Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore tech-2023_02(107)

tech-2023_02(107)

Published by Universum61, 2023-06-19 09:58:14

Description: tech-2023_02(107)

Search

Read the Text Version

№ 2 (107) февраль, 2023 г. PAPERS IN ENGLISH SAFETY OF HUMAN ACTIVITY DOI - 10.32743/UniTech.2023.107.2.15073 TO THE QUESTION OF ANALYSIS OF INDUSTRIAL AND ENVIRONMENTAL SAFETY MANAGEMENT SYSTEMS Nozimjon Mominjonov Undergraduate, Republic of Uzbekistan, Andijan E-mail: [email protected] Abdurakhim Khojiev Cand. of tech. sciences, professor Andijan machine-building institute, Republic of Uzbekistan, Andijan E-mail: [email protected] К ВОПРОСУ АНАЛИЗА СИСТЕМ УПРАВЛЕНИЯ ПРОМЫШЛЕННОЙ И ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТЬЮ Моминджoнов Нозимжон Немаджон углы магистрант, Республика Узбекистан, г. Андижан Хожиев Абдурахим Абдурахмонович канд. техн. наук, профессор Андижанский машиностроительный институт, Республика Узбекистан, г. Андижан ABSTRACT The purpose of the study is to improve the environmental situation at industrial enterprises, the effective use of general protection against harmful substances, the establishment of their wider use, as well as finding a solution to the problem and reducing the risk of exposure to harmful substances by studying the negative impact of harmful substances emitted by industrial enterprises, developing recommendations. АННОТАЦИЯ Цель исследования – улучшение экологической обстановки на промышленных предприятиях, эффективное использование средств общей защиты от вредных веществ, установление их более широкого применения, а также поиск решения проблемы и снижение риска воздействия вредных веществ путем изучения отрицательное воз- действие вредных веществ, выбрасываемых промышленными предприятиями, разработка рекомендаций. . Keywords: ecology, dust, harmful substances, control systems, air purification, diseases, dust collectors. Ключевые слова: экология, пыль, вредные вещества, системы управления, очистка воздуха, заболевания, пылеуловители. ________________________________________________________________________________________________ Introduction are not included in the natural cycle of substances, the use of environmentally hazardous technologies, energy Uzbekistan, among many developed countries, en- sources, etc., have led to an imbalance between human tered the new millennium with global problems of a so- activity and the environment. In most cases, there is a cio-economic, demographic and environmental nature. discrepancy between the vital activity of living organ- The intensive use of natural resources, the release into isms and the possibilities of their adaptive mechanisms the environment of unusable products of production that in a polluted environment [4, 12]. __________________________ Библиографическое описание: Mominjonov N., Khojiev A. TO THE QUESTION OF ANALYSIS OF INDUSTRIAL AND ENVIRONMENTAL SAFETY MANAGEMENT SYSTEMS // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15073


№ 2 (107) февраль, 2023 г. A wide range of studies has been carried out to solve or a general lesion. Some types of dust have the ability theoretical and practical issues in the field of analyzing to cause additional diseases. These include diseases of industrial and environmental safety management sys- the upper respiratory tract, mucous membranes of the eyes, tems, reducing emissions of harmful substances from in- and skin. The ingress of dust into the lungs is the most dustrial enterprises and vehicles into the environment serious problem, as it creates the conditions for the de- and the impact on living organisms in the CIS countries velopment of pneumonia, tuberculosis, and lung cancer. (Polinskaya et al. 1979, Siganek 1988, Pakalov 1994, Silveira 2005, Shilin 2011, Roshchupkin et al.). Among Methodology for solving the problem the scientists of our republic, N. Norboev, P. Zakirov, E. Khudaiberdiev, I. Samatov, O. Kudratov, M. Musaev To solve the problem of cleaning from dust and and many other authors conducted research on methods harmful substances in industrial enterprises, the follow- of cleaning atmospheric air from pollutants and other areas. ing was proposed: At the same time, despite many years of research expe- rience, the interest of scientists in this topic has not lost • localization of air dust cleaning devices, expan- its relevance. The study of the analysis of industrial and sion of production of these devices on the territory of environmental safety management systems is of current Uzbekistan; scientific and practical importance. • strengthen environmental control at enterprises According to the latest statistical analysis, 181 en- producing building materials, develop theoretical and terprises in the republic cause some damage to the at- practical recommendations based on the study of envi- mosphere, and 808 thousand tons of emissions are ronmental degradation at enterprises and the level of emitted from them into the environment per year. compliance with environmental requirements. Decrees of the President No. PP-5024 dated April 21, Analysis of the obtained results 2017 “On improving the system of state administration in the field of ecology and environmental protection” It is known that scientific and technological achieve- and PP-2915 “On measures to ensure the activities of the ments are of leading importance in the development of a State Committee for Ecology and Environmental Pro- society of productive forces, facilitate the use of natural tection of the Republic of Uzbekistan”, Resolution of the resources by man, accelerate the circulation of sub- Cabinet Ministerial No. 310 of May 23, 2017 “Regulations stances, and make it possible to increase the role of the on the State Committee for Ecology and Environmental social factor higher than natural factors in the develop- Protection” of the Republic of Uzbekistan is of great ment of society. As a result, thanks to labor, man is in- importance in solving the above problems [1, 2, 3, 5, 6]. creasingly freed from direct dependence on the natural environment, and strengthens his influence on nature. Formulation of the problem Factors such as the growth of industrial enterprises, the chemicalization of agriculture, an increase in the popu- Dust can affect the organs of vision, cause inflam- lation and road transport, lead to the release of various mation (conjunctivitis), occupational cataracts and have dust and gas emissions, the amount and type of wastewater, a strong sensitive effect on the mucous membrane and and municipal solid waste into the environment. The inter- cornea of the eye, skin pollution, cause various types of action of nature and society is of particular importance dermatitis and eczema. in the scientific solution of problems arising in the process of nature conservation. The impact of dust on the body in various forms is analyzed, their chemical composition is determined. The The scheme of the relationship between human pro- main effect of dust is manifested, first of all, when it is duction activities and the environment was discussed be- inhaled. Inhalation of dusty air can lead to the development low, fig. 1. of respiratory damage: bronchitis, pneumoconiosis, Figure 1. The dependence of the productive activity of people on the environment In places of strong human impact on nature, environ- tons of gas waste containing sulfur oxide IV, carbon ox- mental stresses and sometimes catastrophes occur, that is, ides II, IV. For example, up to 150 million tons of CO2, the reverse influence of nature on human impact is 70 million tons of dust per year are emitted by construc- clearly felt. Every year, various enterprises emit 2.5 billion 21


№ 2 (107) февраль, 2023 г. tion, ferrous and non-ferrous metallurgy and other enter- a poisonous substance with carcinogenic properties. prises. Gases emitted by vehicles are the main cause of air These gases cause the formation of smog, a phenomenon pollution. The gas produced during incomplete combus- that in many cases is harmful to living organisms. tion of fuel in internal combustion engines consists of a mixture of 200 different highly toxic gases, including CO, A large amount of dust emissions into the atmos- CO2, paraffinic and oleic hydrocarbons, aromatic com- pheric air leads to a change in the speed and spectrum of pounds, aldehydes, nitrogen oxides, tin compounds. solar radiation, as well as to a deterioration in the trans- Among these gases, 30 percent is 3,4-benzopyrene, parency of the air. For example, this table 1 shows the dynamics of air pollution in the city of Tashkent. Table 1. Shows the dynamics of air pollution in the city of Tashkent Pollutants, million tons/year 2004-2008 2009-2013 2014-2016 2017-2021 Dust 2.9 2.8 1.3 1.3 Sulfur oxide 2.4 2.6 0.4 0.2 Carbon monoxide 0.3 0.9 0.7 1.0 Nitric oxide II 2.0 2.2 1.9 2.0 Phenol - 0.9 1.6 1.3 Hydrogen fluoride - - 1.4 0.4 Ammonia - 4.5 0.9 1.2 News - 1.3 1.1 0.6 3 4 benzopyrene - - 0.5 0.7 Formaldehyde - 7.3 1.7 1.7 Ozone - 1.5 2.7 0.8 Hydrogen peroxide 1.6 1.4 - 0.3 Acrolein - 0.6 - - Mercury - 1 1.0 0.7 Serocarbon - - 1.2 1.2 In terms of air pollution, Uzbekistan ranks 18th Sedimentation tanks (gravitational) are designed for among 106 countries. According to the analysis of the cleaning from dust by the gravitational method. These IQAir organization for 2020, the level of air pollution in devices clean dust particles, the size of which is from 50 to the city of Tashkent with fine particles is 29.9 μg. The 500 microns. The device is simple, but it cannot remove norm of air pollution in cities according to the World fine dust particles [9]. Health Organization is 10 μg [5, 7, 8]. The results of this analysis in our country are much higher than in industri- The operation of inertial dust collectors is based alized countries. Air pollutant emission factors have the on the fact that air with fine dust particles is cleaned due following formula. to impact on obstacles or sudden changes in direction. The efficiency of this device is up to 65-80%, and it is ������ = ������������ ∙ ������������(1 − ������������)/100. designed to clean dust particles with a size of 45 microns. Centrifugal dust removal is carried out in cyclones. With Here: E - emission, lb/hour; Rx - product volume, t/h; the help of cyclones dust is cleaned, the size of which is Fx is the emission factor, pounds/ton; ER is the overall 4-5 microns, the efficiency of the device is up to 98%. emission factor from air pollution control. Wetting dust cleaning devices allow you to simulta- Dust enters the atmosphere mainly in two ways - as neously clean the air from dust and toxic gases. These a result of natural processes and as a result of human devices operate on the basis of the absorption of gas and production activities. Natural processes include volcanic dust by liquid droplets or a film of liquid. To increase eruptions, forest fires, space dust, etc. Industrial enterprises the contact surface, liquid and gas move in opposite also play a large role in the spread of dust in the air. directions, and the liquid is sprayed from above. The main ones include: enterprises for the production The cleaning efficiency of the flat nozzle washing tower of building materials - 34.7%, thermal power plants - is 75-85%. Wet vacuum cleaners have the following 29.5%, road transport - 15.8%, ferrous metallurgy - 12.4%, disadvantages. It is difficult to separate the washed chemical industry - 4.6%, non-ferrous metallurgy - 2.2% dust from the water, as a result of gas absorption, acid oil refineries - 0.5%. or alkali is formed together with the dust, which leads to corrosion of the walls of the equipment. Since the dust emitted by industrial enterprises has a different shape, size and density, it is cleaned in different The filtration method is based on the capture of dust ways. There are the following methods of air purifica- by passing dusty air through porous barriers. Filtering tion from dust: 1) gravity method, 2) cleaning method barriers are divided into 2 types: 1) granular-layer filters based on dry inertia and centrifugal force, 3) wetting (coke, sand, gravel, sawdust, etc.) trap large particles. method, 4) filtration method, 5) electrostatic method, 2) fabric filters (paper, felt, fiberglass, thread and fabrics 6) coagulation method using sound and ultrasound . 22


№ 2 (107) февраль, 2023 г. made of synthetic fibers, etc.) trap fine dust particles. (gas, dust particles) are thrown against the wall of the The filtering equipment has a very easy clogging. But it cyclone, together with air (gas) fall to the bottom of the is necessary to clean the filter cloth by shaking it from housing and exit through the outlet. Purified air (gas) time to time. Therefore, they quickly fail. moves up the pipe, forms a vortex flow and goes outside. The cyclone is mainly used in industrial plants. But in Air purification from dust in electrostatic precip- many factories, dust filters are broken or missing al- itators, dust particles are cleaned in devices under the together. This, in turn, has a serious impact on the health action of electricity and have the following structure: of employees. 1. Arc electrode. 2 Drowning electrode. When an electric current is applied to the electrodes, the gas molecules Experimental studies were carried out at a cotton gin. are ionized. Ions, in turn, are adsorbed on the surface of In experiments carried out on the basis of a matrix of a full a dust particle and, under the action of an electric field, factorial experiment, the efficiency of air purification by are directed to the depositing electrode and deposited a cyclone was taken as the output parameter. Statistical on the electrode. From time to time the surface of the analysis of the experiments performed showed that electrode should be cleaned of dust. By design, electro- the efficiency of cyclone air cleaning depends primarily static precipitators have a lamellar and tubular shape. on the rate of polluted air entering the cyclone from cotton cleaning devices through a pneumatic transport Removal of dust by sound and ultrasound. These de- pipe: at a speed of 10-15 m/s, the cleaning efficiency vices are used to improve the efficiency of cyclones and reaches high values and amounts to 90-97%, at speed filters and have the following salinity. With the help of of 15-25 m / s - 70-80%, with an increase in air speed, a siren, sound or ultrasound is supplied to the device. As the efficiency decreased, this is due to the fact that, due a result, dust particles begin to move. Due to the for- to the high speed, dust particles do not have time to fall mation of a certain humidity with the help of water, wet down, are carried away and discharged into the external dust particles coarsen, coagulate and begin to sink. environment. We also observed that the degree of air (gas) These devices mainly capture smoke, fog, etc. [10, 11]. purification depends on the geometric dimensions and shape of the cyclone, the properties of the dust, and Experiments and observations show that the most other factors. effective means of improving the environmental situation at industrial enterprises, removing harmful dust are cyclone Conclusions filters. Cyclone (in engineering) - a device designed to purify air (gas) from suspended solid particles (gas, water In places of strong human impact on nature, envi- droplets or dust) under the action of centrifugal force. ronmental stresses and sometimes catastrophes occur, The design consists of a cylindrical body, tapering that is, the reverse influence of nature on human impact downwards, a pusher and an outlet pipe, which are in- is clearly felt. Since the dust emitted into the atmosphere stalled in the body in a tension or spiral manner. Dirty by industrial enterprises has different shapes, sizes and air (gas) is sent to the top of the cyclone through a nozzle densities, it is recommended to clean them in different at a certain speed. Air (gas) circulates and falls from top ways depending on their suitability, and this should be to bottom, forming a spiral pile. Then, under the action strictly controlled. of centrifugal inertial force, suspended solid particles References: 1. Decision of the Cabinet of Ministers in order to ensure the resolution PP-2915 \"On measures to ensure the activities of the State Committee for Ecology and Environmental Protection of the Republic of Uzbekistan\". [in Uzbek]. 2. Decree of the Cabinet of Ministers of the Republic of Uzbekistan dated May 23, 2017 No. 310 \"Regulations on the State Committee for Ecology and Environmental Protection\". [in Uzbek]. 3. Decree of the President of the Republic of Uzbekistan No. PP-5024 “On improving the system of public administration in the field of ecology and environmental protection” dated April 21, 2017. [in Uzbek]. 4. Environmental Protection Notice. No. 5 (193) 2017. [in Uzbek]. 5. Kudratov A., Ganiev T. Life safety. Tutorial. Tashkent - \"Trud\", 2004, -278 pages [in Uzbek]. 6. Minutes of the meeting of the parliamentary commission dated February 18, 2022 on monitoring the implementation of national goals and objectives in the field of sustainable development of Uzbekistan until 2030. [in Uzbek]. 7. Mutalov Sh.A., Tursunov T.T., Niyazova M.M. Industrial ecology. Textbook. - Tashkent. Publishing and printing association \"International Islamic Academy of Uzbekistan\", 2020. - 360 pages [in Uzbek]. 8. Turobzhonov S.M., Tursunov T.T., [et al.]. Industrial waste recycling technology. T .: \"Uchitel\", 2011. - 280 pages [in Uzbek]. 9. Turobzhonov S.M., Tursunov T.T., Adilova K.M. Chemistry of the environment. Tutorial. T .: Cholpon Publishing House, 2012 - pp. 15-20. [in Uzbek]. 10. Turobzhonov S.M., Tursunov T.T., Pulatov Kh.L. Waste water treatment technology. T: Music. 2010. - 256 pages [in Uzbek]. 11. Tursunov T.T., Niyazova M.M., [et al.]. Methodical manual for conducting practical classes in ecology // T .: ToshKTI, 2019. -24 p. 12. Yormatova D., Ubaidullaev Sh. Ecological monitoring. - Tashkent. \"Science and Technology\", 2012, -212 pages [in Uzbek]. 23


№ 2 (107) февраль, 2023 г. COMPUTER SCIENCE, COMPUTER ENGINEERING AND MANAGEMENT DOI - 10.32743/UniTech.2023.107.2.14984 STEPPED MODE OF COMBINED ULTRA HIGH FREQUENCY (UHF) DRYING OF CEREALS Janibek Kurbanov Doctor of technical sciences, associate professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent Aziz Saitov PhD, Associate Professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent Zokhid Toshboyev PhD, Associate Professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent E-mail: [email protected] СТУПЕНЧАТЫЙ РЕЖИМ КОМБИНИРОВАННОЙ СВЧ СУШКИ ЗЕРНОВЫХ Курбанов Жанибек Файзуллаевич д-р техн. наук, доцент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Саитов Азиз Азимович PhD, и.о.,доцент Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Тошбоев Зохид Бахрон угли PhD, и.о.,доцент Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The article discusses the use of microwave electromagnetic field for drying grain. A stepped mode of electromagnetic waves of ultra-high frequency convective drying of cereals with an initial humidity of 25% has been developed. АННОТАЦИЯ В статье рассматривается использование электромагнитного поля СВЧ для сушки зерна. Разработан ступенчатый режим электромагнитных волн сверхвысокочастотной конвективной сушки зерновых с начальной влажностью 25 %. Keywords: stepped mode, combined, ultra-high frequency, convective, dryer, electromagnetic fields. Ключевые слова: ступенчатый режим, комбинированный, сверхвысокая частота, конвективный, сушильная установка, электромагнитная поля. ________________________________________________________________________________________________ During the period of grain harvesting in Uzbekistan, Timely harvesting of grains: wheat, rice, sorghum, one often has to put up with natural anomalies: a thun- corn, chickpeas and other crops, as well as their preser- derstorm, accompanied by short-term heavy rains that vation is one of the important tasks of the agro-industrial destroy partly or completely grown crops, heavy wind complex of the republic. gusts that break ears of corn, which makes it difficult to In the event of rainy weather, grains get wet and harvest the grown crops. a biological process takes place in them, leading to the destruction of the internal structure of the grain. __________________________ Библиографическое описание: Kurbanov J.F., Saitov A., Toshboyev Z.B. STEPPED MODE OF COMBINED ULTRA HIGH FREQUENCY (UHF) DRYING OF CEREALS // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/14984


№ 2 (107) февраль, 2023 г. The creation of technological tools and apparatus and secondary resources using microwave electromagnetic that provide intensive drying of post-harvest moistened fields of ultrahigh frequencies at the stage of preparing grain while maintaining its physical and biological prop- cereal grains for the drying process. erties remains relevant and in demand [1]. Figure 1 shows an experimental diagramm of ultrahigh The purpose of this work is to develop a method for frequenciy dryer, where a stepped mode of ultra high the stepped mode of a ultra high frequency (UHF) com- frequency (UHF) electromagnetic waves for convective bined convective drying installation. drying of grain with an initial humidity content of 25% is used. At the same time, the following tasks are solved: in- creasing the thermal efficiency of the installation, inten- The choice of frequency ν=350 MHz is due to the sifying the drying process through the introduction of an fact that this frequency corresponds to the maximum ab- ultra-high generation system; rejection of sources of ex- sorption capacity of cereals. ternal energy supply. The choice of the stepped mode of combined ultra The production of the main elements of the drying high frequency (UHF) -convective drying consists in di- installation from fiberglass reduces the cost of production. viding the process into three stages of different duration. At the first stage, cereal grains are heated by a micro- The use of an electromagnetic field of ultra-high fre- wave heat sink for 1.5 minutes to a temperature of 30- quency allows you to completely destroy the microflora 320C. and increase the shelf life of the product. At the second time stage, dried cereals are heated up It is established that the use of electromagnetic to t=46-470C for 3 minutes. At the third stage, in the same fields of ultra-high frequency is the most effective at the way, the drying temperature is processed to t = 37-520C stage of preparation of plant raw materials for drying, and their humidity is adjusted to 14%. and not at the stage of its direct drying, which reduces the loss of thermolabile biologically active substances For different cereals, the duration and frequency of during the drying process, and therefore, to obtain a fin- ultra high frequency (UHF) are determined experimentally, ished product of higher quality and nutritional values [2]. taking into account the analysis of drying curves [3]. Based on the above analysis, a conclusion was made about the relevance of developments in the field of cre- ating technologies for processing plant raw materials t, 0C 60 50 40 30 0 1 2 3 4 5 6 7 8 9 10  min Figure 1. Stepped ultra high frequency (UHF) mode The set of technical tasks are solved by the fact that chamber, magnetrons of the ultra high frequency (UHF) in the installation for drying bulk materials, containing generator are installed, located in increasing height in a body made of a cylindrical or prismatic shape and accordance with the height of the fluidized bed in each equipped with a coaxially located blocking container in drying section at the level of the lower boot window. it, repeating the shape of the body and dividing the latter Each drying section is equipped with a drying agent flow into a central and peripheral zones. Moreover, the cen- control valve. tral zone performs the function of a hopper for the dried product, and in the peripheral zone there is a drying The use of ultra high frequency (UHF) electromag- chamber, consisting of separate sections arranged in al- netic fields made it possible to increase thermal effi- ternating order with screw conveyors, each section is ciency and intensify the drying process by obtaining an equipped with perforated gratings, lower loading and ultrahigh system for generating electromagnetic waves. upper overflow windows, and the body is equipped The use of electromagnetic fields is the most effective with a loading - unloading sluice gates and branch pipes tool in the preparation of vegetable raw materials for dry- for supplying and discharging the drying agent, in the ing, during drying. This made it possible to reduce the dry- partitioned tank coaxially in the center and along the ing time and obtain a finished product of high quality periphery opposite the individual sections of the drying and nutritional value. 25


№ 2 (107) февраль, 2023 г. References: 1. Н.Ф. Ушакова, Опыт применения СВЧ энергии при производстве пищевых продуктов [Текст] / Н.Ф. Ушакова, Т.С. Копысова, А.Г. Кудряшова, В.В. Касаткин // Пищевая промышленность. – 2013. - № 10 – с. 30-32. 2. И.К. Колесников, О.Х. Кадиров, Ж.Ф. Курбанов, Н.В. Яронова. Новые инновационные технологии на основе единого пространственного поля. Вестник ТашИИТ, Ташкент, 2012, с. 45-50. 3. И.К. Колесников, А.А. Саитов. Устройство экстрагирования растительного сырья на основе электромагнитных технологий. “АГРО ИЛМ” илмий амалий журнали 2019 йил 4-сони. 115-116 бет. 4. И.К. Колесников, А.А. Саитов. Электромагнитная технология переработки растительного сырья. “АГРО ИЛМ” илмий амалий журнали 2019 йил 6-сони. 112-113 бет. 5. Домарецкий В.А. Технология экстрактов, концентратов и напитков из растительного сырья. Учебное пособие / В.А. Домарецкий. - М.: ФОРУМ, 2010. -448 с. 6. Купчик М.П. Перспективы применения электрических полей для обработки пищевых продуктов и сельско- хозяйственного сырья / М.П. Купчик, Н.И. Лебовка, М.И. Бажал // Хранение и переработка сельхозсырья. - 2002. - № 8. -С. 31-37. 7. Смищук Л.В.,Литвинюк Н.Ю., Сулиманова Л.Д., Копысова Т.С. Использование современных технологий и оборудования на базе комбината школьного питания с. 283- 286 // Региональный рынок потребительских товаров: особенности и перспективы развития, качество и безопасность товаров и услуг: сб. тр. Третьей Всероссийской науч. - практ. Конф. – Тюмень: ТюмГНГУ, 2009. -384 с. 26


№ 2 (107) февраль, 2023 г. DOI - 10.32743/UniTech.2023.107.2.14983 MULTI-CHAMBER MICROWAVE - CONVECTIVE DRYER OF CEREALS Janibek Kurbanov Doctor of technical sciences, associate professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent Aziz Saitov PhD, Associate Professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent Zokhid Toshboyev PhD, Associate Professor, Tashkent State transport university, Republic of Uzbekistan, Tashkent E-mail: [email protected] МНОГОКАМЕРНАЯ СВЧ – КОНВЕКТИВНАЯ СУШИЛКА ЗЕРНОВЫХ ЗЛАКОВ Курбанов Жанибек Файзуллаевич д-р техн. наук, доцент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Саитов Азиз Азимович PhD, и.о.,доцент Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Тошбоев Зохид Бахрон угли PhD, и.о.,доцент Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The article discusses the scheme of the developed multi-chamber combined convective drying unit based on electromagnetic technology using a stepped mode of the electromagnetic field of ultra high frequency. АННОТАЦИЯ В статье рассмотрена схема разработанной многокамерной комбинированной конвективной сушильной установки на основе электромагнитной технологии с использованием ступенчатого режима электромагнитного поля сверхвысокой частоты. Keywords: stepped mode, combined, ultra-high, frequency, multi-chamber, convective, dryer, electromagnetic fields. Ключевые слова: ступенчатый режим, комбинированный, сверхвысокий, частота, многокамерный, конвек- тивный, сушильная установка, электромагнитная поля. ________________________________________________________________________________________________ The use of a stepwise mode of combined ultra high A multi-chamber combined ultra high frequency frequency (UHF) -convective drying was reflected in the (UHF) - convective dryer is shown in Fig. 1. Ensuring developed multi-chamber cereal dryer [1]. the stepwise mode in the installation of the drying chamber is shown in Fig.2. __________________________ Библиографическое описание: Kurbanov J.F., Saitov A., Toshboyev Z.B. MULTI-CHAMBER MICROWAVE - CONVECTIVE DRYER OF CEREALS // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/14983


№ 2 (107) февраль, 2023 г. 24 13 1 V 6 20 19 22 23 7 10 2 А V 21 1 A 9 8 2 3 5 9 10 7 6 Raw 14 22 material The air 23 b) B 17 21 17 а) 18 12 16 4 15 11 The air 18 16 15 v) Figure 1. Multi-chamber combined ultra high frequency (UHF) - convective dryer A multi-chamber combined ultra high frequency is distributed to individual sections 5 through the air (UHF) oven is a convective drying plant, which is made distribution chamber 14, the annular manifold 15 and in the form of a housing 1, made in the form of a cylinder the valves 16. Screw conveyors are driven by a motor- or a prism. It is located coaxially with a blocking tank 2, reducer 17, a bevel gear pair 18, sprockets 19 and valuable repeating the shape of the body, and dividing it into a gear 20. An insert 21 is coaxially installed in the parti- central and peripheral zones, and the central zone performs tionable container 2, with magnetrons 22 placed in it, the function of a hopper 3 with a bottom 4, and a drying other magnetrons 23 are installed on the inner side of the chamber is located in the peripheral zone, consisting of container opposite the individual sections of the drying separate sections 5 and alternating screw conveyors 6. chamber. The ultra high frequency (UHF) generator 24 Each drying section is equipped with perforated gratings 7, is installed on the conical cover of the blocking tank 2 lower boot 8 and upper overflow 9 windows. The body (The designs of the ultra high frequency (UHF) genera- is equipped with loading 10 and unloading 11 sluice tor and magnetrons are not disclosed in the application gates, a branch pipe 12 for supplying a drying agent materials due to their well-known nature). and a branch pipe 13 for outlet. The drying agent (air) 28


№ 2 (107) февраль, 2023 г. 23 1 2-zone 3-zone 2 H 3 14 16 1-zone 15 б) 4 a) Figure 2. Device for providing stepwise mode of combined microwave drying In order to avoid screening of ultra high frequency Thus, the material to be dried is repeatedly dried in a (UHF) waves, the body 1, the blocking container 2, suspended bed and rested in a screw conveyor according the screw conveyors 6 and the insert 21 are made of to a sequentially stepped cycle of operation and simulta- a dielectric material, for example, fiberglass. neous exposure to microwave waves. From the latter in the direction of movement of the material of the screw Consider the operation of a drying plant using the conveyor 6, the dried material with a temperature of example of drying mung bean grains (a Central Asian t=52-530C enters the hopper 3, where it is dried due to legume). the additional inclusion of magnetrons 22 to the standard humidity. Moistened grains evenly through the loading sluice gate 10 enters the first drying section 5 in the direction Exhaust air saturated with evaporated moisture is of material movement, under the perforated grate 7 of removed through pipe 13. As the material dries, its frost- which the drying agent (air) is supplied through the iness increases and the height of the fluidized bed in- valve 16, which enters the annular collector 15. At the creases from section to section. Therefore, at a given same time, the ultra high frequency (UHF) generator 24 performance of the apparatus, the loading windows 8 of is turned on, which initially feeds the magnetrons 23. the screw conveyors 6 are provided at different heights. Under the influence of the upward flow, a fluidized layer The height of the fluidized bed for different materials is of material is formed, which is dried due to microwave controlled by the flow rate of the drying agent through generation. The material dried to a certain moisture con- valves 16. The temperature regime of drying by zones is tent from the first section enters through the loading controlled by the duration of exposure to microwave window 8 into the screw conveyor 6 following it in the waves and their power [2]. direction of movement of the material, powered by a motor-reducer 17 and rises. When lifting, the partially The use of microwave electromagnetic fields allowed: heated material does not come into contact with air (heat • improve thermal efficiency; carrier) and, identical to the oscillating drying mode, • to intensify the drying process by obtaining an rests while moving in the closed space of the screw con- ultra-high generation system. veyor. This ensures the movement of moisture from the The introduction of electromagnetic technology will deep layers to the surface of the material at t=30-320C. improve the quality of the grain and increase the shelf life. Then the material through the overflow window 9 enters the next drying section 5, where it is also dried in a fluidized bed with superimposed microwave generation. References: 1. Н.Ф. Ушакова, Опыт применения СВЧ энергии при производстве пищевых продуктов [Текст] / Н.Ф. Ушакова, Т.С. Копысова, А.Г. Кудряшова, В.В. Касаткин // Пищевая промышленность. – 2013. - № 10 – с 30-32. 2. И.К. Колесников, А.А. Саитов. Устройство экстрагирования растительного сырья на основе электромагнитных технологий. “АГРО ИЛМ” илмий амалий журнали 2019 йил 4-сони. 115-116 бет. 29


№ 2 (107) февраль, 2023 г. 3. И.К. Колесников, А.А. Саитов. Электромагнитная технология переработки растительного сырья. “АГРО ИЛМ” илмий амалий журнали 2019 йил 6-сони. 112-113 бет. 4. Абиев Р.Ш. Моделирование процесса экстрагирования из капиллярно-пористой частицы с бидисперсной структурой / Р.Ш. Абиев, Г.М. Островский // Теорет. основы хим. технологии. - 2001. - Т. 35. № 3. - С. 270. 5. Бабенко Ю.И. Экстрагирование растворенного вещества из пористого тела в движущуюся жидкость / Ю.И. Бабенко, Е.В. Иванов // Теор. основы хим. технол. - 2007. - Т. 41, № 2. - С. 225-227. 6. Борисенко Г.Г. Использование гидродинамической неустойчивости при микроволновом облучении жидких сред в биохимическом эксперименте / Г.Г. Борисенко, И.Г. Полников, К.Д. Казаринов // Электронная техника. Сер. 1. Электроника СВЧ. - 2007. - № 1(489). - С. 98-106. 30


№ 2 (107) февраль, 2023 г. INSTRUMENTATION, PRECISION AND ACCURACY, DATA MEASUREMENT TOOLS AND SYSTEMS DOI - 10.32743/UniTech.2023.107.2.15081 CONTROLLED AC STABILIZERS ON THE PRINCIPLE OF INDUCTION LEVITATION Gulschen Kerimzade Candidate of Technical Sciences, Associate Professor, Azerbaijan State Oil and Industry University Azerbaijan, Baku E-mail: [email protected] УПРАВЛЯЕМЫЕ СТАБИЛИЗАТОРЫ ПЕРЕМЕННОГО ТОКА НА ПРИНЦИПЕ ИНДУКЦИОННОЙ ЛЕВИТАЦИИ Керимзаде Гюльшен Санан канд. техн. наук, доцент, Азербайджанский Государственный Университет Нефти и Промышленности Азербайджан, г. Баку ABSTRACT In the presented article, some characteristic features of the characteristics of precision controlled high-precision AC stabilizers based on the principle of induction levitation are considered. Determining the output characteristics, establish- ing analytical relationships between the initial data and the output parameters of the stabilizer is one of the stages of the algorithm for solving the problems of designing the parameters of an AC stabilizer with induction levitation of the moving part. The stability and shape of the load current determines the reliability, accuracy, efficiency, service life of automation devices, test equipment and galvanic baths. This, in turn, contributes to the development of a mathematical model of the system of equations of electrical, magnetic, mechanical and thermal circuits of the stabilizer, the joint solution of which allows you to establish analytical relationships between the initial data and parameters such as working stroke, weight force, winding and core cross-sections, copper losses. АННОТАЦИЯ В представленной статье рассмотрены некоторые характерные особенности характеристик прецизионных управляемых высокоточных стабилизаторов переменного тока на принципе индукционной левитации. Определение выходных характеристик, установление аналитических связей между исходными данными и выходными пара- метрами стабилизатора является одним из этапов алгоритма для решения задач проектирования параметров ста- билизатора переменного тока с индукционной левитацией подвижной части. Стабильность и форма тока нагрузки определяет надежность, точность, экономичность, срок службы устройств автоматики, испытательной аппаратуры и гальванических ванн. Это в свою очередь способствует раз- работке математической модели системы уравнений электрических, магнитных, механических и тепловых цепей стабилизатора, совместное решение которых позволяет установить аналитические связи между исходными данными и параметрами как рабочий ход, сила веса, сечения обмоток и сердечника, потери в меди. Keywords: current stabilizer, induction levitation, moving part, high-precision, controlled, precision, source, de- pendence, levitation winding. Ключевые слова: стабилизатор тока, индукционная левитация, подвижная часть, высокоточный, управляемый, прецизионный, источник, зависимость, левитационная обмотка. ________________________________________________________________________________________________ Introduction the sources of power for various devices and installa- tions are power networks, and the constancy of the volt- Reliability, accuracy, efficiency and service life of age in such networks is usually not observed, and there automation devices, information and measuring equip- are always short-term and slow voltage fluctuations. ment, test equipment and galvanic baths are determined Such voltage fluctuations in many cases are unaccepta- by the stability and shape of the load current. Basically, ble, as they lead to disruption of the normal operation of __________________________ Библиографическое описание: Kerimzade G.S. CONTROLLED AC STABILIZERS ON THE PRINCIPLE OF INDUCTION LEVITATION // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15081


№ 2 (107) февраль, 2023 г. the equipment. A necessary condition for ensuring the The derivative inductance L with respect to the displacement of the core X is a constant value only for a specified accuracy is the stability of the load current. The narrow range of displacements x = X2 - X1. Therefore, the current stabilizes in a small range of supply voltage task of stabilizing the current and voltage at the load is changes (6-8)%. The operation of these stabilizers is based on the principle of magnetic suspension of ferromagnetic characterized by parametric and controlled stabilizers, cores. A controlled electrodynamic stabilizer allows you the principle of operation of which is based on the use of to smoothly adjust the value of the stabilized current. The stabilizer has an elongated magnetic circuit, on various physical phenomena. The operation of most of which a fixed and a moving AC coil are located. The moving coil is mounted on a mobile device (trolley) these stabilizers is based on the use of a non-linear cur- and can move freely along the magnetic circuit. rent-voltage characteristic of various elements used in Another type of controlled stabilizers are stabilizers with induction levitation windings, which are much sim- stabilizer circuits. The movable anchor, being subjected pler than existing ones in design, provide high stabiliza- to the action of the weight force Рв and the force of attrac- tion accuracy when the supply voltage changes over a tion Fe, automatically finds the equilibrium position wide range, allow you to simultaneously obtain several Fe=Рв(the point of intersection of the traction character- nominal values of the stabilized current, the shape of the istic Fe(X) and the horizontal direct weight force stabilized current curves is close to a sinusoid if the supply Рв).When the armature is moved, the inductance of the voltage sinusoidally (fig. 1). The main disadvantages of winding and its resistance change. In this case, these stabilizers are the possibility of their operation in the vertical position of the magnetic circuit and in the the steady state value of the current is defined as: absence of vibration and shaking 1,3-8. I = 2Pв (1) dL dx Figure 1. Volt-ampere characteristic of electrodynamic stabilizer Algorithm for solving the problem model consisting of a system of equations of electric, mag- One of the stages of the algorithm for solving the prob- netic, mechanical and thermal stabilizer circuits, the joint lems of designing the parameters of an AC stabilizer with inductive levitation of the moving part is the determination solution of which allows you to establish analytical rela- of output characteristics, the establishment of analytical re- lationships between the initial data and the output parame- tionships between the initial data and the working stroke ters of the stabilizer, design, which includes the fluctuation and magnitude of the mains voltage Uс=Ucmax-Ucmin, Unom xM, the weight force Pв, the sections of the windings So and and load current Iн. The stabilizer must be designed for the the core Sc, copper losses РМ . The initial values for calcu- rated load current Iн and for the rated voltage Uн, at which the levitation coordinate corresponds to the initial position lating an AC stabilizer with inductive levitation of the mov- of the levitation winding. Design criteria: allowable over- heating of the windings д1 and д2, allowable voltage in- ing part are the range of mains voltage change Uс, load crement at the terminals of the supply winding U1 and currents Iн1, Iн2, …Iнн, mains frequency w, load resistance allowable increment of the stabilized current at the load Iн Rн or load power Рн, as well as the stroke of the moving [3-6]. The basis of design is the establishment of analytical relationships between the initial data and geometric dimen- part xМ or minimum levitation coordinate value hmin. The sions. This requires the development of a mathematical levitation coordinate h is a linear function of the voltage U1: h = kuU1 − h1 (2) W12I1 3n 32


№ 2 (107) февраль, 2023 г. The maximum and minimum values of the levitation Table 1 shows the calculated values of the specific coordinate will be determined by the voltages U1max and magnetic conductivity  and the buckling coefficient в. U1min, respectively. Maximum stroke LW: Figure 2 shows the dependence U1 / xМ = f (I1 ) for xM = hmax − hmin = ku U1 = ku U1 = kи U1 W12I1 W1F1 W1 2Pв  different values of the weight force, which shows that with an increase in the nominal values of the current I1, the ratio (3) U1 / xМ = f (I1 ) decreases if the weight force of the The specific magnetic conductivity of the working air gap can be determined by the formula: levitation winding is constant. This is the case for multi- rated AC stabilizers, where with the switching of sections  = 20 b + 2.92 ln1 + a  (4) of the fixed winding, the current I1 changes, and the weight  c  2b force remains constant. The coefficient Кн takes into ac- count the voltage drop UR on the load Rн. Figure 3 shows To ensure the uniformity of the magnetic field of the the dependence. Кн=f(Рн) for different values of load re- working air gap, the following ratios are recommended: sistance Rн. [4]. Another important characteristic is the de- pendence of the weight force of the induction levitation mc = b = 2 : 6, ma = b = 2:6 (5) winding (ILW) Pв on the current I1, which is shown in fig. c c 4 for various values of the stroke xM. It shows that with an increase in current, the force of the weight increases, and with an increase in the stroke xM, it decreases. For supply- ing electroplating baths and test benches, for automated control of calibration parameters of measuring instruments, etc. precision current stabilizers are used as a power source. Table 1. Estimated values of  and в в/с в/а 2.0 2.5 3.0 4.0 5.0 6.0 2.0 в 1.85 1.72 1.61 1.48 1.38 1.34  6.73 6.98 7.44 8.00 8.64 9.30 2.5 в 1.68 1.57 1.49 1.39 1.32 1.27  7.97 8.30 8.73 9.36 9.86 10.55 3.0 в 1.56 1.47 1.40 1.32 1.26 1.22  9.30 9.60 10.00 10.64 11.20 11.86 4.0 в 1.42 1.36 1.31 1.24 1.20 1.17  11.75 12.06 12.4 13.10 13.60 14.20 5.0 в 1.34 1.29 1.25 1.19 1.16 1.13  14.24 14.60 15.00 15.7 16.2 16.83 6.0 в 1.28 1.24 1.2 1.16 1.13 1.11  16.8 17.00 17.60 18.16 18.76 19.40 Figure 2. Dependence U1 = f (I1) for different values of the weight force Рв. XM 33


№ 2 (107) февраль, 2023 г. Figure 3. Dependence Кн=f(Рн) for different values of Rн Analytical expressions for a number of basic de- overall powers on the initial data for design; dependence pendencies have been obtained that characterize the of the load current on the ambient temperature and the ability of current stabilizers with a levitation winding to temperature rise of the windings; dependence of the main satisfy their functions as an element of the general circuit dimensions on power, electromagnetic load and winding of the device: dependence of the voltage increment at the overheating temperature; dependence of the increment excitation winding terminals on mains voltage fluctuations; of induction in the core on fluctuations in the mains volt- dependence of the maximum stroke of the LW on the age, load power and rated power of the stabilizer [9]. voltage increments (supply winding) of the EW; de- pendence of the course of the LW, input, output and Figure 4. Dependence of the weight force Рв on the current I1 The main criteria for designing a current stabilizer For this purpose, a mathematical model has been de- are: allowable overheating , allowable voltage drop U1, veloped that allows, on the basis of solving the equations allowable stroke XM of the levitation winding, allowable of the levitation coordinate, mechanical forces, winding ratio of the height of the windings (or magnetic circuit) MMF and winding excess temperature, to establish the to their thickness (or width of the magnetic circuit) and most important analytical relationships between the ini- the accuracy of current stabilization for a given range of tial design data and the main parameters of the stabilizer changes in mains voltage U = Umax-Umin. As a generalized 8-10. The developed technique was used for a three- model, the design of a stabilizer with maximum symmetry limit stabilizer for stands and galvanic baths as an ad- and homogeneity of the magnetic system is considered justable source of stabilized current at 7,8,9 A. The [7-8]. 34


№ 2 (107) февраль, 2023 г. current stabilization error of the prototype current stabi- powering galvanic baths was made, a method for calcu- lizer was 0.1% when the mains voltage fluctuated in the lating a current stabilizer for testing equipment and gal- range (160-250) V. vanic baths was given, a computer study of the current stabilizer coupling equation using the program (EXEL) Conclusion was carried out. Analytical expressions for a number of basic de- The current states of power sources for galvanic pendencies are obtained that characterize the ability of baths are analyzed. The features of operation and varieties AC stabilizers based on the principle of induction levi- of electroplating baths, their fields of application are tation. A calculation of a three-section AC stabilizer for considered, the requirements for modeling the optimal temperature control of electroplating baths are established. References: 1. Abdullayev Ya.R., Kerimzade G.S.\" Design of EA with induction levitation elements. //Elektrotexnika . Moscow, № 5. 2015. рр. 16-22. 2. Abdullayev Ya.R., Kerimzade G.S., Mamedova G.V.\" Electrical and electronic apparatus \" .Textbook. Baku. ASOIU. 2019. 170 p. 3. Kerimzade G.S., Mutallimov M.F. \" Development of a current stabilizer control system \". // Scientific and technical journal \"Problems of Energy\".Baku. 2020. № 3 рр. 59-64. 4. Kerimzade G.S.\" Features of the current stabilizer control system\". // 6th İnternational Artificial İntelligence  Data Processing Sympozium,08-09 September, Malatiya, 2022. рр. 194-199. 5. Kerimzade G.S. Analytical connections of the parameters and sizes of the presizion stabilizer of alternating current using the effect of inducial levitation.// İJ TPE Journal.September.2022. № 3.рр. 175.184. 6. Kerimzade G.S.\" Characteristics of the current stabilizer control system. // International scientific and technical conference \"Modern problems of the electric power industry and development prospects\". Baku, Azerbaijan, Azerbaijan State Maritime Academy, november, 17-18. 2022. 7. Kerimzade G.S. Analysis of the methodology for calculation current stabilizer with induction levitation.// İJ TPE Journal.Dezember.2022. № 4. рр. 170-174. 8. Kerimzade G.S., Mamedova G.V. Analysis of EA parameters with LE. // Priborostroeniye.-Sankt Peterburq, 2018. № 12 (61).рр. 67-71. 9. Кerimzade G.S. Indicators of parametrs when designing electrical apparatus with levitation elements. // News of Azerbaijan High Technical Edicational Institutions. Volume 24. ISSUE 1 (135).2022. ISSN: 1609-1620. рp.39 – 43. 10. Piriyeva N.M. Оptimization of the parameters of the induction levitator.// News of Azerbaijan High Technical Edicational Institutions.ISSUE 1.2021. pp. 35-41. 35


№ 2 (107) февраль, 2023 г. CIVIL ENGINEERING AND ARCHITECTURE DOI - 10.32743/UniTech.2023.107.2.15031 ANALYSIS OF THE MECHANIZATION OF THE WORK OF COMPACTION OF GRUNTS IN RAILWAY CONSTRUCTION Zaytzhan Kakharov Associate Professor of the Department \"Railway Engineering\" TSTU, Republic of Uzbekistan, Tashkent E-mail: [email protected] Akbar Islomov Assistant of the department \"Construction mechanics\" TGTRU, Republic of Uzbekistan, Tashkent АНАЛИЗ МЕХАНИЗАЦИИ РАБОТЫ ПО УПЛОТНЕНИЮ ГРУНТА В ЖЕЛЕЗНОДОРОЖНОМ СТРОИТЕЛЬСТВЕ Кахаров Зайтжан Васидович доцент кафедры «Инженерия железных дорог» ТГТрУ, Республика Узбекистан, г. Ташкент Исломов Акбар Садуллоевич ассистент кафедры «Строительная механика» ТГТрУ, Республика Узбекистан, г. Ташкент ABSTRACT This article presents an analysis of the means of mechanization used in the work of compaction of grunts in construction, reflecting their advantages and disadvantages in compaction of grunts using various compaction machines. АННОТАЦИЯ В данной статье представлен анализ средств механизации, применяемых при уплотнении грунта в строительстве, выделены их преимущества и недостатки при уплотнении грунта различными уплотняющими машинами. Keywords: compaction, grunt compaction, bubbling, compacting equipment, cages, vibrators, compaction plates. Ключевые слова: уплотнение, уплотнение грунта, трамбованные, оборудование для уплотнения, катки, виб- раторы, уплотняющие плиты. ________________________________________________________________________________________________ The strength, reliability, toughness of structures are method, the grunt compaction equipment is based on the ensured by uniform compaction of grunts in railway transmission of mechanical harmonic vibrations to the construction. In the project of the structure, the degree compacting grunt. This method is divided into superfi- of compaction and necessity of grunt is given. The den- cial and deep-compaction types. In the method of sur- sity of grunt in land structures should not be lower than face vibrating compaction, the compacting equipment will the norms provided for in the \"building codes and regu- be located on the surface of the grunt, and the vibration lations\". There are 5 main methods of compaction of will move and affect it. In a deep vibrating compaction grunts: rolling, shaking, shaking-shitting, rustling and method, the equipment is lowered into the depths of the exposure in a mixed way. Wheel or Shaft is a rolling grunt. The surface (facial) method is used in the com- compaction method based on the transfer of static pres- paction of poorly bound and unbound grunts, while the sure to a compressible grunt; but is not used in re-bury- deep vibrating compaction method is used in the com- ing operations in tight, narrow areas because the static paction of sandy, especially water-saturated sandy cages used in this method have large dimensions and grunts [1]. low movement maneuverability. In the vibration __________________________ Библиографическое описание: Kakharov Z.V., Islomov A.S. ANALYSIS OF THE MECHANIZATION OF THE WORK OF COMPACTION OF GRUNTS IN RAILWAY CONSTRUCTION // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15031


№ 2 (107) февраль, 2023 г. The main indicators of vibrators – depend on the bonded and unbound grunts. In industrial construction, amplitude and frequency of vibrations, according to which the method of compacting grunts is used when installing vibrating machines can also work in a percussion order, grunt pillows under the floor of foundations, under vibrating in the superficial compaction of the grunt. technological equipment and floors. When installing Their vibration amplitude, large and frequency are less columnar foundations, this method is also used when than that of machines with oscillating strokes. When plastering grunts [5]. vibrating machines are used, the compaction method is the so – called vibrating rubbing method, which is used The mixed compaction method is based on the com- in the compaction of back-shed grunts in narrow areas [4]. bined effect of static, shiver, shiver-levelling and rub- bing loads on the grunt. In this method, all types of The levelling method of compaction is based on the grunts can be compacted, and this method is mainly transfer of shock loads to the grunt. Unlike shiver and used where the scope of work is wide. Based on the data shiver percussion methods, in this method those are struck presented in Table 1, it is possible to select mechanization at great power due to high speed when struck, resulting tools for leveling grunts. in a thick layer (up to 2 m.) allows you to compact Table 1. Mechanization tools for leveling grunts Grunt Width of spread, The The working use- m minimum fulness Katok Tyagach Operating density thickness, Density length of the mass,t gravity, speeds, sm width, m condensing of the machine on the grunts t m/s Danger- strip,m tied untied ous tied untied Safe 100 31 - 100 40 - Static acting prsep cells 200 138 - 5 30 1,0-1,75 15-20 - 1,5 2,7 15 50 - 34 50 - 42 9 30 1,25-1,85 20-22 - 1,8 2,7 15 50 - 42 29 150 0,8-1,8 50 - 2,73 3,7 20 50 25 34 50 48 62 Self-propelled pneumocylated cells 50 63 88 6,4 - 0,67-0,97 - 10-15 1,8 2,8 2,8 12,2 - 0,78-1,7 - 15 1,3 2,3 2,3 15,5 - 0,75-1,7 - 15 1,3 2,3 2,3 Smooth valet self-propelled vibration cages 1,5 - 0,39-1,0 15 20 0,73 1,5 1,5 4 - 0,5-1,8 20 30 1,0 2,0 2,0 8 - 0,6-1,94 25 35 1,0 2,0 2,0 For compaction of connected and unbound grunts, widely used, which include leveling plates that are pneumatic tire cages are used, the wheels of which are raised and ironed using excavators or cranes. Plates arranged in one row. The wheels can be hung without weighing 2-5 tons are lifted and lowered using lifting a bicycle and moving independently [8]. cranes. Due to the fact that such devices are exposed to large dynamic loads, expensive cranes and excavators The axle of the bick-hanging wheel rollers is at- quickly fail. For this reason, leveling plates in cranes and tached to the frame longitudinal beam, frame is usually excavators are mainly used in narrow areas where it is placed over the wheels. The main drawback of such not possible to apply different machines [11]. structural cells is that as a result of movement on an uneven surface, some wheels of the rolling stock are overloaded, Leveling machines on the tractor base have high as a result of which the rolling stock is unevenly com- productivity. The function of their working unit is pacted in the width of the marched corridor, while some performed by 2 plates hanging side by side on the lifting elements of the cells are exposed to excessive load. ropes behind the tractor. The plates alternately fall freely on the surface of the grunt by means of ropes, compacting From the above-mentioned disadvantages, the the grunt in the corridor equal to the width of both plates. wheels will be free of independent moving cages, in During operation, the tractor moves at a slowed speed., which each wheel can move freely in vertical space. this speed is selected in accordance with the number of Each section of such cages will be paired with a ballast hits of plates in one place. After the car passes over the box or platform. The Ballast function is performed by Grunt, a compacted corridor remains, the width of which grunt or concrete blocks [10]. will be equal to the width of the tractor chain, and the compaction depth will be equal to 1.2 meters. For compaction of grunts in narrow Conditions, self – moving vibrating plates and vibrating rubbers, blasting- Modern construction requires intensive construction, rubbers, internal wobblers are used. Leveling plates used which makes it necessary to re-fill the excavated areas by hanging on rope or mechanical wire machines are in the short term. For this reason, in relatively narrow 37


№ 2 (107) февраль, 2023 г. areas it is necessary to use manual electric shibbalar, Ρ = [ (b˗c) · ������ ] · ������������ electric shibbalar and equipment for compacting grunts. ������������������ Complex mechanization of refilling works and In this formula: b-machine working unit width, mm; grunts depends on the equipment indicators and productivity, without which it is necessary to plan [5]. c-width of compressible corridors, mm; ν - working equipment, machine working speed, m / s; The productivity of the means of compaction of ������������������-the number of transitions from one plot; grunts, that is, with the help of one or another machine, ������������ -use coefficient by time (������������ = 0,8 ∓ 0,9) the area of the grunt per unit of time can be determined by the following formula: References: 1. V.A. Evdokimov “Mechanization and automation of construction production. Study guide. Leningrad 1990 -292 p. 2. Djabbarov S., Kakharov Z., Kodirov N. Device of road boards with compacting layers with rollers // AIP Conference Proceedings. – AIP Publishing LLC, 2022. – Т. 2432. – №. 1. – С. 030036. 3. Kakharov Z.V., Eshonov F.F., Kozlov I.S. Determination of the values of energy constants of materials during crushing of solids //News of the St. Petersburg University of Railway Transport. – 2019. – Vol. 16. – No. 3. – pp. 499-504. 4. Kakharov Z.V. Railway construction for high-speed roads // Universum: technical sciences: electron. scientific. journal. 2022. 5(98). 5. Kakharov Z.V. Earthworks during the construction of railway subgrades // Issues of technical sciences in the light of modern research. - 2017. - S. 39-43. 6. Kakharov Z.V., Islomov A.S. Analysis of the structure of energy costs for the construction of road asphalt concrete coatings //Sciences of Europe. – 2021. – no. 82-1. – S. 59-62. 7. Kakharov Z.V. Compaction of layers by rollers of rollers //Electronic innovation bulletin. – 2018. – no. 3. - S. 10-11. 8. Kakharov Z.V. Interaction of working bodies of machines with processed materials //Technical sciences: problems and solutions. - 2018. - S. 104-108. 9. Kakharov Z.V. Analysis of the process of concrete setting // Universum: technical sciences. 2022. No. 12-2 (105). 10. Kakharov Z.V., Eshonov F.F. Change in the composition of substances (materials) in production // Scientific journal. – 2019. – no. 3 (37). - S. 22-23. 11. Kakharov Z.V., Kodirov N.B. Methods for strengthening the foundations of a building and structure // System transformation - the basis of sustainable innovative development. - 2021. - S. 18-37. 12. Kakharov Z.V. et al. Requirements for the upper structure of the track on high-speed railway tracks // Eurasian Union of Scientists. – 2021. – no. 4-1. - P. 45-48. 13. Kakharov Z.V., Kodirov N.B. Basic requirements to crushed stone from natural stone for railway ballast layer // Innovative scientific research. – 2022. 14. Kakharov Z.V. et al. The device is based on soft soils // Fundamental and applied scientific research: topical issues, achievements and innovations. - 2020. - S. 63-65. 15. Kakharov Z.V. et al. Device of the bases of roads with compaction of layers with rollers // Innovations. The science. Education. – 2021. – no. 41. - S. 457-463. 16. V.N. Telichenko, O.M. Terentyev, A.A. Lapidus. Technology of construction processes. Textbook for construction universities – 2nd ed. – M. Higher School, 2005 -392 p. 38


№ 2 (107) февраль, 2023 г. TRANSPORT TO INCREASING THE EFFICIENCY OF OPERATION OF 3VL80S ELECTRIC LOCOMOTIVES ON THE KUMKURGAN - TASHGUZAR SECTION OF UZBEK RAILWAY Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] К ПОВЫШЕНИЮ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ ЭЛЕКТРОВОЗОВ 3ВЛ80С НА УЧАСТКЕ КУМКУРГАН – ТАШГУЗАР УЗБЕКСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: TO INCREASING THE EFFICIENCY OF OPERATION OF 3VL80S ELECTRIC LO- COMOTIVES ON THE KUMKURGAN - TASHGUZAR SECTION OF UZBEK RAILWAY // Universum: технические науки: электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15014


№ 2 (107) февраль, 2023 г. Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The results of studies on the justification of the kinematic parameters of the movement of freight trains with a fixed train mass and the energy indicators of the transportation operation of 3VL80S electric locomotives without stops and with stops on a real mountain section of the railway are presented. The specified parameters and indicators were obtained in the form of tabular data and graphical dependencies, a comparative analysis of which made it possible to identify the most difficult stage of the studied section of the Uzbek railway. The data obtained are recommended for practical use by the specialists of the Termez locomotive depot operation department, related to the transportation work of traction electric rolling stock. АННОТАЦИЯ Представлены результаты исследований по обоснованию кинематических параметров движения грузовых поездов с фиксированной массой состава и энергетических показателей перевозочной работы электровозов 3ВЛ80С без остановок и с остановками на реальном горном участке железной дороги. Указанные параметры и показатели получены в виде табличных данных и графических зависимостей, сопоставительный анализ которых позволил выявить самый трудный перегон исследуемого участка Узбекской железной дороги. Полученные данные рекомендованы для практического использования специалистами отдела эксплуатации локомотивного депо Термез, связанных с перевозочной работой тягового электроподвижного состава. Keywords: investigation, result, the freight train, the electric locomotive, railway track, parameter, analysis, time, speed, the station, mountainous. Ключевые слова: исследование, результат, грузовой поезд, электровоз, железнодорожный путь, параметр, анализ, время, скорость, станция, горный. ________________________________________________________________________________________________ The present research is devoted to the determination stock and the efficiency of its use in relation to the real and analysis of the parameters of the main indicators of conditions of organizing freight traffic on the railway the use of main three-section electric locomotives sections of the Uzbek railways, taking into account the 3VL80S when driving freight trains with a unified mass degree of complexity of their track profile. of the composition Q = 2500t and the number of axles m = 200 axles on the most difficult section Kumkurgan The above assessment is made not by the virtual - Boysun - Tashguzar of the Termez - Karshi direction, characteristics of the track profile [1], but by the total as well as assessing the traction the quality of the profile (total) and specific consumption of electric energy for and track of the path of this section. train traction and their reduced values. The foregoing is confirmed by the results of studies The basis for the implementation of the goal is traction [2-6] by scientists from near and far abroad, which, hav- calculations performed by the authors, taking into account ing a certain scientific interest and practical signifi- the recommendations [7] and the initial data [8]. cance, are completely unrelated to the substantiation of the parameters of the main indicators of the energy in- The results of the traction calculation for the studied tensity of the transportation operation of traction rolling electric locomotives 3VL80S on the mountainous sec- tion of Kumkurgan - Tashguzar are presented in table 1 and table 2. 40


№ 2 (107) февраль, 2023 г. Table 1. Travel time of a freight train when moving along hauls and on the section Kumkurgan - Tashguzar of the Uzbek railway № Train running time (without stops / with stops), min in order Stages (hauls) on the haul in mode in traction idling and braking 1 Kumkurgan - Tangimush 19.98/21.62 11.23/11.95 8.75/9.67 2 Tangimush - Boysun 3 Boysun - Darband 31.09/33.62 23.50/24.96 7.59/8.66 4 Darband - Shurab 5 Shurab - Aknazar 19.36/20.92 8.53/9.10 10.83/11.82 6 Aknazar - Acrobat 7 Acrobat - Dehkanabad 11.00/11.91 7.00/7.09 4.00/4.82 8 Dehkanabad - Tashguzar 12.30/13.30 7.78/8.30 4.52/5.00 Kumkurgan - Tashguzar 20.45/22.10 13.00/13.79 7.45/8.31 58.20/63.01 2.35/2.56 55.85/60.45 49.50/53.91 4.04/4.34 45.46/49.57 221.88/240.39 77.43/82.09 144.45/158.30 Table 2. Electricity consumption by electric locomotives 3VL80S during the movement of a freight train on the section Kumkurgan - Tashguzar of the Uzbek railway № Stages (hauls) Total for hauls and section A, kWh in or Specific for hauls and section a, Wh/tkm brutto der Kumkurgan - Tangimush Tangimush - Boysun without stops with stops 1 Boysun - Darband 2 Darband - Shurab 1835.3/33.25 1875.8/33.99 3 Shurab - Aknazar 4 Aknazar - Acrobat 4279.8/51.29 4374.7/52.43 5 Acrobat - Dehkanabad 6 Dehkanabad - Tashguzar 1555.5/30.16 1590.0/30.84 7 Kumkurgan - Tashguzar 8 1261.4/63.07 1289.4/64.47 1544.7/64.20 1579.0/65.62 2721.6/61.50 2682.0/62.87 954.4/7.28 975.6/7.44 1083.3/7.65 1107.3/7.82 15236.0/27.65 15573.8/28.26 From the analysis of the data in table 1 it follows relation to the time the train travels without stopping at that the movement of freight trains on the section intermediate stations. Kumkurgan - Tashguzar, organized with stops at inter- mediate stations, provides: The nature of the distribution of the total and spe- cific consumption of electrical energy by 3VL80S elec- • an increase in the travel time of the train by tric locomotives along the hauls of the mountain section 18.54 minutes with a decrease in the technical speed of Kumkurgan - Tashguzar during the movement of freight movement by 4.59 km/h with an average estimated time trains with stops at intermediate stations and the indica- per stop of 2.31 minutes; tor of the difficulty of the track profile of this section are shown in fig.1. • the share of movement on modes traction 34.15 percent, and idling and braking 65.85 percent; In figure 1, the stages are marked: 1 - Kumkurgan - Tangimush, 2 - Tangimush - Boysun, 3 - Boysun - • an increase in the share of movement in the trac- Darband, 4 - Darband - Shurab, 5 - Shurab - Aknazar, tion mode and its decrease in the idling and braking 6 - Aknazar - Acrobat, 7 - Acrobat - Dekhkanabad, modes, respectively, by approximately 0.75 percent in 8 - Dekhkanabad - Tashguzar. 41


№ 2 (107) февраль, 2023 г. Figure 1. Dynamics of electric energy consumption by electric locomotives 3VL80S on the hauls of the section Kumkurgan - Tashguzar of the Uzbek railway An analysis of the results of the studies carried out respectively, when driving without stops and with stops allowed us to draw the following general conclusions. at intermediate stations; 1. The values of some basic indicators of the use • on the remaining four conditionally light and easy of electric locomotives 3VL80S on the mountain section hauls, there is a fluctuation from 83.14 / 1.51 to 19.13 / Kumkurgan - Tashguzar are determined: 0.135 units - movement without stops and from 84.97 / • the average estimated net travel time of a freight 1.54 to 19.55 / 0.138 units movement with stops. train by hauls and for acceleration - deceleration at inter- Thus, according to the profile of the path of the mediate stations is approximately 1.70 and 0.64 minutes, mountainous section Kumkurgan - Tashguzar, the stages respectively; Darband - Shurab, Shurab - Aknazar and Aknazar - Acrobat are the most difficult, the section Tangimush - • driving freight trains with stops, compared to simi- Boysun is medium in difficulty, relatively easy sections - lar driving without stops, leads to an increase in total and Kumkurgan - Tangimush and Boysun - Darband, specific electricity consumption by approximately 2.22 and the most lungs - hauls Acrobat - Dekhkanabad and 2.21 percent; and Dekhkanabad - Tashguzar. The main indicators of the transportation work of • the consumption of electric energy for train trac- 3VL80S electric locomotives obtained by the authors tion for one stop at intermediate stations, on average, and the values of the indicator of the difficulty of hauls is 48.26 kWh / stop. of the mountain section Kumkurgan - Tashguzar of the Uzbek railway can be implemented: 2. The value of the reduced electricity consumption • firstly, to determine the traction quality of the track of the total (А*, kWh/km) ∕ specific (а*, Wh/tkm: km) profile and route of the railway line (direction) Termez - for the stretches of the Kumkurgan - Tashguzar section is: Karshi; • secondly, to assess the impact of the values (values) • on the most difficult stages Darband - Shurab, of these indicators on the throughput and carrying capacity Shurab - Aknazar and Aknazar - Acrobat, respectively, of this part of the railway, taking into account the cash 161.17 / 8.06, 164.05 / 6.82 and 157.2 / 3.55 units - costs for freight rail transportation. movement with stops and 157, 67 / 7.88, 160.48 / 6.67 and 153.76 / 3.47 units - non-stop movement; • on the Tangimush - Boysun section of average difficulty - these are 128.23 / 1.54 and 131.08 / 1.57 units, Reference: 1. Babichkov A.M. Traction of trains [Text] / A.M. Babichkov, V.F. Egorchenko // Textbook for universities of railway transport. - M.: Transport, 1962. - 264 p. 2. Nekhaev V.A. Some mathematical aspects of the study of a “rigid” dynamic model describing the interaction of a wheel and a rail [Text] / V.A. Nekhaev, V.A. Nikolaev // Scientific and technical journal Izvestia Transsib / Omsk State Transport University. - Omsk, 2015. No. 4 (24). - pp. 45 - 56. 3. Moskalev Yu.V. Determination of the location and power of the compensating device in the traction power supply system of alternating current of a double-track section according to the minimum loss of active power [Text] / Yu.V. Moskalev, G.G. Akhmedzyanov // Scientific and technical journal \"Izvestia Transsib\" / Omsk State Transport University. - Omsk, 2016. No. 2 (26). - pp. 100 - 107. 42


№ 2 (107) февраль, 2023 г. 4. Naidoo P.N., Mulder J.М. (2017) Improved distributed power train handling strategies // 11th International Heavy Haul Association Conference. Cape Town, 2017. pp. 1118-1124. 5. Michal G, Huynh N, Shukla N, Munoz A, Barthelemy J (2017) RailNet: A simulation model for operational planning of rail freight. Transportation Research Procedia 25: рр. 461-473. 6. Li S, Lv H, Xu C, Chen T, Zou C (2020) Optimized Train Path Selection Method for Daily Freight Train Scheduling 8: рр. 40777-40790 DOI: 10.1109/access.2020.2976904. 7. Ablyalimov O.S. Fundamentals of train traction [Text] / O.S. Ablyalimov, D.N. Kurilkin, I.S. Kamalov, O.T. Kasimov // Textbook for higher educational institutions of railway transport. Under the general editorship of O.S. Ablyalimov. - Tashkent: \"Complex Print\" nashriyoti, 2020. - 662 p. 8. Ablyalimov O.S. Research on the operation of 3VL80S electric locomotives on the Kumkurgan - Tashguzar section [Text] / O.S. Ablyalimov // Improving the efficiency of use and improving the system of maintenance and repair of locomotives: Interuniversity thematic collection of scientific papers. - Omsk: OmGUPS, 2014. - pp. 18 - 23. 43


№ 2 (107) февраль, 2023 г. TO THE EFFICIENCY OF ELECTRIC LOCOMOTIVES ON A HILLY SECTION OF THE RAILWAY Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] К ЭФФЕКТИВНОСТИ ЭЛЕКТРОВОЗОВ НА ХОЛМИСТОМ УЧАСТКЕ ЖЕЛЕЗНОЙ ДОРОГИ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: TO THE EFFICIENCY OF ELECTRIC LOCOMOTIVES ON A HILLY SECTION OF THE RAILWAY // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15010


№ 2 (107) февраль, 2023 г. Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The results of studies on the justification of the kinematic parameters of the movement of freight trains with different masses of the composition and energy indicators of the transportation operation of 3VL80S electric locomotives without stops on a virtual hilly section of the railway are presented. These parameters and indicators were obtained in the form of tabular data and regression equations designed to determine them on virtual and identical real hilly sections of the railway, which are recommended for implementation in practice by specialists of the locomotive complex of the Uzbek railways. АННОТАЦИЯ Представлены результаты исследований по обоснованию кинематических параметров движения грузовых поездов с разной массой состава и энергетических показателей перевозочной работы электровозов 3ВЛ80С без остановок на виртуальном холмистом участке железной дороги. Указанные параметры и показатели получены в виде табличных данных и уравнений регрессий, предназначенных для их определения на виртуальных и, идентичных им, реальных холмистых участках железной дороги, которые рекомендуются для реализации на практике специ- алистами локомотивного комплекса узбекских железных дорог. Keywords: investigation, result, the freight train, the electric locomotive, railway track, parameter, the stage, analysis, the station, time, speed, hilly, virtual. Ключевые слова: исследование, результат, грузовой поезд, электровоз, железнодорожный путь, параметр, разъезд, анализ, станция, время, скорость, холмистый, виртуальный. ________________________________________________________________________________________________ Introduction total (total) and specific consumption of electric energy for train traction in quantitative and monetary terms. Recently, a noticeable increase in the total length of the electrified sections of the Uzbek railways and the re- The present research continues the work [2-4] and plenishment of the locomotive fleet of \"O'zbekiston concerns electric traction locomotives, with the help of temir yo'llari\" JSC with new electric locomotives of Chi- which the technology for the movement of freight trains nese and Russian production determine the priority di- on a virtual hilly section of the railway is organized. Pur- rection in the development of electric traction. pose - to substantiate the main kinematic parameters of the movement of freight trains and indicators of the The foregoing undoubtedly contributes to an transportation work of 3VL80S electric locomotives, increase in the efficiency of the use of the electric to study the influence of real conditions for the organi- locomotive part of the locomotive fleet of the railway zation of rail transportation of goods on these indicators industry in Uzbekistan. Despite this, the demand for when moving without stopping at separate points. electric locomotives of the VL80S series in a three- section design remains quite high. Indeed [1], now To implement the formulated research goal, the au- 3VL80S electric locomotives carry out about fifty-nine thors use the algorithm [4] and the methodology [5] for percent of the total volume of rail transportation of performing traction calculation, the initial data [2] about goods on sections of Uzbek railways of different degrees the studied freight electric locomotive 3VL80S and the of complexity (difficulty). virtual hilly section of the railway, the object and subject of research. Therefore, research on the effectiveness of the use of these electric locomotives in operating conditions on The object of study is freight trains with different real and virtual sections of railways of various degrees weights and a constant number of train axles, three-section of complexity is timely and relevant. mainline (train) freight electric locomotives of the 3VL80S series and a straightened track profile of a virtual hilly Tasks and methods of research section of the railway. The main performance indicators of electric traction The subject of the study is the main kinematic pa- locomotives are the kinematic parameters of the move- rameters of the movement of freight trains when moving ment of a freight train (speed and travel time of the train without stops at an intermediate station and the energy in the studied section in different modes of operation efficiency indicators of the studied 3VL80S electric of the power plant) and the energy efficiency parameters locomotives in quantitative and monetary terms on the of the indicated locomotives themselves in terms of the accepted (given) virtual section of the railway. 45


№ 2 (107) февраль, 2023 г. Results and analysis of the study The numerical values of the kinematic parameters of the movement of freight trains for each stage of the A series of traction calculations was performed on a virtual hilly section of the railway in various modes of virtual hilly section of the railway in three variants when operation of the power energy systems of 3VL80S electric driving freight trains weighing in the range of 2500 - locomotives without stops at the intermediate and final stations in the implementation of rail transportation of 3500 tons with a change by ∆Q = 500 tons and with different types, types, structure and content of goods are a constant number of axles m = 200 without stopping at given in table. 1. the intermediate and final stations. Table 1. Distribution of the travel time of a freight train by hauls on a virtual hilly section of the railway, 3VL80S electric locomotives Kinematic parameters of the movement of a freight train, № in Mass of com- without stops order position Q, t Speed on the haul tп in mode 1 2500 movements in traction mode tт idle and braking tхх,т 2 3000 3 3500 V, km/h 1 2500 Stage D – E 2 3000 3 3500 86,43 15,55 12,75 2,80 1 2500 84,52 15,90 13,30 2,60 2 3000 3 3500 77,68 17,30 14,80 2,50 Stage E – F 96,57 14,60 7,30 7,30 94,00 15,00 7,00 8,00 95,27 14,80 6,80 8,00 Stage D – F 91,34 30,15 20,05 10,10 89,12 30,90 20,30 10,60 85,79 32,10 20,60 11,50 In table. 2 shows the parameters of energy effi- (sign) asterisk * - cash costs (cost of electricity) includ- ciency indicators of the use of three-section main (train) ing value added tax (VAT). freight electric locomotives 3VL80S on a virtual hilly section of the railway when moving without stops at an Evaluation and analysis of the efficiency of the intermediate separate point in quantitative and monetary transportation work of three-section main (train) freight terms, taking into account different conditions for organ- electric locomotives 3VL80S on a given, virtual, hilly izing the transportation work of these locomotives. Index section of the railway were carried out by comparing the numerical values of the above kinematic and energy pa- rameters with similar values of a unified freight train. Table 2. Indicators of the transportation work of 3VL80S electric locomotives on a virtual hilly section of the railway track Terms Electricity consumption Electricity cost transportation work mass of number train speed, full A, kWh specific a, full Сэ, full Сэ* with specific ce, specific сэ* composi- of axes m, V, km/h Wh/tkm sum VAT, som/km with VAT, tion Q, t sum axes gross som/km Movement without stops Stage D – E 2500 200 86,43 1585,42 28,31 137995 165518 6160,5 7389,2 3000 200 84,52 1843,12 27,43 160425 192422 7161,8 8590,2 3500 200 77,68 2017,97 25,74 175644 210676 7841,2 9405,2 46


№ 2 (107) февраль, 2023 г. Terms Electricity consumption Electricity cost transportation work mass of number train speed, full A, kWh specific a, full Сэ, full Сэ* with specific ce, specific сэ* composi- of axes m, V, km/h Wh/tkm sum VAT, som/km with VAT, tion Q, t sum axes gross som/km Stage E – F 2500 200 96,57 778,16 13,24 67731 81240 2882,2 3457,0 85504 3033,4 3638,4 3000 200 94,00 819,00 10,30 71286 88437 3137,5 3763,3 3500 200 95,27 847,10 25,74 73731 246758 Stage D – F 277926 299113 2500 200 91,34 2363,58 20,59 205726 4482,1 5376,0 5048,2 6055,0 3000 200 89,12 2662,12 19,33 231711 5544,0 6516,6 3500 200 85,79 2865,07 17,83 249375 Analysis of the research results [2-4] and the data in composition by ∆Q = 500 tons, on the contrary, there is an increase and decrease in these indicators by 1.53 percent. table. 1 in relation to a unified freight train with a train 8. The travel time of the train in the idling and mass Q2 = 3000 tons and a constant number m = 200 braking mode, as well as in the traction mode, varies, axles in the train shows the following. respectively, from 0.168 h to 0.192 h and from 0.334 h 1. The average total train travel time is 0.517 h, to 0.324 h. With an increase in the mass of the train by ∆Q = 500t, there is a decrease in the travel time of the a decrease in train mass by ∆Q = 500 t leads to a decrease train in the idling and braking modes, as well as its increase in the traction mode, respectively, by 0.015 h and 0.005 h. in the total train travel time by 2.43 percent, and with an The travel time of the train in the idling and braking increase in train mass by ∆Q = 500 t, an increase in this mode increases, and in the traction mode it decreases by 0.008 h and 0.004 h, respectively, with a decrease by time by 3.88 percent. ∆Q = 500 tons of the mass of the train. 2. Technical speed of the train with a similar change Using the standard program of the Microsoft Office the mass of the composition tends to increase and decrease Excel series, regression equations (analytical expressions) were obtained to calculate the parameters of the main within the same limits, and, on average, it is equal indicators of the transportation work of 3VL80S electric locomotives on a virtual hilly section of the railway track to 88.75 km / h. for any i-th mass Q of a freight train. In formulas (1) - (10), a sufficient value of the approximation reliability 3. The average train travel time for acceleration - is R2 = 1.0 (the necessary reliability condition is R2≥0.8), and the sign (index) asterisk * - taking into account value deceleration is 0.0341 h, a decrease in the mass of the added tax (VAT), and the value Qi = 1,2,3 is a factor train by ∆Q = 500t leads to a decrease in the time for (indicator) of the traction calculation option. deceleration by 3.55 percent, and the time for acceleration Technical speed of the train Vт, km/h remains unchanged with an increase in the mass of the Vт = – 0,555Q2 - 0,555Q + 92,45 (1) train by ∆Q = 500t the time of the train to accelerate - Total train travel time tx, min (2) deceleration increases by 3.88 percent. tx = 0,225Q2 – 0,075Q + 29,86 4. The total and specific average consumption of Train travel time in traction mode tт, min electric energy for train traction is 2630.26 kWh and tт = 0,025Q2 + 0,175Q + 19,85 (3) 19.25 Wh/t km, respectively. The total and specific average Train running time at idle and braking modes tхх,т, costs of electric energy correspond, respectively, to min 228937,3 soums and 5024.76 soums - excluding VAT tхх,т = 0,2Q2 - 0,1Q + 10,0 (4) and 274599 soums and 5989.5 soums - including VAT. Total electricity consumption per trip A, kWh 5. An increase in the mass of the composition by А = -47,795,6Q2 + 441,93Q +1969,4 (5) ∆Q = 500 tons contributes to an increase in the total con- sumption of electricity by 7.62 percent, however, the specific consumption of electricity in this case decreases by 7.76 percent, and a decrease in the mass of the compo- sition by ∆Q = 500t provides a reduction in the total and an increase in the specific consumption of electricity, respectively, by 4.35 and 14.80 percent. 6. Reducing the mass of the composition by ∆Q = 500t leads to a decrease in the total and specific cost by an average of 11.21 percent, and with an increase in the mass of the composition by ∆Q = 500t, these indicators increase by an average of 10.24 percent. 7. Reducing the mass of the train by ∆Q = 500t leads to a decrease and an increase in the use of traction modes [7], as well as idling and braking [5], respectively, by 0.8 percent, and with an increase in the mass of the 47


№ 2 (107) февраль, 2023 г. Specific electricity consumption per trip a, Wh/tkm coexist only in cases of braking (stopping), starting and gross accelerating, and uniform movement of a freight train is exclusively dominant; а = -0,12Q2 – 0,9Q + 21,61 (6) • the consumption of electrical energy spent on the Total cash costs of СЭ, sum movement of freight trains by 3VL80S electric locomotives directly depends on the operating time of power plants СЭ = -4160,5Q2 + 38467Q + 171420 (7) (systems) under current, the reduction of which will lead to a decrease in the mechanical operation of the mentioned Total cash costs С*Э including VAT, som/km electric locomotives, and as a result, will reduce the consumption of electric energy; С*Э=-4990,5Q2+46140Q+205609 (8) • an increase in the volume of transportation work Reduced monetary costs of сЭ, som/km by 3VL80S electric locomotives contributes to an increase in the efficiency of using these electric locomotives сЭ = -35,15Q2 + 671,55Q + 3845,7 (9) in operating conditions, regardless of the type of cargo being transported and the type of freight train traffic. Reduced cash costs ce* including VAT, som/km Conclusion сэ*=-108,7Q2+1005,1Q+4479,6 (10) The authors substantiated the kinematic parameters The analysis of the given regression equations shows of the movement of freight trains and the parameters of that the dynamics of the parameters mentioned above, the energy efficiency indicators of 3VL80S electric lo- depending on the change in the mass of the freight train, comotives, and obtained regression equations to deter- is described by a polynomial of the second degree. mine the main indicators of the transportation work of the studied locomotives of electric traction on virtual In the course of the research, various conditions for and identical to them, of real hilly sections of the railway organizing the movement of freight trains with different when organizing freight traffic without stopping along masses of trains were studied, regression equations were the way rolling stock. obtained and the numerical values of the parameters of the main indicators of transportation work and the en- In addition, the research results obtained by the authors ergy efficiency of using 3VL80S electric locomotives on are recommended for implementation in the practice a given virtual hilly section of the railway track were of the work of drivers - instructors in heat engineering substantiated, the analysis of the results of which shows and specialists of the operation shop of locomotive the following: depots of the Uzbek railway network with a hilly track profile, on which the movement of freight trains is realized • when organizing railway transportation of various by electric traction locomotives. goods, movement with varying and non-constant speed Reference: 1. Ablyalimov O.S. Evaluation of the efficiency of the transportation work of electric locomotives 3VL80S on the sec- tion Kattakurgan - Navoi of the Uzbek railway. Crede Experto: transport, society, education, language. International information and analytical journal. Irkutsk, 2018. No. 4 (19). pp. 35 - 50. 2. Ablyalimov O.S., Gairatov B.I., Krivitsky M.A., Mamedov F.F., Akhmedov B.U., Bakhriddinov I.I. Traction calculations for electric locomotives 3VL80S on a hilly section of the railway. Innovative approaches to solving scientific problems. Collection of articles based on the materials of the international scientific - practical conference. Ufa: Ed. Scientific Research Center Bulletin of Science, 2019, pp. 28 - 43. 3. Ablyalimov O.S., Gairatov B.I., Krivitsky M.A., Akhedov A.M., Akhmedov B.U., Bakhriddinov I.I. On the game of 3VL80S electric locomotives on a hilly section of the railway. Topical issues of modern science. Collection of articles based on the materials of the international scientific-practical conference. Ufa: Ed. Scientific Research Center Bulletin of Science, 2019, pp. 60 - 74. 4. Ablyalimov O.S., Khamidov O.R. On the operation of 3VL80S electric locomotives on a hilly section of the railway. Transport in Russia: problems and prospects. International scientific and practical conference. St. Petersburg: IPT RAS, 2021, pp. 135 – 142. 5. Ablyalimov O.S. Analysis of the efficiency of the use of electric traction locomotives on the plain section of the railway. Electrical equipment: operation and repair. Magazine. Moscow: Ed. house \"Panorama, 2021. No. 10. S. 22–30. 48


№ 2 (107) февраль, 2023 г. TO THE OPERATION OF UNDERCAR GENERATORS IN PASSENGER TRAINS Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] К ЭКСПЛУАТАЦИИ ПОДВАГОННЫХ ГЕНЕРАТОРОВ В ПАССАЖИРСКИХ ПОЕЗДАХ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: TO THE OPERATION OF UNDERCAR GENERATORS IN PASSENGER TRAINS // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7univer- sum.com/ru/tech/archive/item/15011


№ 2 (107) февраль, 2023 г. Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The results of studies on the justification of the value of additional specific resistance to movement from undercar generators in passenger trains are presented, taking into account their speed and the type of cars used. It is proved that an increase in the number of cars with air conditioning leads to an increase in the value of the specified movement resistance from undercar generators, which decreases with an increase in the speed of a passenger train. АННОТАЦИЯ Представлены результаты исследований по обоснованию величины дополнительного удельного сопротивления движению от подвагонных генераторов в пассажирских поездах с учётом их скорости движения и типа исполь- зуемых вагонов. Доказано, что увеличение количества вагонов с кондиционированием воздуха приводит к повы- шению величины указанного сопротивления движению от подвагонных генераторов, которое с увеличением скорости движения пассажирского поезда снижается. Keywords: research, passenger train, car, undercar generator, movement resistance, specific, movement speed. Ключевые слова: исследование, пассажирский поезд, вагон, подвагонный генератор, сопротивление движению, удельный, скорость движения. ________________________________________________________________________________________________ Based on a comprehensive program for the their travel conditions and increasing comfort in passenger development and modernization of the railway industry trains. Therefore, studies of the efficiency of using the in Uzbekistan, the forecast for the expected growth in passenger car fleet on the sections of the Uzbek railways passenger traffic is 26.5% with an average annual growth under operating conditions are very timely and relevant. of 4.4%, which will be provided by more than seven hundred passenger cars. The organization of the process of movement of passenger trains is significantly affected by external The above is confirmed by the diagram [1], which forces, the effects of which on the train, in the physical characterizes the dynamics of the expected growth model adopted by the authors [2], are shown in Fig. 2, in passenger turnover in million passengers. km with the where it is indicated: Fk - tangential traction force of the structure of the passenger car fleet of the railway industry, locomotive; Wk - resistance to train movement; Bbr is the indicated in fig. 1. braking force of the train; Q is the weight of the train; Q' - \"reaction\" of the track (rails). The specified forces One of the main tasks in the development of passenger affecting the controlled movement are considered to be traffic of Uzbekistan Temir Yollari JSC is to develop applied to the rims of the wheels of the locomotive and measures and recommendations aimed at improving the train cars. efficiency of passenger service along the way by improving Вагон для Служебно- спец. технический; перевозок; 8 19 Межобласт- СВ; 23 Купейный; ной; 79 217 Плацкарт- Багажный; 17 Вагон- ный; ресторан; 27 332 Figure 1. The structure of the passenger car fleet of the railway industry 50


№ 2 (107) февраль, 2023 г. Figure 2. Physical model of the train Therefore, in the calculation of the movement of passenger trains, it is necessary to take into account Depending on the combination of the considered the additional resistance to movement from the action forces, taking into account the unevenness of the trans- (operation) of undercar generators, based on the recom- portation process (refers to the movement of the train), mendations [2]. the following train driving modes are distinguished: traction mode, when forces act (Fk - Wk - T), braking Additional specific resistance to movement from mode, when forces act (Bbr ± Wk - T) and idle mode, undercar generators is determined by the following for- when forces (T - Wk) act. Here, T are the inertia forces mula: of translationally moving masses m and rotating masses m into the train, overcoming of which the work of the  ПГ = 1360 Р , N/kN (1) traction force or braking force is expended. qо V The movement resistance force Wк participates in where P' is the average nominal power of the undercar all three modes of train driving and consists of the forces generator per one passenger train car, kW; V - speed, km/h; of the main and additional movement resistances. qo is the load from the wheelset on the rails, kN/axle. In passenger train cars, autonomous power supply The P' values are determined from the following systems are predominant [3], in which the main power expression: source is an undercar generator driven from the axle of the wheelset through a gearbox mounted on the middle ( )Р = РПГ  nБК + РПГ + РГК  nКВ , kW (2) part of this axle and a cardan shaft. mП According to the purpose, two groups of electrical equipment of passenger train cars are distinguished - where Pпг is the actual power of the undercar generator those that provide power supply to the cars and consum- ers of electrical energy, and at the location they are di- consumed for service needs, kW. Pпг =2 kW; nбк - the vided into intracar, which includes devices for lighting, number of passenger train cars without air conditioning; air conditioning, ventilation and heating of the car, as Ргк is the actual power of the undercar generator consumed well as household appliances and undercarriage, that is, for air conditioning, kW. Ргк = 9 kW; nкв - number electrical equipment , located outside the train car body and the undercar generator belongs to one of them. The of wagons with air conditioning; mп is the total number latter operates in a wide temperature range from -50ºС to +40ºС and is exposed to atmospheric (rain, snow, ic- of cars in the train. ing), as well as dust and dirt. To assess the effect of additional specific resistance This complicates the operating conditions and ne- cessitates the use of a specially designed undercar gen- to movement from undercar generators on the transporta- erator with the adoption of protective measures to ensure its stable and reliable operation. tion process of passenger trains, we perform a series of During the operation of undercar generators of pas- numerical calculations based on such initial data. senger cars, forces temporarily acting in operation arise, which are attributed to additional resistance to movement Passenger trains consisting of three sets of 15, 20 and and which should be taken into account in passenger trains at speeds of 20 km/h and above. 25 cars, each of which sixty percent are air-conditioned The undercar generator, being a source of electrical cars. Travel speed in the range from 20 km/h to 100 km/h energy during the movement of passenger trains, fully with a change interval of ΔV = 20 km/h and load from ensures the operation of power supply systems and con- the wheelset on the rails qо = 150 kN/axle. Preliminary sumers of electrical energy of passenger cars, which leads to an increase in resistance to the movement of calculations using formula (2) found that the average rolling stock, and as a result, to an increase in the con- sumption of fuel and energy resources for train traction. nominal power of the undercar generator per each car of a passenger train is equal to a constant value - Р' = 7.4 kW and does not depend on their total number in these trains. Then, substituting the values of Р' = 7.4 kW/car and qо = 150 kN/axle into equation (1), we obtain simple formulas for determining the additional specific resistance to movement from undercar generators for the trains considered by the authors with differents of percentages of train cars airconditioned air, namely: • for nкв = 60 percent, ПГ = 62,9 V -1, N/kN (3) • for nкв = 80 percent, ПГ = 78,2 V -1, N/kN (4) • for nкв = 40 percent, ПГ = 47,6·V -1, N/kN (5) In table 1 shows the results of numerical calcula- tions to determine the additional specific resistance to movement from undercar generators for different op- tions for the process of movement of passenger trains. 51


№ 2 (107) февраль, 2023 г. Table 1. Additional specific resistance to movement from undercar generators in passenger trains Number of cars in a passenger Additional spe- Passenger train speed movement V, km/h 20 40 60 80 100 No train, car cific resistance to p/p movement from general with without undercar genera- mп conditioning conditioning tors, N/kN air nкв air nбк 12 3 4 5 6 7 8 9 10 1 25 15 10 ПГ 1 3,910 1,955 1,303 0,977 0,782 2 20 12 8 ПГ 2 3,145 1,572 1,048 0,786 0,629 3 15 9 6 ПГ 3 2,380 1,190 0,793 0,595 0,476 On fig. 3 shows the nature of the change in the ad- Thus, the operation of undercarriage generators ditional specific resistance to movement from undercar leads to a decrease in additional specific resistance generators in passenger trains, where: 1,2,3 - respectively, to movement from them with an increase in the speed the number of cars with air conditioning is 80, 60 and of passenger trains. 40 percent. Figure 3. Performance indicators of undercar generators in passenger trains In addition, an increase (decrease) in cars with additional specific resistance to movement from the air conditioning by 20 percent will provide, respectively, operation of undercar generators, in the range of changes an increase (decrease) by 24.30-24.33 percent of the in the speeds of passenger trains considered by the authors. Reference: 1. Ablyalimov O.S. To the analysis of the work of undercar generators in passenger trains [Text] / O.S. Ablyalimov, Zh.D. Khodzhiev // Republic of ilmiy - amaly anzhumani \"Talimning uzviyligi va uzliysizligini ta'minlash - soҳa taraққiyotining muhim mezoni\". – Tashkent‫ ׃‬ToshDYU, 2015. – pp. 41-45. 2. Ablyalimov O.S. Fundamentals of train traction [Text] / O.S. Ablyalimov, D.N. Kurilkin, I.S. Kamalov, O.T. Kasimov // Textbook for higher educational institutions of railway transport. Under the general editorship of O.S. Ablyalimov. – Tashkent: \"Complex Print\" nashriyoti, 2020. - 662 p. 3. Rolling stock and train traction [Text] / A.P. Tretyakov, V.V. Deev, A.A. Perova et al. Ed.V.V. Deeva, N.A. Fufryansky // Textbook for higher educational institutions of railway transport. - M.: Transport, 1979. - 368 p. 52


№ 2 (107) февраль, 2023 г. TO THE QUESTION OF USE OF 3VL80S ELECTRIC LOCOMOTIVES AT THE SECTION TASHGUZAR - KUMKURGAN OF THE UZBEK RAILWAY Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] К ВОПРОСУ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОВОЗОВ 3ВЛ80С НА УЧАСТКЕ ТАШГУЗАР – КУМКУРГАН УЗБЕКСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: TO THE QUESTION OF USE OF 3VL80S ELECTRIC LOCOMOTIVES AT THE SECTION TASHGUZAR - KUMKURGAN OF THE UZBEK RAILWAY // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15033


№ 2 (107) февраль, 2023 г. Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The substantiation of the kinematic parameters of the movement of freight trains and energy efficiency indicators of 3VL80S electric locomotives on the mountain section of the Uzbek railway in quantitative terms is given. The numerical values obtained by the authors are recommended for practical use in assessing the difficulty of the track profile of each section of the Karshi-Termez railway line of the Uzbek railway. АННОТАЦИЯ Приводится обоснование кинематических параметров движения грузовых поездов и энергетических показа- телей эффективности электровозов 3ВЛ80С на горном участке Узбекской железной дороги в количественном ис- числении. Полученные авторами численные значения рекомендуются для практического использования при оценке трудности профиля пути каждого перегона железнодорожного направления Карши – Термез Узбекской железной дороги. Keywords: investigation, result, the freight train, the electric locomotive, railway, traction mode, idling and braking mode, mountainous. Ключевые слова: исследование, результат, грузовой поезд, электровоз, железная дорога, режим тяги, режим холостого хода и торможения, горный. ________________________________________________________________________________________________ These studies were carried out in parallel with stud- The mentioned assessment was made not according ies [1] for freight trains with a fixed mass of the compo- to the virtual characteristics of the track profile [5], but sition Q = 2500 t and the number of axles m = 200 axles according to the total (total) and specific consumption in the composition, which were driven by main three- of electric energy for train traction. section electric locomotives 3VL80S without stops and with stops at separate points of the mountain section As a basis for the implementation of the research Tashguzar - Boysun - Kumkurgan of the direction goal, we take traction calculations for 3VL80S electric Termez - Karshi of the Uzbek railway. locomotives when they drive freight trains with a train mass Q = 2500 t and the number of axles m = 200 axles The results of research [2-4] by scientists from near on the Tashguzar – Kumkurgan section, performed by and far abroad, which, having a certain scientific interest the authors taking into account the recommendations [2] and practical significance, are completely unrelated to and the initial data [6]. the substantiation of the parameters of the main indica- tors of the energy intensity of the transportation work of The results of the said traction calculation are pre- traction rolling stock in relation to the real conditions for sented in table 1 and table. 2, the analysis of which organizing freight rail transportation on the sections of shows that the movement of freight trains without stops Uzbek railways. at intermediate stations allows: The purpose of the research was to substantiate the • reduce the train travel time by 13.69 minutes and kinematic parameters of the movement of these freight increase the technical speed by 2.51 km/h with an aver- trains and the main indicators of the transportation work age estimated time per stop of 1.71 minutes; of 3VL80S electric locomotives with an assessment of the traction quality of the hauls of the track profile of the • have a share of movement in modes traction Tashguzar-Kumkurgan section. of 25.49%, and idling and braking in 74.51%; • in relation to the time of the train with stops, reduce the time of movement in the mode traction and in the idling and braking modes, respectively, by 4.14 and 9.55 minutes. 54


№ 2 (107) февраль, 2023 г. Table 1. Travel time of a freight train on hauls per passage and intermediate stations for deceleration – acceleration № Intermediate Distance, km Travel time, min Deceleration time/ in order stations - - acceleration, min 1 Tashguzar -/2,00 2 Dehkanabad 56,625 66,50 2,45/0,43 3 Acrobat 52,425 68,43 1,27/0,26 4 Aknazar 17,700 43,00 1,68/0,78 5 Shurab 9,625 20,66 0,58/0,78 6 Darband 8,000 16,25 1,72/0,38 7 Boysun 20,625 26,15 2,07/0,39 8 Tangimush 33,375 37,70 2,34/0,51 9 Kumkurgan 22,075 27,91 1,31/- Total 220,375 306,60 1,68/0,69 In table. 3 and in fig. 1 (when moving with stops consumed by 3VL80S electric locomotives when they at intermediate stations) shows the results of calcula- perform transportation work on hauls and on the tions of the total and specific consumption of electricity Tashguzar-Kumkurgan section. Table 2. Travel time of a freight train when moving along hauls and on the section Tashguzar - Kumkurgan of the Uzbek railway № Train running time (without stops / with stops), min in order Stages (hauls) on the haul in mode in traction idling and braking 1 Tashguzar - Dekhkanabad 66,50/68,40 26,62/26,47 39,88/41,93 2 Dehkanabad - Acrobat 3 Acrobat - Aknazar 68,43/70,09 42,55/43,47 25,88/26,62 4 Aknazar - Shurab 5 Shurab – Darband 43,00/44,70 0/0,63 43,00/44,07 6 Darband – Boysun 7 Boysun – Tangimush 20,66/22,00 0/0,12 20,66/21,88 8 Tangimush - Kumkurgan 16,25/17,25 0/0,12 16,25/17,13 Tashguzar - Kumkurgan 26,15/28,55 5,64/6,27 20,51/22,28 37,70/41,00 2,94/3,82 34,76/37,18 27,91/28,30 0,40/1,39 27,51/26,91 306,60/320,29 78,15/82,29 228,45/238,00 Table 3. Electricity consumption by electric locomotives 3VL80S during the movement of a freight train on the section Tashguzar - Kumkurgan of the Uzbek railway № Stages (hauls) Total for hauls and section A, kWh in order Specific for hauls and section a, Wh/tkm brutto without stops with stops 1 Tashguzar - Dekhkanabad 5582,5/39,43 5564,5/39,31 2 Dehkanabad - Acrobat 3 Acrobat - Aknazar 7955,9/60,70 7976,9/60,86 4 Aknazar - Shurab 5 Shurab – Darband 345,9/7,82 413,3/9,34 6 Darband – Boysun 7 Boysun – Tangimush 148,5/6,17 186,5/7,75 8 Tangimush - Kumkurgan 105,6/5,28 146,5/7,33 Tashguzar - Kumkurgan 1240,7/24,06 1253,7/24,31 910,7/10,91 1034,0/12,39 330,5/5,99 396,9/7,18 16620,3/30,17 16972,3/30,88 55


№ 2 (107) февраль, 2023 г. Figure 1. Dynamics of electric energy consumption by electric locomotives 3VL80S on the hauls of the section Kumkurgan - Tashguzar of the Uzbek railway As a result of the research, the following values of the • on the two hauls Tashguzar - Dekhkanabad and main indicators of the use of 3VL80S electric locomotives Dekhkanabad - Acrobat, there is an increase in the total on the Tashguzar-Kumkurgan section were obtained: (specific) consumption of electrical energy, in compari- son with its average value, on average, respectively, • estimated net travel time of a freight train for hauls by 19.46 ... 24.00 (4.89 ... 6, 24) and 27.91...34.20 and for acceleration-deceleration at intermediate stations; (7.70...9.60) times. • driving freight trains without stops, in comparison Thus, numerical calculations have established that with similar driving with stops, provides a reduction in the stages Tashguzar - Dekhkanabad and Dekhkanabad - total and specific electricity consumption by 2.07 and Acrobat are the most difficult stages in the mountain 2.33 percent; area Tashguzar - Kumkurgan. • Electricity consumption for train traction for one As a result of the research, the authors obtained nu- stop at intermediate stations, on average, is 44.00 kWh/stop; merical values of the kinematic parameters of the move- ment of freight trains and the consumption of electric • the average value of the mentioned electricity energy by 3VL80S electric locomotives in quantitative consumption for the four hauls of the section is, respec- terms, which can subsequently be used for a feasibility tively, 285.80 kWh and 7.90 Wh/tkm gross - traffic with study of the electric locomotives working on mountainous stops; sections of railways, including Uzbek ones. • 232.63 kWh and 6.32 Wh/tkm gross – non-stop driving; Reference: 1. Ablyalimov O.S. To increasing the efficiency of operation of 3VL80S electric locomotives on the kumkurgan - tashguzar section of uzbek railway [Text] / O.S. Ablyalimov, J.K. Yakubov, KH.R. Qosimov, A.N. Avdeyeva, U.I. Safarov // Journal \"Universum: technical sciences\". - Moskow, 2023. Vol. 7, No. 2(107) – pp 43-49. 2. Nekhaev V.A. Some mathematical aspects of the study of a “rigid” dynamic model describing the interaction of a wheel and a rail [Text] / V.A. Nekhaev, V.A. Nikolaev // Scientific and technical journal Izvestia Transsib / Omsk State Transport University. - Omsk, 2015. No. 4 (24). - pp. 45 - 56. 3. Michal G, Huynh N, Shukla N, Munoz A, Barthelemy J (2017) RailNet: A simulation model for operational planning of rail freight. Transportation Research Procedia 25: рр. 461-473. 4. Li S, Lv H, Xu C, Chen T, Zou C (2020) Optimized Train Path Selection Method for Daily Freight Train Scheduling 8: рр. 40777-40790 DOI: 10.1109/access. 2020. 5. Ablyalimov O.S. Fundamentals of train traction [Text] / O.S. Ablyalimov, D.N. Kurilkin, I.S. Kamalov, O.T. Kasimov // Textbook for higher educational institutions of railway transport. Under the general editorship of O.S. Ablyalimov. - Tashkent: \"Complex Print\" nashriyoti, 2020. - 662 p. 6. Ablyalimov O.S. To the study of the operation of electric locomotives on the section Tashguzar - Kumkurgan SJSRC \"Uzbekiston temir yo'llari\" [Text] / O.S. Ablyalimov, V.S. Kudryashov // Vestnik TashIIT, No. 2. - Tashkent: TashIIT, 2011. - pp 29 - 33. 56


№ 2 (107) февраль, 2023 г. TO THE QUESTION OF OPERATION OF 4TE10M DIESEL LOCOMOTIVES AT THE SECTION TASHGUZAR – KUMKURGAN OF THE UZBEK RAILWAY Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] К ВОПРОСУ ЭКСПЛУАТАЦИИ ТЕПЛОВОЗОВ 4TЭ10М НА УЧАСТКЕ ТАШГУЗАР – КУМКУРГАН УЗБЕКСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: TO THE QUESTION OF OPERATION OF 4TE10M DIESEL LOCOMOTIVES AT THE SECTION TASHGUZAR – KUMKURGAN OF THE UZBEK RAILWAY // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15038


№ 2 (107) февраль, 2023 г. Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The results of substantiation of the kinematic parameters of the movement of freight trains and indicators of the energy efficiency of diesel locomotives 4TE10M without stops and with stops on the mountain section of the Uzbek railway in quantitative terms are presented. A comparative analysis of these parameters and indicators made it possible to identify the most difficult stage of the studied real section of the railway. The data obtained by the authors are recom- mended for practical use in assessing the throughput and carrying capacity, as well as the complexity of the profile track of the Karshi-Termez railway of the Uzbek railway. АННОТАЦИЯ Представлены результаты обоснования кинематических параметров движения грузовых поездов и показателей энергетической эффективности тепловозов 4ТЭ10М без остановок и с остановками на горном участке Узбекской железной дороги в количественном исчислении. Сопоставительный анализ указанных параметров и показателей позволил выявить самый трудный перегон исследуемого реального участка железной дороги. Полученные авторами данные рекомендуются для практического использования при оценке пропускной и провозной способности, а также сложности профиля пути железнодорожного направления Карши – Термез Узбекской железной дороги. Keywords: investigation, result, the freight train, the diesel locomotive, railway, railway, traction mode, idling and braking mode, mountainous. Ключевые слова: исследование, результат, грузовой поезд, тепловоз, железная дорога, режим тяги, режим холостого хода и торможения, горный. ________________________________________________________________________________________________ The driving of freight trains on the railways different types, views and contents of goods on sections of Uzbekistan, organized by diesel locomotives, has a of Uzbek railways of various complexity. significant impact on improving the efficiency of the use of railway transport and its locomotive fleet, in particular. The present research is a continuation of the work [5] and was carried out based on the recommendations of [6] Studying the conditions and determining the param- and the algorithm developed by the authors for the im- eters of the main performance indicators of four-section plementation of the goal, taking into account the initial mainline (train) freight diesel locomotives of the data [7]. 4TE10M series on the mountain section of the railway with the development of measures and recommendations In table 1 and table 2 shows the results of the traction aimed at finding the possibility of improving the energy calculation for diesel locomotives 4TE10M when they efficiency of the locomotive fleet is an urgent and sig- drive freight trains with a train mass Q = 2500t and the nificant task. number of axles m = 200 axles in the mentioned section, where traffic is organized without stops at intermediate Studies [1-4] of Russian scientists are not directly stations. related to the actual conditions of rail transportation of Table 1. Travel time of a freight train on hauls per passage and intermediate stations for deceleration – acceleration № Intermediate Distance, km Travel time, min Deceleration time/ in order stations acceleration, min - - 1 Tashguzar 56,625 70,30 -/2,00 2 Dehkanabad 52,425 89,67 2,33/0,3 3 Acrobat 17,700 43,54 1,14/0,21 4 Aknazar 9,625 21,89 1,59/0,88 5 Shurab 8,000 15,77 0,87/0,73 6 Darband 20,625 28,64 1,20/1,20 7 Boysun 33,375 38,64 1,87/0,34 8 Tangimush 22,075 25,65 2,13/0,25 9 Kumkurgan 220,375 334,1 0,54/- Total 1,46/0,74 58


№ 2 (107) февраль, 2023 г. Table 2. Travel time of a freight train when moving along hauls and on the section Tashguzar - Kumkurgan of the Uzbek railway № Train running time (without stops / with stops), min in order Stages (hauls) on the haul in mode in traction idling and braking 1 Tashguzar - Dekhkanabad 70,3/70,6 41,15/41,16 29,15/29,44 2 Dehkanabad - Acrobat 89,67/84,76 63,00/63,54 26,67/21,22 3 Acrobat - Aknazar 43,54/45,40 0/0,50 43,54/44,90 4 Aknazar - Shurab 5 Shurab – Darband 21,89/23,53 0/0,10 21,89/23,43 6 Darband – Boysun 7 Boysun – Tangimush 15,77/17,93 0/0,10 15,77/17,83 8 Tangimush - Kumkurgan 28,64/31,10 9,55/8,78 19,09/21,32 Tashguzar - Kumkurgan 38,64/41,11 4,71/5,24 33,93/35,87 25,65/27,20 0,43/0,93 25,22/26,27 334,10/368,63 118,84/120,35 215,26/220,28 Comparative analysis of the data in table 1 and table 2 mode by 1.16 percent and an increase in the idling and showed that the movement of freight trains without braking modes, respectively, by 1.51 percent and 5.02 stops at intermediate stations in relation to the mentioned minutes. movement with stops at them provides: In table 3 and in fig. 1, respectively, shows the results • a decrease in the train running time by 6.53 minutes of calculations of the total and specific consumption of with an increase in the technical speed of movement diesel fuel at the Tashguzar-Kumkurgan section and by 0.76 km/h with an average estimated time per stop shows diagrams indicating an approximately uniform of 0.82 minutes; distribution of the mentioned costs, relative to their average value, on five of the eight hauls of this section. • the share of movement in modes traction - Figure 1 shows: 1.1' and 2.2', respectively, the total and 35.57 percent, and in idling and braking modes - 64.43 specific consumption of diesel fuel. percent; • in relation to the running time of the train with stops, a decrease in the time of movement in the traction Table 3. Diesel fuel consumption by diesel locomotives 4TE10M during the movement of a freight train along the section Tashguzar - Kumkurgan of the Uzbek railway № Stages (hauls) Total for hauls and section E, kg in order Specific for hauls and section e, kg/104 t km gross without stops with stops 1 Tashguzar - Dekhkanabad 1453,22/102,66 1454,291/102,73 2 Dehkanabad - Acrobat 2202,70/168,06 2210,243/168,64 3 Acrobat - Aknazar 66,18/14,96 82,70/18,69 4 Aknazar - Shurab 5 Shurab – Darband 33,27/13,83 36,814/15,30 6 Darband – Boysun 7 Boysun – Tangimush 23,97/11,99 28,30/14,25 8 Tangimush - Kumkurgan 356,77/69,19 331,032/64,20 Tashguzar - Kumkurgan 213,22/25,55 231,665/27,77 53,09/9,62 69,144/12,53 4402,42/79,91 4444,195/80,67 59


№ 2 (107) февраль, 2023 г. Figure 1. The nature of the distribution of the total and specific consumption of diesel fuel for hauls on the section Tashguzar – Kumkurgan Based on the results of the research, the following • on the Darband - Boysun section, the increase in general conclusions can be drawn: the total and specific consumption of diesel fuel compared to their average values is, on average, 4.58 ... 3.69 times, • the estimated net time of a freight train running and on the sections Tashguzar - Dekhkanabad and along hauls and for acceleration-deceleration at intermedi- Dekhkanabad - Acrobat, respectively, 16, 21...18.64 ate stations was established; and 24.63...28.26 times. • driving freight trains with stops, compared to Therefore, along the track profile of the Tashguzar - driving without stops, provides an increase in fuel con- Kumkurgan section, the Tashguzar - Dekhkanabad and sumption by approximately 0.91 percent; Dekhkanabad - Acrobat sections are the most difficult, the Darband - Boysun section is medium in difficulty, • diesel fuel consumption for one stop at intermediate and the remaining five stages are easy sections. stations is approximately 7.36 kg, and for one acceleration- deceleration this consumption, on average, corresponds The results of the study obtained by the authors will to 17.0 kg / stop; be used, in the future, in assessing the throughput and carrying capacity of the Tashguzar - Kumkurgan section • the average value of the total and specific con- and determining the traction quality of the profile of track sumption of diesel fuel for five hauls of the section is, of the railway direction Karshi - Termez of the Uzbek respectively, 89.724 kg and 17.71 kg / 104 tkm gross – railway. traffic with stops; 77.95 kg and 15.19 kg / 104 tkm gross - movement without stops; Reference: 1. Muginstein L.A. Ways to reduce the specific consumption of fuel and electricity for train traction [Text] / L.A. Muginshtein, V.I. Rakhmaninov, I.A. Yabko // Lokomotiv. - 2001, No. 2. - pp. 2 - 7. 2. Muginshtein L.A. Software package for accounting, analysis and regulation of energy consumption [Text] / L.A. Muginshtein, E.N. Shkolnikov, A.V. Andreev et al. // Railway transport. - 2005, No. 9. - pp. 17 - 23. 3. Falendysh A.P. On the issue of choosing the type of traction in railway transport [Text] / A.P. Falendysh, V.V. Savenko, O.V. Kletskaya // Proceedings of the II International Scientific and Technical. conf. \"Locomotives. XXI century” / St. Petersburg State Transport University. - St. Petersburg, 2014. - pp. 180 - 182. 4. Frenkel S.Ya. Influence of modernization of diesel locomotives on the fuel efficiency of train traction [Text] / S. Ya. Frenkel conf. \"Locomotives. XXI century” / St. Petersburg State Transport University. - St. Petersburg, 2014. - pp. 199 - 201. 5. Ablyalimov O.S. To the efficiency of diesel locomotives working on the section Tashguzar - Kumkurgan [Text] / O.S. Ablyalimov, I.R. Kayumov // Vestnik TashIIT, No. 1. - Tashkent: TashIIT, 2012. - pp 42 - 44. 6. Ablyalimov O.S. Fundamentals of train traction [Text] / O.S. Ablyalimov, D.N. Kurilkin, I.S. Kamalov, O.T. Kasimov // Textbook for higher educational institutions of railway transport. Under the general editorship of O.S. Ablyalimov. – Tashkent: \"Complex Print\" nashriyoti, 2020. - 662 p. 7. Ablyalimov O.S. To the study of the operation of electric locomotives on the section Tashguzar - Kumkurgan SJSRC \"Uzbekiston temir yo'llari\" [Text] / O.S. Ablyalimov, V.S. Kudryashov // Vestnik TashIIT, No. 2. - Tashkent: TashIIT, 2011. - pp 29 - 33. 60


№ 2 (107) февраль, 2023 г. HIGH HIGH-SPEED MOVEMENT OF PASSENGER ELECTRIC TRAINS ON THE SECTION TASHKENT-SAMARKAND OF THE UZBEK RAILWAY Oleg Ablyalimov Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Jasurbek Yakubov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Кhusan Кosimov Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Anna Avdeyeva Candidate of Technical Sciences, associate professor of the chair «Materials science and mechanical engineering» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] Utkir Safarov Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent State Transpоrt University, Republic of Uzbekistan, Tashkent E-mail: [email protected] ВЫСОКОСКОРОСТНОЕ ДВИЖЕНИЕ ПАССАЖИРСКИХ ЭЛЕКТРОПОЕЗДОВ НА УЧАСТКЕ ТАШКЕНТ-САМАРКАНД УЗБЕКСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ Аблялимов Олег Сергеевич канд. техн. наук, профессор, проф. кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Якубов Жасурбек Камолиддинович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Косимов Хусан Рахматуллаевич ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент __________________________ Библиографическое описание: HIGH HIGH-SPEED MOVEMENT OF PASSENGER ELECTRIC TRAINS ON THE SECTION TASHKENT-SAMARKAND OF THE UZBEK RAILWAY // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15039


№ 2 (107) февраль, 2023 г. Авдеева Анна Николаевна канд. техн. наук, доц. кафедры «Материаловедение и машиностроение», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Сафаров Уткир Истамович магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The issues of organizing the high-speed movement of passenger electric trains \"Afrosiab\" with the justification of the kinematic parameters of their movement on the Tashkent-Samarkand section of the Uzbek railway, obtained in the form of tabular data and graphical dependencies, are considered. It has been established that the average speed and running time of the Afrosiab high-speed electric train on the Tashkent-Samarkand section, respectively, is 151.4 km/h and 130 minutes. АННОТАЦИЯ Рассмотрены вопросы организации скоростного движения пассажирских электропоездов «Афросиаб» с обоснованием кинематических параметров их движения на участке Ташкент-Самарканд Узбекской железной дороги, полученных в виде табличных данных и графических зависимостей. Установлено, что средняя скорость движения и время хода скоростного электропоезда «Афросиаб» на участке Ташкент-Самарканд, соответственно, составляют 151,4 км/час и 130 минут. Keywords: high speed, passenger train, haul, electric train, railway, wagon body, passive tilt system. Ключевые слова: высокоскоростной, пассажирский поезд, перегон, электропоезд, железная дорога, кузов вагона, пассивная система наклона. ________________________________________________________________________________________________ The issue aimed at organizing high-speed passenger and formulated, the first stage of which was associated trains on the railways of Uzbekistan is one of the priorities with the preparation of high high-speed traffic and the in the socio-economic development of the regions commissioning of the «Afrosiyob» electric train at the of the republic in the near and long term. training ground of the Tashkent-Samarkand direction. The above indicates the relevance and significance The technical characteristics of the «Afrosiyob» high- of research, which consists in substantiating the kinematic speed electric train, which is a composition of permanent parameters of the movement of high-speed passenger composition formation with its own electric traction [3] electric trains on sections of the Uzbek railways. and consisting of two head motor cars, eight passenger cars and a dining car, are given in the study [1], which The implementation of the above was associated also states that at the initial stage, the distance between with the operation of a high high-speed railway line on the cities of Tashkent and Samarkand of 344 kilometers the Tashkent-Samarkand section, along which the move- was covered by the mentioned train in 155 minutes. ment of high-speed passenger trains was organized by «Afrosiyob» electric trains with a passive system for The conditional scheme of the range of high-speed incline car bodies and concentrated thrust [1] produced passenger trains, organized by high-speed electric by the Spanish company «Talgo». trains «Afrosiyob» on the Tashkent-Samarkand direction, is shown in fig. 1, where the following railway lines are In [2], the main provisions of the Concept for the indicated: 1 - reconstructed; 2 - newly built, high-speed; development of high-speed and high high-speed passen- 3 - existing, ordinary. ger trains on the railways of Uzbekistan are highlighted 62


№ 2 (107) февраль, 2023 г. Figure 1. Conventional scheme of the high-speed traffic polygon on the direction Tashkent - Samarkand of the Uzbek railway At present, the total length of the operating high-speed traction, including multiple unit (suburban traffic). railway line Tashkent-Samarkand is 328 km, of which And on the existing, ordinary, railway sections of the 120 km are for ordinary passenger ( electric locomotives Syrdarya-Jetysay-Jizzakh and Yangiyer-Khavast-Jizzakh, «Uzbekiston») and high-speed («Afrosiyab» electric as a rule, are organized movement only freight trains. trains) traffic of passenger trains - are newly built, new, high-speed sections Yangiyer-Jizzakh and Gallyaaral- In table 1 and in fig. 2, respectively, shows the cal- Siding No. 19. On conventional railway lines recon- culated (design) and actual values of the highest permis- structed for high-speed traffic (sections Tashkent-Yangiyer sible speeds and the schedule time for the passage of the and Jizzakh-Bogarnoe-Samarkand), the transportation high-speed electric train «Afrosiyob», as well as histo- process of freight, passenger and suburban trains is grams of their distribution over conditional hauls and implemented by locomotives with various types of separate points on the Tashkent-Samarkand railway sec- tion. Table 1. Travel time and speed movement of the electric train «Afrosiyob» on the section Tashkent-Samarkand № Hauls Distance, km Travel time, min Travel speed, km/h in order Tashkent-Rakhimov 8,4 5,0 180/130 1 Rakhimov-Syrdarya 71,8 29,0 180/170 2 Syrdarya-Gulistan 40,1 15,0 180/170 3 Gulistan-Dashtabad 52,7 18,0 250/220 4 Dashtabad-Jizzakh 59,4 18,0 250/220 5 Jizzakh-Galliaaral 25,1 14,0 140/140-150 6 Gallyaaral-Bogarnoye 26,8 140/ - 7 Bogarnoye-Bulungur 29,8 - 140/ - 8 Gallyaaral-Bulungur 39,0 - 250/170 9 Bulungur-Samarkand 31,5 16,0 160/160 10 Tashkent-Samarkand 328,0 15,0 11 130 Calculations have established that the actual average to reduce the travel time between Tashkent and Samarkand speed of the «Afrosiyob» high-speed electric train by 25 minutes. for both directions of the Tashkent-Samarkand section An analysis of the world experience in the develop- is 151.4 km/h. Therefore, the passage of this section ment and organization of high-speed rail traffic shows that high-speed rail transport quite successfully competes at such a speed allows the Afrosiyob electric train, with air and road transport for mass transportation over distances of 400-800 km in daytime trains and in comparison with the initial stage of its operation [1], 63


№ 2 (107) февраль, 2023 г. 1700-2500 km in sleeping cars in night trains. Also, the environment, and the high-speed lines themselves, compared with these modes of transport, high-speed rail with equal passenger flows, occupy a smaller area than transport has the lowest specific rate for the emission is necessary for highways and airports. of various pollutants and harmful substances into Figure 2. The parameters of the passage of the high-speed electric train «Afrosiyob» along the hauls of the Tashkent-Samarkand section Thus, the activities and new, promising, technical contribute to an increase in the level of civilization in solutions and technologies aimed at the formation the regions of our republic and neighboring states. and implementation of high-speed traffic in Uzbekistan and neighboring countries in general, and in the Tashkent- Considering that the conditions for the stability of the Samarkand section in particular, will become very im- movement of the crew of the high-speed passenger electric portant not only in the development of the entire infra- train «Afrosiyob» in the curved sections of the railway structure of high-speed rail lines, but will also ensure an track were not considered by the authors, it is necessary, increase in the growth of well-being and an improvement in the future, to continue the research, based on the in the quality of life of the population, and will also dynamic components of the specified movement process. Reference: 1. Ablyalimov O.S. On the issue of organizing high-speed passenger train traffic on the Tashkent-Samarkand section of the Uzbek railway [Text] / O.S. Ablyalimov, O.M. Kurbanov // Materials of the scientific seminar «Actual issues of high-speed traffic». - Tashkent: TashIIT, 2013. - pp. 10-13. 2. Uldjabayev K.U. Development of high-speed traffic on the railways of Uzbekistan [Text] / K.U. Uldjabayev, V.K. Yarashova. - Tashkent:Extreme Press, 2010. - 136 p. 3. Luvishis А.L. High-speed trains on the railways of the OSJD member countries [Text] / A.L. Luvishis // OSJD Bulletin. Technical and economic information magazine. - Warsaw, No. 4, 2012. – pp. 17-27. 64


№ 2 (107) февраль, 2023 г. A THEORETICAL STUDY OF ADAPTATION OF THE ENGINE CONTROL SYSTEM IN AUTOTRACTOR MACHINES SWITCHED FROM DIESEL TO COMPRESSED NATURAL GAS Ravshanjon Alimardanov Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent Ilyos Ibotov Specialist, Republic of Uzbekistan, Karshi Iskandarbek Abdurashidov Doctoral student, Tashkent State Transport University, Republic of Uzbekistan, Tashkent E-mail: [email protected] ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ АДАПТАЦИИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ АВТОТРАКТОРНЫХ МАШИН, ПЕРЕВЕДЕННЫХ С ДИЗЕЛЯ НА КОМПРИМИРОВАННЫЙ ПРИРОДНЫЙ ГАЗ Алимарданов Равшанжон Алимардан угли ассистент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент Иботов Илёс Чориевич специалист, Республика Узбекистан, г. Карши Абдурашидов Искандарбек Журъат угли докторант, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент ABSTRACT The article deals with a theoretical study of the adaptation of the engine control system of auto tractor vehicles converted from diesel to compressed natural gas. АННОТАЦИЯ В статье рассматривается теоретическое исследование адаптации системы управления двигателем авто- тракторных машин, переведенных с дизеля на компримированный природный газ. Keywords: engine, auto tractor, air, gas, ratio. Ключевые слова: двигатель, авто трактор, воздух, газ, коэффициент. ________________________________________________________________________________________________ Introduction Currently, natural gas is considered as a suitable fuel as an alternative motor fuel to liquid petroleum mo- In the Republic of Uzbekistan, one of the most im- tor fuels. Most of the cars in operation in Uzbekistan run portant strategic problems is the urgent solution of the on compressed natural gas. issue of technical re-equipment of agriculture, that is, the task of conducting a single scientific-technical and Conversion of gasoline-based car engines to com- investment policy is to develop agricultural machinery, pressed natural gas is carried out without changing the create and improve types of machinery intended for cot- engine design. Diesel car engines, on the other hand, re- ton growing, grain growing and other branches of agri- quire a minor modification to the engine design to run culture. on fully compressed natural gas. __________________________ Библиографическое описание: Alimardanov R.A., Ibotov I., Abdurashidov I.Z. A THEORETICAL STUDY OF AD- APTATION OF THE ENGINE CONTROL SYSTEM IN AUTOTRACTOR MACHINES SWITCHED FROM DIESEL TO COMPRESSED NATURAL GAS // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15066


№ 2 (107) февраль, 2023 г. Figure 1. Description of external speed of a diesel bus As the air passes through the smallest part of the dif- Here Ро we can write for the two transitions we are fuser, its speed increases and the pressure decreases. looking at using the assumption of air from the input: Better results are obtained when diffusers with a flat sur- face are used when the inlet angle is 300 and the outlet W 22 angle is 700. + W gZ + Pi 1 = g Zn + Pи = Е−I − II 2 II Target: Theoretical study of the adaptation of the Po 2 Ро engine control system of auto tractor vehicles switched from diesel to compressed natural gas. Here Е−I − II the air loss coefficient when moving Research results: towards the II-II section of the I-I section. In the old unit: In practice, due to the need to reduce the overall height of a throttle, the profile of diesel throttles differs 2 22 from the average. This, in turn, leads to the compression W W W of the flow in motion and the displacement of the largest  + P1 +1 = Z II + PII + II  EI −II II reserve of dilution in the direction of the air flow. The o o 2g movement of the diesel throttle air flow has a turbulent 2g 2g movement over a wide range of modes. Intensive turbulent movement of the air is necessary for the cleaner. Z and Z-m; РI and РII- kg/cm2; γ- kg/m2; W and The continuity equation is based on the fact that the WII – m/c flow rate of air passing through any cross-section re- mains unchanged and can be found from the following The difference in levels between the sections under expression: consideration is not so great. Therefore, taking into ac- Gҳ = Wҳ · tҳ · Рҳ = const. count the fact that the density is not proportional to the Here Gҳ – mass of air flowing without an inlet channel per unit of time kg/s. ratio, it is possible not to take into account the state of change of energy i.e. ZI = ZII Wҳ – air speed m/s tҳ – surface of the pipe, m2 In that case: РI РII = Ро ( ) W 2 W 2 Рҳ – air density kg/m3  1+ EI −II 2 4 − 1 The pressure from different sections of the throttle  and intake duct varies little, especially at high loads. 2 The greatest dilution known from investigations   2,0 kn/m2 (a2kg) cm2 or 2000 mm of water does not exceed. In such a change of rarefaction, air can be In the old unit: РI РII = γо  EI −II 2 − 2  regarded with sufficient accuracy as an incompressible  fluid, and its density can be considered constant when (1 + W W  moving along the inlet channel, i.e. Ро = PI = PII = Pҳ 1 ) II 12g 2g   66


№ 2 (107) февраль, 2023 г. At the entrance to the throttle W1- Wo = 0 and As can be seen from the equation, the dilution flow РI = Ро and is equal to the air flow condition through rate through any section of the throttle or inlet path the pressure difference from the cross section. 2 22 W WW 2 х  Po and from the point where the air enters the ∆ Рх = Ро - Рх = 2 х  Po + Eo−x 2 x  Po 2 In the old unit: ∆ Рх = Ро - Рх = W 22 throttle to overcome the hydraulic pressure Eo−x 2 x  Po determined by energy. As air moves through the intake WW tract, its pressure changes. Thinning increases faster 2 х  X o + Eo−x 2 x  o than the ratio in plots with a narrowing cross-section or with a clear view. The pressure loss in the throttle should be as small as possible when the engine is operating with the throttle valve fully open, because a large value of ∆ P means that the throttle hydraulic resistance is excessively increased and, as a result, the filling coefficient is reduced: ∆ Рg/∆ Рt = 2,0…2,2 х. WxI = 2, АРх or WxI = 1 21DA 2N 1 2PX 1 1+ − x Po Po Р  (1+ Ё − х) X Conclusion: In order to obtain the maximum power engine to work with gas fuel is a very complex and in car engines running on compressed natural gas, it is difficult matter. Because the combustion chamber possible to provide theoretically ideal fuel-air mixture of the diesel engine changes and the spark plugs must be first. Therefore, a mixing device serves to convert gas installed. Therefore, in order to implement these changes, and air into a fuel-air mixture. Retrofitting a diesel it is appropriate to analyze them theoretically first. References: 1. Абдурашидов И.Ж., Алимарданов Р.А. Исследование эффективности испытаний автомобильных тормозов // Universum: технические науки: электрон. научн. журн., 2021. 12(93). 2. Абдураззакова Д.А., Абдурашидов И.Ж., Алимарданов Р.А. Цифровые приложения в преподавании технических дисциплин // Интернаука: электрон. научн. журн., 2022. № 2(225). С. 74-77. 3. Базаров Б.И., Калауов С.А., Васидов А.Х. Альтернативные моторные топлива. -Ташкент: SHAMS, 2014. -189 c. 4. Базаров Б.И. Альтернативные моторные топлива и системы питания. Ташкент: Фан, 2010. – 202 с. 5. Базаров Б.И. Экологическая безопасность автотранспортных средств. – Ташкент: Фан, 2010. – 186 с. 6. Едгоров Ж.Н., Алимарданов Р.А., Абдурашидов И.Ж., Кодиров М.Ф. Анализ поломок и неисправностей автобусов ИСУЗУ эксплуатируемых в городе Ташкенте // Universum: технические науки: электрон. научн. журн., 2022. 9(102). С. 14-17. 7. Ибрахимов К.И., Абдурашидов И.Ж. Влияние условий эксплуатации автомобилей-самосвалов на их ресурс работы // Цифровые технологии, инновационные идеи и перспективы их применения в сфере производства: межд. конф. (Узбекистан, 12 июнь 2021). Андижан: Изд-во Андижанский машиностроительный институт, 2021. С. 32-36. 8. Исматов А.А., Абдурашидов И.Ж., Ёкубжонов С.Г. Анализ неисправностей тормозной системы автобусов ISUZU в процессе эксплуатации., научно-методический журнал проблемы науки № 5 (64), 2021., С. 18-20. 9. Исматов А.А., Алимарданов Р.А., Абдурашидов И.Ж. Study of the dynamics of the transmission of a all-wheel vehicle // Технические науки: проблемы и решения: межд. конф. (Москва, апрель 2022). Москва: Изд-во Интернаука, 2022. С. 101-104. 10. Шарифбаева Х.Я., Абдурашидов И.Ж. Опыт подготовки преподавателей технических дисциплин в ведущих вузах мира // Вестник науки и образования. 2021. № 7(110). С. 27-29. 11. Шарифбаева Х.Я., Абдурашидов И.Ж. Общеметодическая подготовка преподавателей специальных дисци- плин в технических вузах // 2020. № 23 (101). Часть 3. С. 49-51. 12. Шарифбаева Х.Я., Абдурашидов И.Ж., Алимарданов Р.А. Перспективы использования мобильных технологий в образовательном процессе // Вестник науки и образования, 2021. №172 (120). С. 85-87. 13. Шарифбаева Х.Я., Абдурашидов И.Ж. Условия совершенствования практической подготовки инженеров до- рожно-строительной отрасли // Наука и образование сегодня. 2020. №2 (49). 67


№ 2 (107) февраль, 2023 г. 14. Шарифбаева Х.Я., Абдурашидов И.Ж., Алимарданов Р.А. Возможности и перспективы развития мобильных технологий в высшем техническом образовании // Universum: технические науки: электрон. научн. журн., 2022. № 1(94). С. 13-15. 15. Шарифбаева Х.Я. Применение мобильных технологий в сфере образования // Проблемы педагогики, 2018. № 2 (34). С. 106. 16. Шарифбаева Х.Я. Сравнительная педагогика в подготовке преподавателей для ССПО. – 2004. 17. Шарифбаева Х.Я. Опыт организации учебного процесса в технических вузах // ББК 74.57 я43 с. 56. – с. 134. 18. Шарифбаева Х.Я., Абдураззакова Д. Возможности дистанционного образования при формирования навыков самообразования у студентов // Архив научных исследований. – 2022. – т. 2. – №. 1. 19. Шарифбаева Х.Я., Чўлпанова Х.Т. Техник таълим тизими мутахассислик фани ўқитувчиси: талаб ва таклиф // academic research in educational sciences, 2022. № tstu conference 1. 20. Шарифбаева Х.Я, Нарзуллаев Г. Факторы активизации когнитивных процессов при изучении технических дисциплин // Academic research in educational sciences. 2022. №TSTU conference 1. 21. Шарифбаева Х.Я., Муминов М. Организация самостоятельной работы студентов в технических вузах // Aca- demic research in educational sciences. 2022. №TSTU conference 1. 22. Sharifbaeva K., Niyazova G., Abdurazzakova D., Abdurashidov I., & Alimardonov R. (2022, June). Formation of methodical competence of special subjects teachers in technical universities. In American Institute of Physics Conference Series (Vol. 2432, No. 1, p. 050043). 23. Sharifbaeva K.Y., Abdurashidov I.Z., Alimardanov R.A. Training of road construction engineers // Universum: технические науки: электрон. научн. журн., 2022. 1(94). 68


№ 2 (107) февраль, 2023 г. ELECTRONIC ENGINE CONTROL SYSTEMS AND ITS CLASSIFICATION Sarvar Imomnazarov Teacher, Namangan Institute of Construction Engineering, Republic of Uzbekistan, Namangan E-mail: [email protected] Xumoyun Axmadaliyev Student, Namangan Institute of Construction Engineering, Republic of Uzbekistan, Namangan Ravshanbek Teshaboyev Student, Namangan Institute of Construction Engineering, Republic of Uzbekistan, Namangan ЭЛЕКТРОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ И ИХ КЛАССИФИКАЦИЯ Имомназаров Сарвар Ковилжонович преподаватель, Наманганский инженерно-строительный институт, Республика Узбекистан, г. Наманган Ахмадалиев Хумаюн Эркинали угли студент, Наманганский инженерно-строительный институт, Республика Узбекистан, г. Наманган Тешабоев Равшанбек Насиржон угли студент, Наманганский инженерно-строительный институт, Республика Узбекистан, г. Наманган ABSTRACT In this article, we discussed electronic engine control systems and their classification and convenience between a gasoline internal combustion engine and an electric motor. A few more data are listed in the classification of electronic engine control systems and by fuel supply location. АННОТАЦИЯ В данной статье мы обсудили электронные системы управления двигателем и их классификацию, а также удобство между бензиновым двигателем внутреннего сгорания и электродвигателем. Еще несколько данных ука- заны в классификации электронных систем управления двигателем и по месту подачи топлива. Keywords: ICE, fuel, engine control, injection, electromagnetic nozzle, gas pump, dynamic parameter, electromagnet, diagnostics. Ключевые слова: ДВС, топлива, управления двигатель, впрыска, электромагнитными форсунка, бензонасос, динамических параметр, электромагнит, диагностика. ________________________________________________________________________________________________ The most common car throne system on board main groups: K, Mono, L, M, D (Figure 1.2), But they a modern passenger car is a fuel injection system or an all work according to the general principle - with fuel electronic engine control system. Such systems are ex- spraying under pressure into the intake air stream. At the ceptionally diverse in their design. According to the same time, both the amount of fuel and the amount of air classification presented for fuel injection systems, they are constantly monitored and dosed so that their ratio in are third-generation automotive equipment, which are the fuel-air mixture entering the engine cylinders would be divided according to the principle of operation into five the most optimal in all operating modes. This provides __________________________ Библиографическое описание: Imomnazarov S.Q., AxmadaliyevX., Teshaboyev R. ELECTRONIC ENGINE CONTROL SYSTEMS AND ITS CLASSIFICATION // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15055


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook