!. p( = (n − 1)!. p + (n − 1)!.(n − p) (n− p).(n − p − 1)! p( p − 1) = (n − 1)![ p+ n− p] = n(n − 1)! = n! (n − p! (n − p)! p! p)! (n − p)! p! = C p n : ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ
x2 − C p x + C p−1 .Cnp−1 = 0 n n−1( )∆ = 2 4Cnp−−11 p −Cnp − .C n−1( )∆ = Cnp 2 − 4C p−1 .Cnp−1 n−1( )∆ = 2C p−1 + Cp − 4Cnp−−11 .C p n−1 n−1 n−1( ) ( )∆ =2 2C p−1 + 2C p−1 .Cnp−1 + Cp − 4Cnp−−11 .C p n−1 n−1 n−1 n−1 ( ) ( )∆ = 2 p 2 C p−1 − 2Cnp−−11 .C n−1 + Cp n−1 n−1 ( )∆ = 2 C p−1 − Cp n−1 n−1 : > ∆ ﻭ ﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ0 ﻭ ﻋﻠﻴﻪ( )x1= C p − C p−1 − Cp = C p−1 + Cp − C p−1 + Cp n n−1 n−1 n−1 n−1 2 n−1 n−1 2 x1 = Cp :ﻭ ﻤﻨﻪ n−1x2 = C p − C p−1 − C p = C p−1 + Cp + C p−1 − Cp n n−1 n−1 n−1 n−1 n−1 n−1 2 2 x2 = C p−1 :ﻭ ﻤﻨﻪ n−1 { }S = p−1 Cp , C n−1 n−1 . 8ﺍﻟﺘﻤﺭﻴﻥ C 0 + Cn1 + ... + Cnn = 2n : ﺃﻥ ﻨﺒﺭﻫﻥ – 1 n( )a + b n = Cn0a bn−0 0 + Cn1a bn−1 1 + ... + Cnnan−nbn : ﻟﺩﻴﻨﺎ : ﻨﺠﺩa = b = 1 ﺒﻭﻀﻊ (1 + 1)n = C 0 + Cn1 + ... + C n n n
C 0 + Cn1 + ... + C n = 2n : ﺇﺫﻥ n n : ﻭ ﻴﻤﻜﻥ ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ p( n) : C 0 + Cn1 + ... + C n = 2n n n ﺼﺤﻴﺤﺔC00 = 20 : n = 0 ﻤﻥ ﺃﺠل- ( ) ( )p k + 1 ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔp k ﻨﻔﺭﺽ ﺼﺤﺔ- p(k) : Ck0 + Ck1 + ... + C k = 2k k ( )p C0 C1 C k+1 2k+1 k +1 : k +1 + k +1 + ... + k +1 = C0 = Ck0 : ﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﺒﻕ k +1 C1 = Ck0 + C 1 k +1 k C2 = Ck1 + Ck2 k +1 Ck = C k−1 + C k k +1 k k C k+1 = C k + C k+1 k +1 k k : ﺒﺎﻟﺠﻤﻊ ﻁﺭﻓﺎ ﻟﻁﺭﻑ ﻨﺠﺩC0 + C1 + ... + C k+1 = 2C 0 + 2C 1 + ... + 2Ckk + C k+1 k +1 k +1 k +1 k k k ( )= 2 Ck0 + Ck1 + ... + Ckk + 0 = 2.2k = 2k+1 ( ) ( )n ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲp n ﺼﺤﻴﺤﺔ ﻭ ﻋﻠﻴﻪp k + 1 ﻭ ﻤﻨﻪ pC p = nC p−1 : ﺃﻥ ﺇﺜﺒﺎﺕ – 2 n n−1 pCnp = p× (n − n! p! = p× (n − n! p − 1)! p)!× p)! p( = (n − n! p − 1) ! ...(1) p)!(
nCnp−−11 = n. ( n − 1) − ( n − 1)! !.( p − 1) ! = ( n n( n − 1) 1) ! ( p − 1) − p)!.( p− = (n − n! p − 1) ! ...( 2) p)!.( pCnp = nC p−1 : ( 2) ﻭ ( 1) ﻤﻥ n−1 : S – ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ3 S = 1.C 1 + 2Cn2 + 3Cn3 + ... + nC n n n : ﻤﻤﺎ ﺴﺒﻕ S = n.Cn0−1 + nCn1−1 + C2 + ... + nC n−1 n−1 n−1 S = n Cn0−1 + nC 1 + C2 + ... + nCnn−−11 n−1 n−1 S = n.2n−1 : 1 ﻭ ﻤﻥ ﺍﻟﺴﺅﺍل . 9ﺍﻟﺘﻤﺭﻴﻥ 100 p=100 Cp .a100− p p 100 ( ) ∑a + b = .b p=0 : a30 .b30 ﻤﻌﺎﻤل- 100 − p = 70 : ﻟﺩﻴﻨﺎ- p = 30 p = 30 : ﻭ ﻤﻨﻪ C 30 : ﺇﺫﻥ ﺍﻟﻤﻌﺎﻤل ﻫﻭ 100 100 − p = 41 a41 × b59 : ﺇﺫﻥ : ﺭﺘﺒﺔ ﺍﻟﺤﺩ- p = 59 p = 59 : ﺇﺫﻥ . 60 : ﻭ ﻋﻠﻴﻪ ﺭﺘﺒﺔ ﻫﺫﺍ ﺍﻟﺤﺩ ﻫﻲ
. 10ﺍﻟﺘﻤﺭﻴﻥ n p=n n− p p p=n Cnp . Cnp ∑ ∑( ) ( ) ( )1 + 1= 1 1 = p=0 p=0 2 = C 0 + C 1 + ... + C n n n n1)n ( −1) n p=n (1)n− p .(−1) p∑(1 + = 1 + = Cnp p=0 ∑ ( ) ( )p=n p= Cnp −1 = Cn0 − C 1 + Cn2 − ... + −1 n Cnn np=0 Cn0 1 Cn2 −1 n Cnn ( )0= − C n + − ... + : ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻤﺠﺎﻤﻴﻊ S1 = (1 + 1)n = 2n ( ) ( )S1 =C0 + C 2 + ... + C 1 + Cn3 + ... n n n S1 = S2 + S3( ) ( )0 = 0 C n + C 2 + ... − Cn1 + Cn3 + ... n 0 = S2 − S3 S2 + S3 = 2n : ﺇﺫﻥ S2 − S3 =0 2S2 = 2n : ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩS3 = 2n−1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ S2 = 2n−1 : ﻭ ﻋﻠﻴﻪ S2 = 2n : ﺇﺫﻥ 2 . 11ﺍﻟﺘﻤﺭﻴﻥ ( )pn : 1 ≤ 1 : ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ n! 2n−1
ﺃﻱ 1 ≤ 1 11 ﻤﻥ ﺃﺠل : n = 1 - 1! ≤ 20 -ﻭ ﻫﺫﺍ ﺼﺤﻴﺢ ﻭ ﻤﻨﻪ p 1ﺼﺤﻴﺤﺔ ( ). ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1 )p(k : 1 ≤ 1 !k 2k −1 1 1 p(k + )1 : ( k + !)1 ≤ 2k ﻟﺩﻴﻨﺎ k ≥ 1 : ﺇﺫﻥ k + 1 ≥ 2 :ﻭ ﻋﻠﻴﻪ ( k + 1) : k ! ≥ 2.k ! :(1)... (k 1 ≤ 1 : ﺒﺎﻟﺘﺎﻟﻲ ﻭ (k + ≥ !)1 ! 2.k : ﻤﻨﻪ ﻭ ! 2.k !)+ 1 11 11 ﻟﻜﻥ k ! ≤ 2k−1 :ﻭ ﻤﻨﻪ 2k ! ≤ 2.2k−1 : 1 1 ( 2 ) ... ! 2.k ≤ 2k ﺇﺫﻥ : 11 ﻤﻥ ) (1ﻭ ): ( 2 (k + 1)! ≤ 2k ﺇﺫﻥ p k + 1 :ﺼﺤﻴﺤﺔ ( ).ﻭ ﻤﻨﻪ p n :ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ ( ). ﺍﻟﺘﻤﺭﻴﻥ. 12 – 1ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻜﻭﻨﺔ ﻤﻥ 6ﺃﺭﻗﺎﻡ : ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل abcdefﺤﻴﺙ a ≠ 0 : ﻟﺩﻴﻨﺎ 10 :ﺇﻤﻜﺎﻨﻴﺎﺕ ﻻﺨﺘﻴﺎﺭ ﻜل ﻋﺩﺩ ﻤﻨﻬﺎ ﻤﺎ ﻋﺩﺍ aﻓﻠﺩﻴﻨﺎ 9ﺇﻤﻜﺎﻨﻴﺎﺕﻷﻥ a ≠ 0 :ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﻫﻭ 9 × 109 :
– 2ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻜﻭﻨﺔ ﻤﻥ 6ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل abcdef :ﺤﻴﺙ a ≠ 0 -ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﻤﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﺒﻤﺎ ﻓﻴﻬﻡ ﺍﻟﺘﻲ ﺘﺸﻤل 0ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ﻫﻭ :10 × 9 × 8 × 7 × 6 × 5 : !10 A160 ﺃﻱ !) (10 − 6ﺃﻱ ﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﻫﻭ 151200 :ﻭ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﻤﻥ ﺍﻟﺸﻜل abcdefﻫﻭ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺫﺍﺕ 5ﺃﺭﻗﺎﻡ ﻭ ﻋﺩﺩﻫﺎ A95ﺤﻴﺙ : A95 = (9 !9 = ×9 ×8 7 × ×6 5 !)− 5 ﺃﻱ A95 = 15120 : ﻭﻤﻨﻪ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺫﺍﺕ 6ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻫﻭ : A160 − A95 = 136080 – 3ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻜﻭﻨﺔ ﻤﻥ 6ﺃﺭﻗﺎﻡ ﻭ ﻤﻀﺎﻋﻔﺔ ﻟـ 5ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل abcde0 ﺃﻭ a ≠ 0 abcde5ﺃﻱ ﺭﻗﻡ ﺁﺤﺎﺩﻫﺎ ﺇﻤﺎ 0ﺃﻭ ( )5 ﻭ ﻋﺩﺩﻫﺎ 9 × 10 × 10 × 10 × 10 × 2 :ﺤﺴﺏ ﺍﻟﻤﺒﺩﺃ ﺍﻷﺴﺎﺴﻲ ) ﻟﺩﻴﻨﺎ 9ﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﻻﺨﺘﻴﺎﺭ aﻭ 10ﺇﻤﻜﺎﻨﻴﺎﺕ ﻻﺨﺘﻴﺎﺭ ﻜل ﻤﻥ bﻭ Cﻭ dﻭ eﻭ 2ﺇﻤﻜﺎﻨﻴﺔ ﻻﺨﺘﻴﺎﺭ ( f ﻭ ﻤﻨﻪ ﻋﺩﺩ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﻫﻭ 18 × 104 = 180000 : – 4ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻔﺭﺩﻴﺔ ﻭ ﺍﻟﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ .ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل abc :ﺤﻴﺙ a ≠ 0 :ﻭ { }c ∈ 1, 3,5,7,9ﺍﻟﻴﺴﺎﺭ ﻫﻭ : -ﻋﺩﺩ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﻔﺭﺩﻴﺔ ﻤﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﺒﻤﺎ ﻓﻴﻬﺎ ﺍﻟﺘﻲ ﺘﺸﻤل 0ﻋﻠﻰ 8 × 9 × 5ﺃﻱ 360 -ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻔﺭﺩﻴﺔ ﻤﻥ ﺍﻟﺸﻜل abc :ﻫﻭ 8 × 5 :ﺃﻱ 40 ﻭ ﻤﻨﻪ ﻋﺩﺩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻜﻭﻨﺔ ﻤﻥ 3ﺃﺭﻗﺎﻡ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻭ ﻓﺭﺩﻴﺔ ﻫﻭ 360 − 40 = 320 :
ﺍﻟﺘﻤﺭﻴﻥ. 13 2 !20 20 ﻋﺩﺩ ﺍﻟﺴﺤﺒﺎﺕ ﺍﻟﻤﻤﻜﻨﺔ 20 − 2 !× 2! : ( )C = = 190 (1ﻟﺘﻜﻥ Aﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺠﻤﻭﻉ ﺍﻟﺭﻗﻤﻴﻥ ﻴﺴﺎﻭﻱ . 10 }}A = {{1,9},{2,8},{3,7},{4,6 (p )A = 4 = 2 190 95 (2ﻟﺘﻜﻥ Bﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﺭﻗﻤﻴﻥ ﻴﺴﺎﻭﻱ : 4B = { {1,5},{2,6},{3,7},{4,8},{5,9},{6;10},{7,11} ,{8,12} ,{9,13} ,{10,14} ,{11,15} ,} }{12,16},{13,17},{14,18},{15,19},{16,20 (p B ) = 16 = 8 190 95 – 3ﺤﺴﺎﺏ ( ): pB A pB ( A ) = p ( A∩ B ) )p(b({ }p 1A ∩ )B = 190 ﻭ ﻤﻨﻪ : =A∩ B }{3, 7 ﻟﻜﻥ : 1pB ( )A = 190 = 1 × 19 = 1 ﻭ ﻋﻠﻴﻪ : 16 190 16 16 190 ﺍﻟﺘﻤﺭﻴﻥ. 14 (1ﻟﺘﻜﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ { }Ω = A, B : p(Ω) = 1ﻭ ﻤﻨﻪ p( A) + p( B) = 1
ﻟﻜﻥ p( A) = 2 p( B) :ﻭ ﻤﻨﻪ 3 p( B) = 1 : = )p( A 2 ﻭ ﻋﻠﻴﻪ = )p(B 1 ﺇﺫﻥ : 3 3 2 1 ( )pA = 1 − (p )A = 1 − 3 = 3 ﺤﺴﺎﺏ ): p( A ∩ B )p( A∪ B) = p( A) + p(B) − p( A∩ B 1 = 1 + 2 − (p A ∩ )B 3 3 ﻭ ﻤﻨﻪ p( A ∩ B) = 0 ﻗﻴﻡ X -2ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ : X 100 -50 pX 21 33 -ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻴﺎﺘﻲ ﻟﻠﻤﺘﻐﻴﺭ : X E ( X ) = 100 × 2 − 50 × 1 = 200 − 50 3 3 3 150 E ( X ) = 3 = 50)V(X = 2 (100 − 50)2 + 1 ( −50 − 50)2 : ﺍﻟﺘﺒﺎﻴﻥ - 3 3 2 1 5000 + 10000= 3 )( 2500 + 3 )(10000 = 3V ( X) = 5000ﻭ ﻤﻨﻪ σ ( X ) 70,7 : -ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ : ﻟﺩﻴﻨﺎ σ ( X ) = V ( X) :
ﺍﻟﺘﻤﺭﻴﻥ. 15 ( )p C1 =0,3 ﺃﻱ: 30 ﺍﺤﺘﻤﺎل ﺍﺨﺘﻴﺎﺭ ﺜﻼﺠﺔ ﻤﻥ ﺇﻨﺘﺎﺝ ﺍﻟﻘﺴﻡ ﺍﻷﻭل ﻫﻭ: 100 60 ( )p C2 ﺃﻱ=0,6 : 100 ﺍﺤﺘﻤﺎل ﺍﺨﺘﻴﺎﺭ ﺜﻼﺠﺔ ﻤﻥ ﺇﻨﺘﺎﺝ ﺍﻟﻘﺴﻡ ﺍﻟﺜﺎﻨﻲ ﻫﻭ: ( )p C3 ﺃﻱ=0,1 : 10 ﺍﺤﺘﻤﺎل ﺍﺨﺘﻴﺎﺭ ﺜﻼﺠﺔ ﻤﻥ ﺇﻨﺘﺎﺝ ﺍﻟﻘﺴﻡ ﺍﻟﺜﺎﻟﺙ ﻫﻭ: 100 ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﺜﻼﺠﺔ Fﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل ﻋﻠﻤﺎ ﺃﻨﻬﺎ ﺍﻨﺘﺠﺕ ﻓﻲ ﺍﻟﻘﺴﻡ ﺍﻷﻭل ﻫﻭ : pC1 ( F ) = 0,75 ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﺜﻼﺠﺔ Fﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل ﻋﻠﻤﺎ ﺃﻨﻬﺎ ﺍﻨﺘﺠﺕ ﻓﻲ ﺍﻟﻘﺴﻡ ﺍﻟﺜﺎﻨﻲ ﻫﻭ : pC2 ( F ) = 0,85 ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﺜﻼﺠﺔ Fﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل ﻋﻠﻤﺎ ﺃﻨﻬﺎ ﺍﻨﺘﺠﺕ ﻓﻲ ﺍﻟﻘﺴﻡ ﺍﻟﺜﺎﻟﺙ ﻫﻭ : pC3 ( F ) = 0,90 ﻭ ﻤﻨﻪ ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻜﻭﻥ ﺜﻼﺠﺔ Fﺼﺎﻟﺤﺔ ﻟﻼﺴﺘﻌﻤﺎل ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺼﻨﻊ :) p( F) = pC1 ( F) × p(C1) + pC2 ( F) × p(C2 ) + pC3 ( F) × p(C3 = 0,75 × 0,3 + 0,85 × 0,6 + 0,90 × 0,1 = 0,822 ﺍﻟﺘﻤﺭﻴﻥ. 16 ﻨﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ Rﻟﻜﺭﺓ ﺤﻤﺭﺍﺀ ﻭ ﺒﺎﻟﺭﻤﺯ Nﻟﻜﺭﺓ ﺴﻭﺩﺍﺀ . ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻬﺫﺍ ﺍﻟﺴﺤﺏ ﻫﻭ A130 = 720 : (1ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﻭﻗﻭﻉ ﺍﻟﺤﺩﺙ Aﻫﻲ :)( R;R;V);( R;V;R);(V;R;R);(V;V;R);(V;R;V);( R;V;V ﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﻠﺤﺼﻭل ﻋﻠﻰ Aﻫﻭ :3.C62 × C41 + 3.C 1 × C 2 = 3 × 120 + 3 × 72 = 576 6 4 p ( )A = 576 ﺍﺤﺘﻤﺎل ﺍﻟﺤﺩﺙ : A 720 -ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﻭﻗﻭﻉ ﺍﻟﺤﺩﺙ : B R; R; R ; V;V;Vﻭ ﻋﻠﻴﻪ ﻋﺩﺩ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻼﺌﻤﺔ ﻟﻠﺤﺼﻭل) ( ) (
p ( B ) = 144 ﻋﻠﻰ Bﻫﻭ C63 + C43 = 144 :ﻭ ﻤﻨﻪ: 720 ﻨﻤﺫﺠﺔ ﺍﻟﻭﻀﻌﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺸﺠﺭﺓ ﺍﻻﺤﺘﻤﺎﻻﺕ : (3 4 R 8 4 N 8 R R 5 56 9 4 810 9 R410 N 3 8 N N 5 R 8 6 9 R 3 N 8 3 2 9 N 8 R 6 N 8
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199