Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore d983d98ad985d98ad8a7d8a1-4

d983d98ad985d98ad8a7d8a1-4

Published by meriem25live, 2016-12-14 13:07:22

Description: d983d98ad985d98ad8a7d8a1-4

Search

Read the Text Version

‫اﻟﻐﺎزات ‪Gases‬‬ ‫اﻟﻔﻜﺮة اﻟﻌﺎﻣﺔ ﺗﺴـﺘﺠﻴﺐ ﺍﻟﻐـﺎﺯﺍﺕ ﻟﺘﻐﲑﺍﺕ‬ ‫ﻛﻞ ﻣـﻦ ﺍﻟﻀﻐـﻂ ﻭﺩﺭﺟﺔ ﺍﳊـﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﻭﻋﺪﺩ‬ ‫ﺍﳉﺴﻴﲈﺕ ﺑﻄﺮﺍﺋﻖ ﻳﻤﻜﻦ ﺍﻟﺘﻨﺒﺆ ﲠﺎ‪.‬‬ ‫‪ 7-1‬ﻗﻮاﻧﻴﻦ اﻟﻐﺎزات‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﺇﺫﺍ ﺗﻐﲑ ﺿﻐﻂ ﺃﻱ ﻛﻤﻴﺔ ﺛﺎﺑﺘﺔ‬ ‫ﻣﻦ ﻏﺎﺯ ﺃﻭ ﺩﺭﺟﺔ ﺣﺮﺍﺭﲥﺎ ﺃﻭ ﺣﺠﻤﻬﺎ‪ ،‬ﻓﺴﻴﺘﺄﺛﺮ‬ ‫ﺍﳌﺘﻐﲑﺍﻥ ﺍﻵﺧﺮﺍﻥ‪.‬‬ ‫‪ 7-2‬ﻗﺎﻧﻮن اﻟﻐﺎز اﻟﻤﺜﺎﻟﻲ‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻳﺮﺑﻂ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻋﺪﺩ‬ ‫ﺍﳉﺴﻴﲈﺕ ﻣﻊ ﻛﻞ ﻣﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﻭﺍﳊﺠﻢ‪.‬‬ ‫‪ 7-3‬اﻟﺤﺴﺎﺑﺎت اﻟﻤﺘﻌﻠﻘﺔ ﺑﺎﻟﻐﺎزات‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻋﻨﺪﻣﺎ ﺗﺘﻔﺎﻋﻞ ﺍﻟﻐﺎﺯﺍﺕ ﻓﺈﻥ‬ ‫ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﺍﻟﺘﻲ‬ ‫ﲤﺜﻞ ﻫﺬﻩ ﺍﻟﺘﻔﺎﻋﻼﺕ ﺗﺸﲑ ﺇﱃ ﺃﻋﺪﺍﺩ ﺍﳌﻮﻻﺕ‬ ‫ﻭﺍﳊﺠﻮﻡ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ‪.‬‬ ‫ﺣﻘﺎﺋﻖ ﻛﻴﻤﻴﺎﺋﻴﺔ‬‫‪‬‬ ‫ﺩﺭﺟـﺔ ﺣـﺮﺍﺭﺓ ﺍﳍـﻮﺍﺀ ﰲ ﺍﳌﻨﻄـﺎﺩ ﻛﺎﻓﻴـﺔ ﻟﻐﲇ‬ ‫•‬ ‫ﺍﳌﺎﺀ‪.‬‬ ‫•‬ ‫‪‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﻟﻌﺎﱂ ﺟﻮﺯﻳﻒ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﰲ‬ ‫•‬ ‫ﺍﻟﻘﺮﻥ ﺍﻟﺘﺎﺳﻊ ﻋﺸـﺮ ﻣﻨﻄﺎﺩ ﺍﳍﻮﺍﺀ ﺍﻟﺴﺎﺧﻦ ﰲ‬ ‫ﺃﺑﺤﺎﺛﻪ ﻭﲡﺎﺭﺑﻪ‪ ،‬ﰲ ﺣﲔ ﺍﺳﺘﺨﺪﻡ ﺍﻟﻌﺎﱂ ﺟﺎﻙ‬ ‫ﺷﺎﺭﻝ ﻣﻨﻄﺎﺩ ﺍﳍﻴﺪﺭﻭﺟﲔ ﰲ ﲡﺎﺭﺑﻪ‪.‬‬ ‫ﳛﺘﻮﻱ ﻣﻨﻄﺎﺩ ﺍﳍﻮﺍﺀ ﺍﻟﺴﺎﺧﻦ ﰲ ﺍﳌﺘﻮﺳﻂ‬ ‫ﻋﲆ‪ 2.5‬ﻣﻠﻴﻮﻥ ﻟﱰ ﻣﻦ ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪88‬‬

‫‪‬‬‫‪  ‬ﺍﻋـﻤـﻞ‬ ‫‪ ‬‬ ‫‪‬‬‫ﺍﳌﻄﻮﻳـﺎﺕ ﺍﻵﺗﻴﺔ ﻟﺘﺴـﺎﻋﺪﻙ‬ ‫‪‬‬‫ﻋـﲆ ﺗﻨﻈﻴـﻢ ﺩﺭﺍﺳـﺔ ﻗﻮﺍﻧﲔ‬ ‫ﺗﻌﻤﻞ ﺷﻌﻠﺔ ﺍﳌﻨﻄﺎﺩ ـ ﺍﻧﻈﺮ ﺍﻟﺼﻔﺤﺔ ﺍﻟﻴﻤﻨﻰ ـ ﻋﲆ ﺭﻓﻊ ﺩﺭﺟﺔ‬ ‫ﺣﺮﺍﺭﺓ ﺍﳍﻮﺍﺀ ﺩﺍﺧﻠﻪ ﻟﻴﺒﻘﻰ ﰲ ﺍﳍﻮﺍﺀ‪.‬‬ ‫ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪ 1 ‬ﺃﺣــﴬ ﺛﻼﺙ‬ ‫‪‬‬ ‫‪ ‬ﻭﺭﻗﺎﺕ‪ ،‬ﻭﺿﻊ ﺑﻌﻀﻬﺎ ﻓﻮﻕ‬ ‫‪ ‬ﺑﻌﺾ‪ ،‬ﻭﺩﻉ ﺣﻮﺍﻓﻬﺎ ﺍﻟﻌﻠﻴﺎ‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬ﻣﺘﺒﺎﻋﺪﺓ ﺭﺃﺳ ﹰﹼﻴﺎ ﺑﻤﻘﺪﺍﺭ ‪2 cm‬‬ ‫‪ 2 ‬ﺍﺛﻦ ﺍﻷﻃﺮﺍﻑ‬ ‫ﺍﻟﺴﻔﻠﻴﺔ ‪‬ﻟـــﻸﻭﺭﺍﻕ ﻋﲆ‬ ‫‪‬‬ ‫‪‬ﺃﻥ ﺗﻜ ﹼﻮﻥ ﲬﺲ ﻃﻴﺎﺕ‬ ‫‪ N.P1‬ﺍﻗﺮ‪O‬ﺃ‪ M‬ﺗﻌﻠﻴ‪NL‬ﲈﺕ ﺍﻟ‪KM‬ﺴﻼﻣ‪PL‬ﺔ‪J‬ﰲ ﺍﳌ‪IKO‬ﺨﺘﱪ‪DFJ EGK FHL GIM HJN.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ .2‬ﺍﻧﻔﺦ ﺑﺎﻟﻮ ﹰﻧﺎ ﺛﻢ ﺍﺭﺑﻄﻪ‪.‬‬ ‫‪‬ﻣﺘﺴﺎﻭﻳﺔ‪ .‬ﺛﻢ ﺍﺿﻐﻂ ﻋﲆ‬ ‫‪ .3‬ﺍﺳﻜﺐ ﻣﺎ ﹰﺀ ﺑﺎﺭ ﹰﺩﺍ ﰲ ﺩﻟﻮ ﺇﱃ ﻣﻨﺘﺼﻔﻪ‪ ،‬ﺛﻢ ﺃﺿﻒ ﺇﻟﻴﻪ ﻗﻄﻊ‬ ‫‪‬‬ ‫ﻣﻦ ﺍﻟﺜﻠﺞ‪.‬‬ ‫ﺍﻟﺜﻨﻴﺎﺕ ﻟﺘﺜﺒﻴﺘﻬﺎ ﰲ ﺃﻣﺎﻛﻨﻬﺎ‪.‬‬ ‫‪ .4‬ﺍﺳﺘﺨﺪﻡ ﺧﻴ ﹰﻄﺎ ﻟﻘﻴﺎﺱ ﳏﻴﻂ ﺍﻟﺒﺎﻟﻮﻥ‪.‬‬ ‫‪AB‬‬ ‫‪ 3BFACG BDH CE I‬ﺛﺒ‪AE‬ﺖ ﺍﳌ‪D‬ﻄﻮﻳﺔ‪C،‬‬ ‫‪ .5‬ﺣﺮﻙ ﺍﳌﺎﺀ ﻭﺍﻟﺜﻠﺞ ﰲ ﺍﻟﺪﻟﻮ ﺟﻴ ﹰﺪﺍ‪ ،‬ﺣﺘﻰ ﺗﺜﺒﺖ ﺩﺭﺟﺔ‬ ‫‪O‬‬ ‫‪P‬‬ ‫ﺣﺮﺍﺭﺗﻪ‪ ،‬ﺛﻢ ﺍﻏﻤﺮ ﺍﻟﺒﺎﻟﻮﻥ ﰲ ﺍﳌﺎﺀ ﻭﺍﻟﺜﻠﺞ ﻣﺪﺓ ‪ 15‬ﺩﻗﻴﻘﺔ‪.‬‬ ‫‪‬‬ ‫ﻛﲈ ﰲ ﺍﻟﺸﻜﻞ‪ ،‬ﻭﻋﻨﻮﻥ‬ ‫‪‬‬ ‫ﺍﻟﻄﻴﺎﺕ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻵﰐ‪:‬‬ ‫‪ .6‬ﺃﺧﺮﺝ ﺍﻟﺒﺎﻟﻮﻥ ﻣﻦ ﺍﳌﺎﺀ‪ ،‬ﺛﻢ ﻗﺲ ﳏﻴﻄﻪ‪.‬‬‫‪‬‬ ‫ﻗـﻮﺍﻧـﲔ ﺍﻟــﻐــﺎﺯ‪ ،‬ﺑﻮﻳﻞ‪،‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬‫ﺷﺎﺭﻝ‪ ،‬ﺟﺎﻱ‪-‬ﻟﻮﺳﺎﻙ‪ ،‬ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ‪ ،‬ﻗﺎﻧﻮﻥ‬ ‫ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬‫اﻟﻤﻄﻮﻳﺎت ‪    ‬‬‫‪  7-2  7-1  ‬ﳋﺺ ﻗﻮﺍﻧﲔ‬ ‫ﺍﻟﻐﺎﺯﺍﺕ ﺑﻜﻠﲈﺗﻚ ﺍﳋﺎﺻﺔ‪.‬‬ ‫‪ .1‬ﺻﻒ ﻣﺎ ﺣﺪﺙ ﳊﺠﻢ ﺍﻟﺒﺎﻟﻮﻥ ﻋﻨﺪﻣﺎ ﺍﻧﺨﻔﻀﺖ ﺩﺭﺟﺔ‬‫ﳌﺮﺍﺟﻌﺔ ﳏﺘﻮ￯ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻭﻧﺸـﺎﻃﺎﺗﻪ ﺍﺭﺟﻊ ﺇﱃ‬ ‫ﺣﺮﺍﺭﺗﻪ‪.‬‬ ‫ﺍﳌﻮﻗﻊ‪:‬‬ ‫‪ .2‬ﺗﻮﻗﻊ ﻣﺎ ﳛﺪﺙ ﳊﺠﻢ ﺍﻟﺒﺎﻟﻮﻥ ﻟﻮ ﻛﺎﻥ ﺍﻟﺪﻟﻮ ﳛﺘﻮﻱ ﻣﺎ ﹰﺀ‬ ‫‪www.obeikaneducation.com‬‬ ‫ﺳﺎﺧ ﹰﻨﺎ‪.‬‬ ‫‪ ‬ﻣﺎﺫﺍ ﳛﺪﺙ ﺇﺫﺍ ﻣﻸﺕ ﺍﻟﺒﺎﻟﻮﻥ ﺑﺎﳍﻴﻠﻴﻮﻡ ﺑﺪ ﹰﻻ ﻣﻦ‬ ‫ﺍﳍﻮﺍﺀ‪ ،‬ﻭﺃﺟﺮﻳﺖ ﺍﻟﺘﺠﺮﺑﺔ ﻣﺮﺓ ﺃﺧﺮ￯؟‬‫‪89‬‬

‫‪7-1‬‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ‪The Gas Laws  ‬ﻗﻮاﻧﻴﻦ اﻟﻐﺎزات‬ ‫ا ﻫﺪاف‬ ‫‪‬‬ ‫‪  ‬ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻀﻐﻂ‬ ‫ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﳌﻘﺪﺍﺭ‬ ‫ﺛﺎﺑﺖ ﻣﻦ ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪  ‬ﻗـﻮﺍﻧـﲔ ﺍﻟـﻐـﺎﺯ ﻋﲆ ‪ ‬ﻣﺎﺫﺍ ﳛﺪﺙ ﻟﻐـﺎﺯ ﰲ ﺑﺎﻟـﻮﻥ ﺇﺫﺍ ﻗ ﹼﻠﻠﺖ ﺣﺠﻤﻪ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻴﻪ؟ ﺳﺘﺸـﻌﺮ‬ ‫ﺍﳌﺴﺎﺋﻞ ﺍﻟﺘﻲ ﺗﺘﻀﻤﻦ ﺍﻟﻀﻐﻂ ﺑﺰﻳﺎﺩﺓ ﰲ ﺍﳌﻘﺎﻭﻣﺔ‪ ،‬ﻭﻗﺪ ﺗﺸﺎﻫﺪ ﺍﻧﺘﻔﺎ ﹰﺧﺎ ﰲ ﺟﺰﺀ ﻣﻦ ﺍﻟﺒﺎﻟﻮﻥ‪.‬‬ ‫ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﳌﻘﺪﺍﺭ ﻗﺎﻧﻮن ﺑﻮﻳﻞ ‪Boyle’s Law‬‬ ‫ﺿﻐـﻂ ﺍﻟﻐﺎﺯ ﻭﺣﺠﻤـﻪ ﻣﱰﺍﺑﻄـﺎﻥ‪ .‬ﻭﻗﺪ ﻭﺻﻒ ﺍﻟﻌـﺎﱂ ﺍﻷﻳﺮﻟﻨـﺪﻱ ﺭﻭﺑﺮﺕ ﺑﻮﻳـﻞ )‪1627-‬‬ ‫ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪ (1691‬ﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ‪.‬‬ ‫ﻣﺮاﺟﻌﺔ اﻟﻤﻔﺮدات‬ ‫‪  ‬ﻳﺼﻒ ﻋﻼﻗ ﹰﺔ ‪ ‬ﻟﻘﺪ ﺻ ﹼﻤﻢ ﺑﻮﻳﻞ ﲡﺮﺑﺔ ﻛﺎﳌﺒﻴﻨﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ ،7-1‬ﻭﻭ ﹼﺿﺢ‬ ‫ﰲ ﺍﻟﻄﺒﻴﻌﺔ ﺗﺪﻋﻤﻬﺎ ﻋﺪﺓ ﲡﺎﺭﺏ‪ .‬ﻣﻦ ﺧﻼﳍﺎ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺛﺎﺑﺘﺘﲔ ﻓﺈﻥ ﻣﻀﺎﻋﻔﺔ ﺍﻟﻀﻐﻂ ﺍﻟﻮﺍﻗﻊ ﻋﲆ‬ ‫ﺍﻟﻐـﺎﺯ ﻳﻘﻠﻞ ﻣﻦ ﺣﺠﻤﻪ ﺇﱃ ﺍﻟﻨﺼﻒ‪ .‬ﻭﻣﻦ ﻧﺎﺣﻴﺔ ﺃﺧـﺮ￯ ﻓﺈﻥ ﺗﻘﻠﻴﻞ ﺍﻟﻀﻐﻂ ﺍﻟﻮﺍﻗﻊ ﻋﲆ ﺍﻟﻐﺎﺯ‬ ‫اﻟﻤﻔﺮدات اﻟﺠﺪﻳﺪة‬ ‫ﺇﱃ ﺍﻟﻨﺼـﻒ ﻳﻀﺎﻋﻒ ﺣﺠﻢ ﺍﻟﻐﺎﺯ‪ .‬ﻭﺗﻌ ﹶﺮﻑ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﻲ ﻳﺰﻳﺪ ﻓﻴﻬﺎ ﺃﺣﺪ ﺍﳌﺘﻐﲑﻳﻦ ﻋﻨﺪﻣﺎ ﻳﻘﻞ‬ ‫ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‬ ‫ﺍﻵﺧﺮ ﺑﻌﻼﻗﺔ ﺍﻟﺘﻨﺎﺳﺐ ﺍﻟﻌﻜﴘ‪.‬‬ ‫ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‬ ‫ﺍﻟﺼﻔﺮ ﺍﳌﻄﻠﻖ‬ ‫ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻋﲆ ﺃﻥ ﺣﺠﻢ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻋﻜﺴ ﹼﹰﻴﺎ ﻣﻊ ﺍﻟﻀﻐﻂ ﺍﻟﻮﺍﻗﻊ‬ ‫ﻗﺎﻧﻮﻥ ﺟﺎﻱ ‪ -‬ﻟﻮﺳﺎﻙ‬ ‫ﻋﻠﻴﻪ ﻋﻨﺪ ﺛﺒﻮﺕ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ‪ .‬ﻳﺒﲔ ﺍﻟﺸﻜﻞ ‪ 7-1‬ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ‪ ،‬ﺣﻴﺚ‬ ‫ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‬ ‫ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺍﻟﻌﻼﻗﺔ ﺍﻟﻌﻜﺴﻴﺔ ﺑﲔ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﰲ ﺍﳌﻨﺤﻨﻰ ﺍﳌ ﹼﺘﺠﻪ ﺇﱃ ﺃﺳﻔﻞ ‪.‬‬ ‫‪   7-1‬‬ ‫‪‬‬ ‫‪‬‬‫‪25°C‬‬ ‫)‪10 (1.0 atm, 10 L‬‬ ‫‪8‬‬ ‫‪L‬‬ ‫‪L‬‬ ‫)‪6 (2.0 atm, 5 L‬‬ ‫‪10 L 25°C‬‬ ‫‪25°C‬‬ ‫‪25°C‬‬ ‫‪10‬‬ ‫‪4‬‬ ‫‪1 atm‬‬ ‫‪8‬‬ ‫‪6‬‬ ‫‪4 atm‬‬ ‫‪2‬‬ ‫)‪(4.0 atm, 2.5 L‬‬ ‫‪4‬‬ ‫‪2‬‬‫)‪3 = (4 atm)(2.5 L‬‬ ‫‪0‬‬ ‫‪2 atm‬‬ ‫‪0‬‬ ‫‪= 10 atm · L‬‬ ‫‪0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0‬‬ ‫‪5 L 4 atm‬‬ ‫‪0 0.5‬‬ ‫‪= ‬‬ ‫‪atm‬‬ ‫‪2.5 L‬‬ ‫‪   ‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﻟﺮﺳﻢ ﻟﺘﺤﺪﻳﺪ ﺍﳊﺠﻢ‪ ،‬ﺇﺫﺍ‬ ‫)‪P1V1 = (1 atm)(10 L‬‬ ‫)‪P2V2 = (2 atm)(5 L‬‬ ‫)‪P3V3 = (4 atm)(2.5 L‬‬ ‫‪= 10 atm · L‬‬ ‫‪= 10 atm · L‬‬ ‫‪= 10 atm · L‬‬ ‫ﻛﺎﻥ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ )‪.(2.5atm‬‬ ‫‪= ‬‬ ‫‪= ‬‬ ‫‪= ‬‬‫‪14-03C-828378-08.ai‬‬ ‫‪90‬‬

‫ﻻﺣﻆ ﺃﻥ ﻧﺎﺗﺞ ﴐﺏ ﺍﻟﻀﻐﻂ ﰲ ﺍﳊﺠﻢ ﻋﻨﺪ ﻛﻞ ﻧﻘﻄﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-1‬ﻳﺴﺎﻭﻱ ‪10 atm.L‬‬ ‫ﻟﺬﺍ ﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﺭﻳﺎﺿ ﹼﹰﻴﺎ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻵﰐ‪:‬‬ ‫ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‬ ‫‪ : V   :P P1V1 = P2V2‬‬‫ﺣﺎﺻﻞ ﴐﺏ ﺿﻐﻂ ﻛﻤﻴﺔ ﳏﺪﺩﺓ ﻣﻦ ﺍﻟﻐﺎﺯ ﰲ ﺣﺠﻤﻬﺎ ﻋﻨﺪ ﺛﺒﻮﺕ ﺩﺭﺟﺔ ﺣﺮﺍﺭﲥﺎ ﻳﺴﺎﻭﻱ‬ ‫ﻛﻤﻴﺔ ﺛﺎﺑﺘﺔ‪.‬‬‫ﻳﻤﺜﻞ ﻛﻞ ﻣﻦ ‪ P1‬ﻭ ‪ V1‬ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﺍﻻﺑﺘﺪﺍﺋﻴﲔ‪ ،‬ﰲ ﺣﲔ ﻳﻤﺜﻞ ﻛﻞ ﻣﻦ ‪ P2‬ﻭ‪ V2‬ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ‬‫ﺍﳉﺪﻳﺪﻳﻦ‪ ،‬ﻓﺈﺫﺍ ﻋﻠﻤﺖ ﺛﻼﺛﺔ ﻣﻦ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺃﻣﻜﻨﻚ ﻣﻌﺮﻓﺔ ﻗﻴﻤﺔ ﺍﳌﺘﻐﲑ ﺍﻟﺮﺍﺑﻊ‪.‬‬ ‫‪71‬‬‫‪ ‬ﻳﻨﻔﺦ ﻏﻮﺍﺹ ﻭﻫﻮ ﻋﲆ ﻋﻤﻖ ‪ 10m‬ﲢﺖ ﺍﳌﺎﺀ ﻓﻘﺎﻋﺔ ﻫﻮﺍﺀ ﺣﺠﻤﻬﺎ ‪ ،0.75 L‬ﻭﻋﻨﺪﻣﺎ ﺍﺭﺗﻔﻌﺖ ﻓﻘﺎﻋﺔ ﺍﳍﻮﺍﺀ ﺇﱃ‬ ‫ﺍﻟﺴﻄﺢ ﺗﻐﲑ ﺿﻐﻄﻬﺎ ﻣﻦ ‪ 2.25 atm‬ﺇﱃ ‪ ، 1.03 atm‬ﻣﺎ ﺣﺠﻢ ﻓﻘﺎﻋﺔ ﺍﳍﻮﺍﺀ ﻋﻨﺪ ﺍﻟﺴﻄﺢ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﺑﺎﻻﻋﺘﲈﺩ ﻋﲆ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‪ ،‬ﺑﻨﻘﺼﺎﻥ ﺍﻟﻀﻐﻂ ﻋﲆ ﻓﻘﺎﻋﺔ ﺍﳍﻮﺍﺀ ﻳﺰﺩﺍﺩ ﺣﺠﻤﻬﺎ‪ ،‬ﻟﺬﺍ ﳚﺐ ﴐﺏ ﺍﳊﺠﻢ ﺍﻻﺑﺘﺪﺍﺋﻲ ﳍﺎ ﰲ ﻧﺴﺒﺔ‬ ‫ﺿﻐﻂ ﺃﻛﱪ ﻣﻦ ‪.1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪V2 = ? L‬‬ ‫‪V1 = 0.75 L‬‬ ‫‪P1 = 2.25 atm‬‬ ‫‪P2 = 1.03 atm‬‬‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻹﳚﺎﺩ ﻗﻴﻤﺔ ‪ V2‬ﻭﺍﺣﺴﺐ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ‪.‬‬‫‪P1V1 = P2V2‬‬ ‫‪‬‬‫‪( )V2 = V1‬‬ ‫‪‬‬ ‫‪_P1‬‬ ‫‪P2‬‬‫‪( )V2 = 0.75 L‬‬ ‫‪2_.25 atm‬‬ ‫‪v10.75LP12.25atmP21.03atm‬‬ ‫‪1.03 atm‬‬‫‪( )V2 = 0.75 L‬‬‫‪2_.25 atm‬‬ ‫‪= 1.6 L‬‬ ‫‪ ‬‬‫‪1.03 atm‬‬‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ ﻗﻞ ﺍﻟﻀﻐﻂ ﺑﻤﻘﺪﺍﺭ ﺍﻟﻨﺼﻒ ﺗﻘﺮﻳ ﹰﺒﺎ‪ ،‬ﻟﺬﺍ ﻓﺈﻥ ﺍﳊﺠﻢ ﺳﻴﺰﻳﺪ ﺇﱃ ﺍﻟﻀﻌﻒ‪ ،‬ﻭﻳﻌﱪ ﻋﻦ ﺍﻹﺟﺎﺑﺔ ﺑﻮﺣﺪﺓ‬ ‫ﺍﻟﻠﱰ‪ ،‬ﻭﻫﻲ ﻭﺣﺪﺓ ﻗﻴﺎﺱ ﺍﳊﺠﻢ‪ ،‬ﻭﲢﺘﻮﻱ ﺍﻹﺟﺎﺑﺔ ﻋﲆ ﺭﻗﻤﲔ ﻣﻌﻨﻮﻳﲔ‪ ،‬ﻭﻫﺬﺍ ﺻﺤﻴﺢ‪.‬‬ ‫‪‬‬ ‫ﺍﻓﱰﺽ ﺃﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ ﺛﺎﺑﺘﺎﻥ ﰲ ﺍﳌﺴﺎﺋﻞ ﺍﻵﺗﻴﺔ ‪:‬‬ ‫‪ .1‬ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﻏﺎﺯ ﻋﻨﺪ ﺿﻐﻂ ‪ 99.0 kPa‬ﻫﻮ ‪ ، 300.0 ml‬ﻭﺃﺻﺒﺢ ﺍﻟﻀﻐﻂ ‪ 188 kPa‬ﻓﲈ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ؟‬ ‫‪ .2‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﻋﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ﰲ ﺇﻧﺎﺀ ﺣﺠﻤﻪ ‪ 1.00 L‬ﻫﻮ ‪ 0.988 atm‬ﻓﲈ ﻣﻘﺪﺍﺭ ﺿﻐﻂ ﻫﺬﻩ ﺍﻟﻌﻴﻨﺔ ﺇﺫﺍ ﹸﻧﻘﻠﺖ ﺇﱃ‬ ‫ﻭﻋﺎﺀ ﺣﺠﻤﻪ ‪2.00 L‬؟‬ ‫‪   .3‬ﺇﺫﺍ ﻛﺎﻥ ﻣﻘﺪﺍﺭ ﺣﺠﻢ ﻏﺎﺯ ﳏﺼﻮﺭ ﲢﺖ ﻣﻜﺒﺲ ﺃﺳﻄﻮﺍﻧﺔ ‪ ،145.7 L‬ﻭﺿﻐﻄﻪ ‪ ،1.08 atm‬ﻓﲈ ﺣﺠﻤﻪ ﺍﳉﺪﻳﺪ ﻋﻨﺪﻣﺎ‬ ‫ﻳﺰﺩﺍﺩ ﺍﻟﻀﻐﻂ ﺑﻤﻘﺪﺍﺭ ‪25%‬؟‬‫‪91‬‬

‫ﻗﺎﻧﻮن ﺷﺎرل ‪Charles’s Law‬‬‫ﻻﺣﻈﺖ ﰲ ﺍﻟﺘﺠﺮﺑﺔ ﺍﻻﺳﺘﻬﻼﻟﻴﺔ ﺃﻥ ﳏﻴﻂ ﺍﻟﺒﺎﻟﻮﻥ ﻗﺪ ﻗﻞ ﺑﻌﺪ ﻏﻤﺮﻩ ﰲ ﺍﳌﺎﺀ ﻭﺍﻟﺜ ﹺﻠﺞ‪ .‬ﳌﺎﺫﺍ ﺣﺪﺙ ﺫﻟﻚ؟‬‫ﻛﲈ ﺃﻧﻚ ﺗﻼﺣﻆ ﺃ ﹼﻥ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ﺗﻈﻬﺮ ﻏﲑ ﻣﻨﺘﻔﺨﺔ ﺟﻴ ﹰﺪﺍ ﺇﺫﺍ ﺗﺮﻛﺘﻬﺎ ﰲ ﻣﻜﺎﻥ ﺑﺎﺭﺩ ﻓﱰﺓ ﻣﻦ ﺍﻟﻮﻗﺖ‪ ،‬ﰲ‬‫ﺣﲔ ﺗﺮﺍﻫﺎ ﻣﻨﺘﻔﺨﺔ ﺟﻴ ﹰﺪﺍ ﺇﺫﺍ ﺗﺮﻛﺖ ﰲ ﻣﻜﺎﻥ ﻣﺸﻤﺲ‪ .‬ﻓﻠﲈﺫﺍ ﳜﺘﻠﻒ ﻣﻈﻬﺮ ﺍﻟﻜﺮﺓ؟ ﻳﻤﻜﻦ ﺍﻹﺟﺎﺑﺔ ﻋﻦ‬ ‫ﻫﺬﻩ ﺍﻷﺳﺌﻠﺔ ﻣﻦ ﺧﻼﻝ ﺗﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‪.‬‬‫‪ ‬ﺩﺭﺱ ﺟﺎﻙ ﺷﺎﺭﻝ )‪ (1746-1823‬ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﺍﻟﻔﺮﻧﴘ‬‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ ،‬ﺣﻴﺚ ﻻﺣﻆ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﻭﺣﺠﻢ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺰﺩﺍﺩ‬‫ﻋﻨﺪﻣﺎ ﻳﺒﻘﻰ ﻛﻞ ﻣﻦ ﻣﻘﺪﺍﺭ ﺍﻟﻌﻴﻨﺔ ﻭﺍﻟﻀﻐﻂ ﺛﺎﺑﺘﲔ‪ .‬ﻳﻤﻜﻦ ﺗﻔﺴﲑ ﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺑﻨﺎ ﹰﺀ ﻋﲆ ﻧﻈﺮﻳﺔ ﺍﳊﺮﻛﺔ‬‫ﺍﳉﺰﻳﺌﻴﺔ‪ :‬ﻓﻌﻨﺪﻣﺎ ﺗﺰﺩﺍﺩ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺗﺘﺤﺮﻙ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﻭﺗﺼﻄﺪﻡ ﺃﴎﻉ ﺑﺠﺪﺍﺭ ﺍﻹﻧﺎﺀ ﺍﻟﺬﻱ ﺗﻮﺟﺪ‬‫ﻓﻴﻪ ﻭﺑﻘﻮﺓ ﺃﻛﱪ‪ .‬ﻭﻷﻥ ﺍﻟﻀﻐﻂ ﻳﻌﺘﻤﺪ ﻋﲆ ﻋﺪﺩ ﻭﻗﻮﺓ ﺍﺻﻄﺪﺍﻣﺎﺕ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺑﺠﺪﺍﺭ ﺍﻹﻧﺎﺀ ﻓﺈﻥ ﻫﺬﺍ‬‫ﻳﺆﺩﻱ ﺇﱃ ﺯﻳﺎﺩﺓ ﺍﻟﻀﻐﻂ‪ ،‬ﻭﺣﺘﻰ ﻳﺒﻘﻰ ﺍﻟﻀﻐﻂ ﺛﺎﺑ ﹰﺘﺎ ﻻ ﺑﺪ ﺃﻥ ﻳﺰﻳﺪ ﺍﳊﺠﻢ؛ ﺇﺫ ﲢﺘﺎﺝ ﺍﳉﺴﻴﲈﺕ ﺇﱃ ﺍﻻﻧﺘﻘﺎﻝ‬ ‫ﺇﱃ ﻣﺴﺎﻓﺎﺕ ﺃﺑﻌﺪ ﻗﺒﻞ ﺃﻥ ﺗﺼﻄﺪﻡ ﺑﺎﳉﺪﺍﺭ‪ ،‬ﳑﺎ ﻳﻘﻠﻞ ﻣﻦ ﻋﺪﺩ ﺍﺻﻄﺪﺍﻣﺎﺕ ﺍﳉﺴﻴﲈﺕ ﺑﺠﺪﺍﺭ ﺍﻹﻧﺎﺀ‪.‬‬ ‫ﺗﻮﺿﺢ ﺍﻷﺳﻄﻮﺍﻧﺎﺕ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-2‬ﻛﻴﻒ ﻳﺘﻐﲑ ﺣﺠﻢ ﻣﻘﺪﺍﺭ ﳏﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﺑﺘﺴﺨﻴﻨﻪ‪.‬‬ ‫‪ ‬‬ ‫ﻣﺨﺘﺒﺮ ﺣﻞ اﻟﻤﺸﻜﻼت‬‫‪ .1‬ﻃ ﹼﺒﻖ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻟﺘﻔﺴﲑ ﺍﻟﺴﺒﺐ ﺍﻟﺬﻱ ﳚﻌﻞ ﺍﳍﻮﺍﺀ‬ ‫ﺗﻄﺒﻴﻖ اﻟﺘﻔﺴﻴﺮات اﻟﻌﻠﻤﻴﺔ‬‫ﻳﺪﺧﻞ ﺇﱃ ﺍﻟﺮﺋﺘﲔ ﻋﻨﺪ ﺍﻟﺸﻬﻴﻖ ﻭﳜﺮﺝ ﻣﻨﻬﲈ ﻋﻨﺪ‬ ‫‪ ‬ﺃﻧﺖ ﺗﺘﻨﻔﺲ ‪20‬‬ ‫ﺍﻟﺰﻓﲑ‪.‬‬ ‫ﻣﺮﺓ ﰲ ﺍﻟﺪﻗﻴﻘﺔ‪ ،‬ﻭﺗﺴﺘﺒﺪﻝ ﺑﻐﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻏﺎ ﹶﺯ‬‫‪ .2‬ﻭ ﹼﺿﺢ ﻣﺎ ﳛﺪﺙ ﺩﺍﺧﻞ ﺍﻟﺮﺋﺘﲔ ﻋﻨﺪﻣﺎ ﻳﺘﻌﺮﺽ‬ ‫ﺍﻷﻛﺴﺠﲔ ﻟﺘﺤﺎﻓﻆ ﻋﲆ ﺣﻴﺎﺗﻚ‪ .‬ﻓﻜﻴﻒ ﻳﺘﻐﲑ ﺍﻟﻀﻐﻂ‬‫ﺍﻹﻧﺴﺎﻥ ﻟﴬﺑﺔ ﻋﲆ ﺍﻟﺒﻄﻦ‪ ،‬ﻭﳜﺮﺝ ﺍﳍﻮﺍﺀ ﻣﻨﻪ‪.‬‬ ‫ﻭﺍﳊﺠﻢ ﰲ ﺭﺋﺘﻴﻚ ﰲ ﺃﺛﻨﺎﺀ ﺗﻨﻔﺴﻚ؟‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻟﺘﻔﺴﲑ ﺇﺟﺎﺑﺘﻚ‪.‬‬ ‫‪ ‬‬‫‪ .3‬ﺍﺳﺘﻨﺘﺞ ﹶﺗ ﹾﻔﻘﺪ ﺑﻌﺾ ﺃﺟـﺰﺍﺀ ﺍﻟﺮﺋﺘﲔ ﻣﺮﻭﻧﺘﻬﺎ‬‫ﻭﺗﺘﻀﺨﻢ‪ ،‬ﻭﻳﻨﺘﺞ ﻋﻦ ﺫﻟﻚ ﻣﺮﺽ ﺍﻧﺘﻔﺎﺥ ﺍﻟﺮﺋﺘﲔ‪.‬‬ ‫ﻳﺴﻤﺢ ﺍﻟﻨﺴﻴﺞ ﺍﻹﺳﻔﻨﺠﻲ ﺍﳌﺮﻥ ﺍﻟﺬﻱ ﺗﺘﻜﻮﻥ ﻣﻨﻪ ﺍﻟﺮﺋﺘﺎﻥ‬‫ﻛﻴﻒ ﺗﺴﺘﺪﻝ ﻣﻦ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻋﲆ ﺃﻥ ﻫﺬﺍ ﺍﻷﻣﺮ‬ ‫ﺑﺘﻤﺪﺩ ﺍﻟﺮﺋﺘﲔ ﻭﺍﻧﻘﺒﺎﺿﻬﲈ؛ ﻟﺘﺴﺘﺠﻴﺐ ﳊﺮﻛﺔ ﺍﳊﺠﺎﺏ‬ ‫ﺍﳊﺎﺟﺰ‪ ،‬ﻭﻫﻮ ﺍﻟﻌﻀﻠﺔ ﺍﻟﻘﻮﻳﺔ ﺍﳌﻮﺟﻮﺩﺓ ﺃﺳﻔﻠﻬﲈ‪ .‬ﻓﻌﻨﺪﻣﺎ‬ ‫ﻳﺆﺛﺮ ﰲ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻨﻔﺲ؟‬ ‫ﻳﺘﺤﺮﻙ ﺍﳊﺠﺎﺏ ﺍﳊﺎﺟﺰ ﺇﱃ ﺃﺳﻔﻞ ﻳﺰﺩﺍﺩ ﺣﺠﻢ ﺍﻟﺮﺋﺘﲔ‪،‬‬ ‫ﻭﺑﺬﻟﻚ ﻧﺘﻤﻜﻦ ﻣﻦ ﺍﻟﺸﻬﻴﻖ‪ ،‬ﻛﲈ ﻳﺘﻘﻠﺺ ﺣﺠﻢ ﺍﻟﺮﺋﺘﲔ ﻋﻨﺪﻣﺎ‬‫‪ .4‬ﻓ ﹼﴪ ﺍﻟﺴﺒﺐ ﰲ ﺗﻌﻠﻴﻢ ﺍﻟﻐﻮﺍﺻﲔ ﺍﳌﺒﺘﺪﺋﲔ ﺍﻟﺬﻳﻦ‬ ‫ﻳﺘﺤﺮﻙ ﺍﳊﺠﺎﺏ ﺍﳊﺎﺟﺰ ﺇﱃ ﺃﻋﲆ‪ ،‬ﻭﺑﺬﻟﻚ ﻧﺘﻤﻜﻦ ﻣﻦ ﺍﻟﺰﻓﲑ‪.‬‬‫ﳛﻤﻠﻮﻥ ﺟﻬﺎﺯ ﺍﻟﺘﻨﻔﺲ ﲢﺖ ﺍﳌﺎﺀ ﻋﺪ ﹶﻡ ﺣﺒﺲ‬ ‫‪ ‬‬ ‫ﺃﻧﻔﺎﺳﻬﻢ ﰲ ﺃﺛﻨﺎﺀ ﺻﻌﻮﺩﻫﻢ ﻣﻦ ﺍﳌﻴﺎﺓ ﺍﻟﻌﻤﻴﻘﺔ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪92‬‬ ‫‪C13-02A-874637.ai‬‬ ‫‪be‬‬

‫‪1 atm‬‬ ‫‪ml‬‬ ‫‪˚C‬‬ ‫‪       7-2 ‬‬ ‫‪600 ml‬‬ ‫‪        ‬‬ ‫‪800‬‬ ‫‪        ‬‬ ‫)‪600 (27°C, 600 ml‬‬ ‫‪‬‬ ‫)‪400 (-123°C, 300 ml‬‬‫‪300 K‬‬ ‫‪200‬‬‫‪V2‬‬ ‫=‬ ‫‪600 ml‬‬ ‫‪0‬‬ ‫‪1 atm‬‬ ‫‪ml‬‬ ‫‪˚C‬‬‫‪T2‬‬ ‫‪300 K‬‬ ‫‪300 250 200 150 100 50 0 50‬‬ ‫‪600 ml‬‬ ‫‪1 atm‬‬ ‫‪800‬‬ ‫‪= 2 ml/K‬‬ ‫‪˚C‬‬ ‫‪300 ml‬‬ ‫‪600 (27°‬‬ ‫‪= ‬‬ ‫‪K‬‬ ‫‪150 K‬‬ ‫)‪400 (-123°C, 300 ml‬‬ ‫‪200‬‬ ‫‪ml‬‬‫‪800‬‬ ‫‪300 K‬‬ ‫)‪600 (300 K, 600 ml‬‬ ‫‪0‬‬ ‫‪300 250 200 150 100‬‬ ‫‪400‬‬ ‫)‪200 (150 K, 300 ml‬‬ ‫‪˚C‬‬ ‫‪0‬‬ ‫‪V1‬‬ ‫=‬ ‫‪300 ml‬‬ ‫‪V2‬‬ ‫=‬ ‫‪600 ml‬‬ ‫‪0 50 100 150 200 250 300 350‬‬ ‫‪T1‬‬ ‫‪150 K‬‬ ‫‪T2‬‬ ‫‪300 K‬‬ ‫‪K‬‬ ‫‪= 2 ml/K‬‬ ‫‪= 2 ml/K‬‬ ‫‪= ‬‬ ‫‪= ‬‬ ‫‪C14-05C-828378-08.ai‬‬ ‫ﻭﻋﲆ ﻋﻜﺲ ﺍﻟﺸﻜﻞ ‪ 7-1‬ﺇﺫ ﻳﺆﺛﺮ ﰲ ﺍﳌﻜﺒﺲ ﺿﻐﻂ ﺧﺎﺭﺟﻲ ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺍﻟﻀﻐﻂ ﺍﳉﻮ ‪n‬ﻱ‪b،e‬ﻓﻘﺪ ﺑﻘﻲ‬ ‫ﺍﳌﻜﺒﺲ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-2‬ﺣﺮ ﺍﳊﺮﻛﺔ‪ .‬ﻭﻫﺬﺍ ﻳﻌﻨﻲ ﻗﻴﺎﻡ ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩ ﰲ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺑﺮﻓﻊ ﺍﳌﻜﺒﺲ ﺇﱃ ﺃﻥ‬ ‫ﻳﺘﺴﺎﻭ￯ ﺍﻟﻀﻐﻂ ﺍﻟﻮﺍﻗﻊ ﻋﻠﻴﻪ ﻣﻊ ﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ‪.‬‬ ‫ﻭﻛﲈ ﺗﻼﺣﻆ ﻳﺰﺩﺍﺩ ﺣﺠﻢ ﺍﻟﻐﺎﺯ ﺍﳌﺤﺼﻮﺭ ﻋﻨﺪ ‪ 1 atm‬ﺑﺰﻳﺎﺩﺓ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﰲ ﺍﻷﺳﻄﻮﺍﻧﺔ‪ ،‬ﻟﺬﺍ ﺗﻜﻮﻥ‬ ‫ﺍﳌﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﺘﺤﺮﻛﻬﺎ ﺍﳌﻜﺒﺲ ﻣﻘﻴﺎ ﹰﺳﺎ ﻟﺰﻳﺎﺩﺓ ﺣﺠﻢ ﺍﻟﻐﺎﺯ ﻋﻨﺪﻣﺎ ﻳﺴﺨﻦ‪.‬‬ ‫‪‬ﻳﻮ ﹼﺿﺢ ﺍﻟﺸـﻜﻞ ‪ 7-2‬ﺃﻳ ﹰﻀـﺎ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﻭﺍﳊﺠـﻢ ﳌﻘـﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﲢﺖ ﺗﺄﺛﲑ ﺿﻐﻂ ﺛﺎﺑﺖ؛ ﺣﻴﺚ ﺇﻥ ﻣﻨﺤﻨﻰ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻣﻊ ﺍﳊﺠﻢ ﺧ ﹼﻂ‬ ‫ﻣﺴـﺘﻘﻴﻢ‪ ،‬ﻓﻴﻤﻜﻨـﻚ ﺗﻮﻗﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺘﻲ ﻳﺼﺒﺢ ﺍﳊﺠﻢ ﻋﻨﺪﻫـﺎ ‪ ،0 L‬ﻭﺫﻟﻚ ﺑﻤ ﹼﺪ ﺍﳋﻂ ﺇﱃ ﺩﺭﺟﺎﺕ‬ ‫ﺣﺮﺍﺭﺓ ﺃﺩﻧﻰ ﻣﻦ ﺍﻟﺪﺭﺟﺎﺕ ﺍﻟﺘﻲ ﺗﻢ ﻗﻴﺎﺳﻬﺎ‪.‬‬ ‫ﰲ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﺍﻷﻭﻝ‪ ،‬ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺘﻲ ﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ ﺍﳊﺠﻢ ‪ 0 L‬ﺗﺴﺎﻭﻱ ‪ ،-273˚C‬ﻟﺬﺍ ﻓﻬﺬﻩ‬ ‫ﺍﻟﻌﻼﻗﺔ ﺧﻄﻴﺔ‪ ،‬ﻟﻜﻨﻬﺎ ﻟﻴﺴﺖ ﺗﻨﺎﺳ ﹰﺒﺎ ﻣﺒﺎ ﹰﴍﺍ‪ .‬ﻓﻤﺜ ﹰﻼ ﻳﻤﻜﻨﻚ ﻣﻼﺣﻈﺔ ﻋﺪﻡ ﻣﺮﻭﺭ ﺍﳋﻂ ﺍﳌﺴﺘﻘﻴﻢ ﺑﻨﻘﻄﺔ‬ ‫ﺍﻷﺻﻞ‪ ،‬ﻛﲈ ﺃﻥ ﻣﻀﺎﻋﻔﺔ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻣﻦ ‪ 25˚C‬ﺇﱃ ‪ 50˚C‬ﻻ ﺗﺆﺩﻱ ﺇﱃ ﻣﻀﺎﻋﻔﺔ ﺍﳊﺠﻢ‪.‬‬ ‫ﻳﺒﲔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-2‬ﺃﻥ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻘﻴﺴﺔ ﺑﺎﻟﻜﻠﻔﻦ )‪ (K‬ﻭﺍﳊﺠﻢ ﻋﻼﻗﺔ‬ ‫ﻃﺮﺩﻳﺔ ﻭﺍﻟﺘﻨﺎﺳﺐ ﻣﺒﺎﴍ؛ ﺇﺫ ﺗﻘﺎﺑﻞ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ 0 K‬ﺣﺠ ﹰﲈ ﻣﻘﺪﺍﺭﻩ ‪ ،0 ml‬ﻭﻋﻨﺪ ﻣﻀﺎﻋﻔﺔ ﺩﺭﺟﺔ‬ ‫ﺍﳊﺮﺍﺭﺓ ﻳﺘﻀﺎﻋﻒ ﺍﳊﺠﻢ‪ .‬ﻭﻳﻌﺮﻑ ﺍﻟﺼﻔﺮ ﻋﲆ ﺗﺪﺭﻳﺞ ﻛﻠﻔﻦ ﺑﺎﻟﺼﻔﺮ ﺍﳌﻄﻠﻖ‪ ،‬ﻭﻫﻮ ﻳﻤﺜﻞ ﺃﻗﻞ ﻗﻴﻤﺔ ﳑﻜﻨﺔ‬ ‫ﻟﺪﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺘﻲ ﺗﻜﻮﻥ ﻋﻨﺪﻫﺎ ﻃﺎﻗﺔ ﺍﻟﺬﺭﺍﺕ ﺃﻗﻞ ﻣﺎ ﻳﻤﻜﻦ‪.‬‬ ‫‪  ‬ﳌﺎﺫﺍ ﻳﻮﺿـﺢ ﺍﻟﺮﺳـﻢ ﺍﻟﺒﻴـﺎﲏ ﺍﻟـﺜـﺎﲏ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-2‬ﺗﻨﺎﺳ ﹰﺒﺎ‬ ‫ﻃﺮﺩ ﹼﹰﻳﺎ ﻣﺒﺎ ﹰﴍﺍ‪ ،‬ﰲ ﺣﲔ ﻻ ﻳﻮﺿﺢ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﺍﻷﻭﻝ ﺫﻟﻚ‪.‬‬ ‫‪93‬‬

‫‪ ‬ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺷـﺎﺭﻝ ﻋﲆ ﺃﻥ ﺣﺠـﻢ ﺃﻱ ﻣﻘﺪﺍﺭ ﳏﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳـﺐ‬‫ﻃﺮﺩ ﹰﹼﻳـﺎ ﻣﻊ ﺩﺭﺟـﺔ ﺣﺮﺍﺭﺗﻪ ﺍﳌﻄﻠﻘﺔ ﻋﻨﺪ ﺛﺒﻮﺕ ﺍﻟﻀﻐﻂ‪ ،‬ﻭﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻗﺎﻧﻮﻥ ﺷـﺎﺭﻝ ﺑﺎﻟﻌﻼﻗﺔ‬ ‫ﺍﻟﺮﻳﺎﺿﻴﺔ ﺍﻵﺗﻴﺔ‪:‬‬ ‫ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‬ ‫‪V‬‬ ‫‪_V1‬‬ ‫=‬ ‫‪_V2‬‬‫‪T‬‬ ‫‪T1‬‬ ‫‪T2‬‬‫ﺣﺎﺻﻞ ﴐﺏ ﺿﻐﻂ ﻛﻤﻴﺔ ﳏﺪﺩﺓ ﻣﻦ ﺍﻟﻐﺎﺯ ﰲ ﺣﺠﻤﻬﺎ ﻋﻨﺪ ﺛﺒﻮﺕ ﺩﺭﺟﺔ ﺣﺮﺍﺭﲥﺎ ﻳﺴﺎﻭﻱ ﻛﻤﻴﺔ‬ ‫ﺛﺎﺑﺘﺔ‪.‬‬‫ﲤﺜﻞ‪ T1،V1‬ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺃﻋﻼﻩ ﺍﻟﻈﺮﻭﻑ ﺍﻻﺑﺘﺪﺍﺋﻴﺔ‪ ،‬ﰲ ﺣﲔ ﲤﺜﻞ ‪ T ، V‬ﺍﻟﻈﺮﻭﻑ ﺍﳉﺪﻳﺪﺓ‪ ،‬ﻛﲈ‬ ‫ﰲ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‪ ،‬ﻓﺈﺫ ﻋﺮﻓﺖ ﺛﻼﺙ ﻣﺘﻐﲑﺍﺕ ﺃﻣﻜﻨﻚ ﺣﺴﺎﺏ ﺍﳌﺘﻐﲑ ﺍﻟﺮﺍﺑﻊ‪.‬‬‫ﻭﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﳚﺐ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺑﺎﻟﻜﻠﻔﻦ‪ .‬ﻭﻛﲈ ﻗﺮﺃﺕ ﺳﺎﺑ ﹰﻘﺎ‪ ،‬ﻋﻠﻴﻚ‬‫ﺇﺿﺎﻓﺔ ‪ 273‬ﺇﱃ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﻟﺘﺤﻮﻳﻞ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻣﻦ ﺍﻟﺘﺪﺭﻳﺞ ﺍﻟﺴﻴﻠﻴﺰﻱ ﺇﱃ‬‫‪TK = 273 + TC‬‬ ‫ﺍﻟﺘﺪﺭﻳﺞ ﺑﺎﻟﻜﻠﻔﻦ‪:‬‬ ‫‪72‬‬‫‪‬ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﺑﺎﻟﻮﻥ ﻫﻴﻠﻴﻮﻡ ‪ 2.32 L‬ﺩﺍﺧﻞ ﺳﻴﺎﺭﺓ ﻣﻐﻠﻘﺔ‪ ،‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‪ ،40.0 ˚C‬ﻓﺈﺫﺍ ﻭﻗﻔﺖ ﺍﻟﺴﻴﺎﺭﺓ‬‫ﰲ ﺳﺎﺣﺔ ﺍﻟﺒﻴﺖ ﰲ ﻳﻮﻡ ﺣﺎﺭ ﻭﺍﺭﺗﻔﻌﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺩﺍﺧﻠﻬﺎ ﺇﱃ ‪ ،75.0 ˚C‬ﻓﲈ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ ﻟﻠﺒﺎﻟﻮﻥ ﺇﺫﺍ ﺑﻘﻲ ﺍﻟﻀﻐﻂ ﺛﺎﺑ ﹰﺘﺎ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﻋﲆ ﺃﻥ ﺣﺠﻢ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺰﺩﺍﺩ ﺑﺰﻳﺎﺩﺓ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ ﺇﺫﺍ ﺑﻘﻲ ﺍﻟﻀﻐﻂ ﺛﺎﺑ ﹰﺘﺎ‪ .‬ﻟﺬﺍ ﻳﺰﺩﺍﺩ ﺣﺠﻢ‬ ‫ﺍﻟﺒﺎﻟﻮﻥ ‪ ،‬ﻭﳚﺐ ﴐﺏ ﺍﳊﺠﻢ ﺍﻻﺑﺘﺪﺍﺋﻲ ﰲ ﻧﺴﺒﺔ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺃﻛﱪ ﻣﻦ ﻭﺍﺣﺪ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪V2 = ? L‬‬ ‫‪T 2 = 40.0 °C‬‬ ‫‪V 1 = 2.32 L‬‬ ‫‪T 2 = 75.0 °C‬‬ ‫‪TK = 273 + TC‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬‫‪T1 = 273 + 40.0 ˚C = 313.0 K‬‬‫‪T2 = 273 + 75.0 °C = 348.0 K‬‬ ‫ﺣ ﹼﻮﻝ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﺇﱃ ﺍﻟﻜﻠﻔﻦ‪.‬‬ ‫‪‬‬ ‫‪T140.0˚C‬‬ ‫‪T275.0˚C‬‬ ‫‪94‬‬

‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﻹﳚﺎﺩ ‪ ،V2‬ﻭﻋﻮﺽ ﺑﺎﻟﻘﻴﻢ ﺍﳌﻌﺮﻭﻓﺔ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﹸﺃﻋﻴﺪ ﺗﺮﺗﻴﺒﻬﺎ‪.‬‬ ‫‪_V1‬‬ ‫=‬ ‫‪_V2‬‬ ‫‪‬‬ ‫‪V2‬‬ ‫‪T1‬‬ ‫‪T2‬‬ ‫‪( )V2 = V1‬‬ ‫‪V 1 = 2.32 L، T 1 = 313.0 K، T 2 = 348.0 K‬‬ ‫‪_T2‬‬ ‫‪T1‬‬ ‫‪( )V2 = 2.32 L‬‬ ‫‪_348.0 K‬‬ ‫‪313.0 K‬‬ ‫‪( )V2 = 2.32 L‬‬ ‫‪_348.0 K‬‬ ‫‪= 2.58 L‬‬ ‫‪ ‬‬ ‫‪313.0 K‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬ ‫ﻛﺎﻧﺖ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺑﺎﻟﻜﻠﻔﻦ ﺻﻐﲑﺓ ﻧﺴﺒ ﹼﹰﻴﺎ‪ ،‬ﻟﺬﺍ ﺳﺘﻜﻮﻥ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﳊﺠﻢ ﺻﻐﲑﺓ ﺃﻳ ﹰﻀﺎ‪،‬‬ ‫ﻭﺳﺘﺴﺘﺨﺪﻡ ﻭﺣﺪﺓ ) ‪ ( L‬ﰲ ﺍﻹﺟﺎﺑﺔ‪ ،‬ﻭﻫﻲ ﻭﺣﺪﺓ ﺍﳊﺠﻢ‪ ،‬ﻭﻫﻨﺎﻙ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻣﻌﻨﻮﻳﺔ‪.‬‬ ‫‪‬‬ ‫ﺍﻓﱰﺽ ﺃﻥ ﺍﻟﻀﻐﻂ ﻭﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ ﺛﺎﺑﺘﺎﻥ ﰲ ﺍﳌﺴﺎﺋﻞ ﺍﻵﺗﻴﺔ‪:‬‬ ‫‪4.3 L‬‬ ‫‪ .4‬ﻣﺎ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﻳﺸﻐﻠﻪ ﺍﻟﻐﺎﺯ ﰲ ﺍﻟﺒﺎﻟﻮﻥ ﺍﳌﻮﺟﻮﺩ ﻋﻦ ﺍﻟﻴﺴﺎﺭ ﻋﻨﺪ ﺩﺭﺟﺔ ‪250 K‬؟‬ ‫‪350 K‬‬ ‫‪ .5‬ﺷﻐﻞ ﻏﺎﺯ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ 89 ˚C‬ﺣﺠ ﹰﲈ ﻣﻘﺪﺍﺭﻩ )‪ .(0.67 L‬ﻋﻨﺪ ﺃﻱ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺳﻴﻠﻴﺰﻳﺔ ﺳﻴﺰﻳﺪ‬ ‫ﺍﳊﺠﻢ ﻟﻴﺼﻞ ﺇﱃ ‪ 1.12 L‬؟‬ ‫‪ .6‬ﺇﺫﺍ ﺍﻧﺨﻔﻀﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﻟﻌﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ ﺣﺠﻤﻬﺎ ‪ 3.0 L‬ﻣﻦ ‪ 80.0 ˚C‬ﺇﱃ ‪30.0 ˚C‬‬ ‫ﻓﲈ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ ﻟﻠﻐﺎﺯ؟‬ ‫‪   .7‬ﻳﺸﻐﻞ ﻏﺎﺯ ﺣﺠ ﹰﲈ ﻣﻘﺪﺍﺭﻩ ‪ 0.67 L‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ )‪ .(350 K‬ﻣﺎ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﻼﺯﻣﺔ‬ ‫ﳋﻔﺾ ﺍﳊﺠﻢ ﺑﻤﻘﺪﺍﺭ ‪ 45%‬؟‬‫‪C13-03A-874637.ai‬‬ ‫‪ben‬‬ ‫ﻗﺎﻧﻮن ﺟﺎي ‪ -‬ﻟﻮﺳﺎك ‪Gay- Lussac،s Law‬‬ ‫ﻻﺣﻈﺖ ﰲ ﺍﻟﺘﺠﺮﺑﺔ ﺍﻻﺳﺘﻬﻼﻟﻴﺔ ﺗﻄﺒﻴﻘﺎﺕ ﻋﲆ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‪ ،‬ﻓﻌﻨﺪ ﺗﻐﲑ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﻳﺘﻐﲑ ﺣﺠﻢ ﺍﻟﺒﺎﻟﻮﻥ‪ ،‬ﻭﻟﻜﻦ ﻣﺎﺫﺍ ﻳﻤﻜﻦ ﺃﻥ ﳛﺪﺙ ﻟﻮ ﻛﺎﻥ ﺍﻟﺒﺎﻟﻮﻥ ﺻﻠ ﹰﺒﺎ ﺛﺎﺑ ﹰﺘﺎ؟ ﻭﺇﺫﺍ ﻛﺎﻥ‬ ‫ﺣﺠﻤﻪ ﺛﺎﺑ ﹰﺘﺎ ﻓﻬﻞ ﻫﻨﺎﻙ ﻋﻼﻗﺔ ﺑﲔ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ؟ ﻳﻤﻜﻦ ﺍﻹﺟﺎﺑﺔ ﻋﻦ ﻫﺬﺍ‬ ‫ﺍﻟﺴﺆﺍﻝ ﻣﻦ ﺧﻼﻝ ﻗﺎﻧﻮﻥ ﺟﺎﻱ ‪ -‬ﻟﻮﺳﺎﻙ‪.‬‬ ‫‪‬‬ ‫ﻳﻨﺘﺞ ﺍﻟﻀﻐﻂ ﻋﻦ ﺍﺻﻄﺪﺍﻡ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺑﺠﺪﺭﺍﻥ ﺍﻟﻮﻋﺎﺀ؛ ﻓﻜﻠﲈ ﺍﺭﺗﻔﻌﺖ ﺩﺭﺟﺎﺕ‬ ‫ﺍﳊﺮﺍﺭﺓ ﺯﺍﺩ ﻋﺪﺩ ﺍﻻﺻﻄﺪﺍﻣﺎﺕ ﻭﻃﺎﻗﺘﻬﺎ‪ .‬ﻟﺬﺍ ﺗﺆﺩﻱ ﺯﻳﺎﺩﺓ ﺍﳊﺮﺍﺭﺓ ﺇﱃ ﺯﻳﺎﺩﺓ ﺍﻟﻀﻐﻂ ﺇﺫﺍ‬ ‫ﱂ ﻳﺘﻐﲑ ﺍﳊﺠﻢ‪.‬‬‫‪95‬‬

    7-3   1.0 L 1.0 Latm K 1 atm 2 atm 4.0 150 K 300 K 3.5 3.0 (300 K, 3.0 atm) P1 = 1.5 atm P2 = 3.0 atm 2.5 T1 150 K T2 300 K 2.0 1.5 (150 K, 1.5 atm) = 0.01 atm/K = 0.01 atm/K 1.0 0.5 =  =  0 0 100 200 300 400 500 600 K ‫ﻗﺎﺭﻥ ﺑﲔ ﺍﻟﺮﺳﻮﻡ‬ .7-3 ‫ﻭ‬7-2 ‫ﺍﻟﺒﻴﺎﻧﻴﺔ ﰲ ﺍﻟﺸﻜﻠﲔ‬ C13-04A-874637.ai ben‫( ﺃﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ ﺗﺘﻨﺎﺳﺐ‬1778-1850) ‫ﻭﻗﺪ ﻭﺟﺪ ﺟﺎﻱ ﻟﻮﺳﺎﻙ‬ ‫ﻣﻬﻦ ﻓﻲ اﻟﻜﻴﻤﻴﺎء‬‫ ﻭﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺟﺎﻱ ﻟﻮﺳﺎﻙ‬.7-3 ‫ ﻛﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ﺍﻟﺸﻜﻞ‬،‫ﻃﺮﺩ ﹰﹼﻳﺎ ﻣﻊ ﺍﻟﻀﻐﻂ‬  ،‫ﻋﲆ ﺃﻥ ﺿﻐﻂ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻃﺮﺩ ﹼﹰﻳﺎ ﻣﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ ﻟﻪ‬        :‫ ﻭﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻪ ﺭﻳﺎﺿ ﹼﹰﻴﺎ ﻛﲈ ﻳﺄﰐ‬.‫ﺇﺫﺍ ﺑﻘﻲ ﺍﳊﺠﻢ ﺛﺎﺑ ﹰﺘﺎ‬          ‫ﻗﺎﻧﻮﻥ ﺟﺎﻱ ﻟﻮﺳﺎﻙ‬           P _P1 = _P2 T   T1 T2‫ﺣﺎﺻﻞ ﻗﺴﻤﺔ ﺍﻟﻀﻐﻂ ﻋﲆ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ ﳌﻘﺪﺍﺭ ﳏﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﺫﻱ‬ .‫ﺣﺠﻢ ﺛﺎﺑﺖ ﻳﺴﺎﻭﻱ ﻣﻘﺪ ﹰﺭﺍ ﺛﺎﺑ ﹰﺘﺎ‬‫ ﻓﺈﺫﺍ ﻋﺮﻓﺖ ﺛﻼﺛﺔ ﻣﺘﻐﲑﺍﺕ ﺃﻣﻜﻨﻚ‬،‫ﻭﻛﲈ ﻫﻮ ﺍﳊﺎﻝ ﰲ ﻗﺎﻧﻮﲏ ﺑﻮﻳﻞ ﻭﺷﺎﺭﻝ‬‫ ﺗﺬﻛﺮ ﺃﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﳚﺐ ﺃﻥ ﺗﻜﻮﻥ‬.‫ﺣﺴﺎﺏ ﺍﳌﺘﻐﲑ ﺍﻟﺮﺍﺑﻊ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ‬ .‫( ﺃﻳﻨﲈ ﺍﺳﺘﺨﺪﻣﺖ ﰲ ﻣﻌﺎﺩﻻﺕ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯ‬k) ‫ﻣﻄﻠﻘﺔ‬ 96

‫‪73‬‬‫‪  -‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﺩﺍﺧﻞ ﺍﻷﺳﻄﻮﺍﻧﺔ ‪ 5.00 atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ‪ ، 25.0˚C‬ﻭﻭﺿﻌﺖ‬‫ﺍﻷﺳﻄﻮﺍﻧﺔ ﰲ ﺧﻴﻤﺔ ﻋﲆ ﻗﻤﺔ ﺟﺒﻞ ﺇﻓﺮﺳﺖ‪ ،‬ﺣﻴﺚ ﺗﻜﻮﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ -10.0˚C‬ﻓﲈ ﺍﻟﻀﻐﻂ ﺍﳉﺪﻳﺪ ﺩﺍﺧﻞ ﺍﻷﺳﻄﻮﺍﻧﺔ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﻋﲆ ﺃﻧﻪ ﺇﺫﺍ ﺍﻧﺨﻔﻀﺖ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻐﺎﺯ ﺍﳌﺤﺼﻮﺭ ﻓﺈﻥ ﺿﻐﻄﻪ ﻳﻨﺨﻔﺾ ﺇﺫﺍ ﺑﻘﻲ ﺣﺠﻤﻪ ﺛﺎﺑ ﹰﺘﺎ‪.‬‬ ‫ﻟﺬﻟﻚ ﻳﻘﻞ ﺍﻟﻀﻐﻂ ﰲ ﺃﺳﻄﻮﺍﻧﺔ ﺍﻷﻛﺴﺠﲔ‪ .‬ﳚﺐ ﴐﺏ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﺍﻻﺑﺘﺪﺍﺋﻲ ﰲ ﻧﺴﺒﺔ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺃﻗﻞ ﻣﻦ ‪.1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪P2 = ? atm‬‬ ‫‪P1 = 5.00 atm‬‬ ‫‪T1 = 25.0 ˚C‬‬ ‫‪T2 = -10.0 ˚C‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫ﺣﻮﻝ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﺇﱃ ﻣﻄﻠﻘﺔ‬ ‫‪TK = 273 + TC‬‬ ‫‪‬‬ ‫‪T1 = 273 + 25.0 ˚C = 298.0 K‬‬ ‫‪T125.0 ˚C ‬‬ ‫‪T2 = 273 + (-10.0 °C) = 263.0 K‬‬ ‫‪T2 = 10.0 ˚C  ‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺟﺎﻱ ﻟﻮﺳﺎﻙ؛ ﻹﳚﺎﺩ ﻗﻴﻤﺔ ‪ ،P2‬ﻭﻋﻮﺽ ﺑﺎﻟﻘﻴﻢ ﺍﳌﻌﺮﻭﻓﺔ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﺃﻋﻴﺪ ﺗﺮﺗﻴﺒﻬﺎ‪.‬‬ ‫‪( )_P_1‬‬‫=‬ ‫‪_P_2‬‬ ‫‪‬‬ ‫‪T2‬‬ ‫‪P2‬‬ ‫‪T1‬‬ ‫‪P2 = P1‬‬ ‫‪_T2‬‬ ‫‪T1‬‬ ‫‪( )P2 = 5.00 atm‬‬ ‫‪_263.0 K‬‬ ‫‪P15.00atmT1298.0KT2263.0K‬‬ ‫‪298.0 K‬‬ ‫‪( )P2 = 5.00 atm‬‬ ‫‪_263.0 K‬‬ ‫‪= 4.41 atm‬‬ ‫‪‬‬ ‫‪298.0 K‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬ ‫ﺗﻘﻞ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ‪ ،‬ﻟﺬﺍ ﻳﻘﻞ ﺍﻟﻀﻐﻂ‪ .‬ﻭﺣﺪﺓ ﺍﻟﻀﻐﻂ ‪ ،atm‬ﻭﻫﻨﺎﻙ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻣﻌﻨﻮﻳﺔ‪.‬‬ ‫‪‬‬ ‫‪  ‬‬‫‪ .8‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﺇﻃﺎﺭ ﺳﻴﺎﺭﺓ ‪ 1.88 atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ، 250 ˚C‬ﻓﻜﻢ ﻳﻜﻮﻥ ﺍﻟﻀﻐﻂ ﺇﺫﺍ ﺍﺭﺗﻔﻌﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺇﱃ‬ ‫‪37.0 ˚C‬؟‬‫‪ .9‬ﻳﻮﺟﺪ ﻏﺎﺯ ﻫﻴﻠﻴﻮﻡ ﰲ ﺃﺳﻄﻮﺍﻧﺔ ﺣﺠﻤﻬﺎ ‪ ،2L‬ﲢﺖ ﺗﺄﺛﲑ ﺿﻐﻂ ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪ ،1.12 atm‬ﻓﺈﺫﺍ ﺃﺻﺒﺢ ﺿﻐﻂ ﺍﻟﻐﺎﺯ ‪2.56‬‬ ‫‪ ،atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،36.5 ˚C‬ﻓﲈ ﻗﻴﻤﺔ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻐﺎﺯ ﺍﻻﺑﺘﺪﺍﺋﻴﺔ؟‬‫‪   .10‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺴﺎﻭﻱ ‪ 30.7 KPa‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،00.0 ˚C‬ﻓﻜﻢ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗﺮﺗﻔﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﻟﻠﻌﻴﻨﺔ ﺣﺘﻰ ﻳﺘﻀﺎﻋﻒ ﺿﻐﻄﻬﺎ؟‬‫‪97‬‬

‫‪    7-4‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫‪        ‬‬ ‫‪ ‬‬ ‫اﻟﻘﺎﻧﻮن اﻟﻌﺎم ﻟﻠﻐﺎزات ‪The Combined Gas Law‬‬ ‫اﻟﻜﻴﻤﻴﺎء ﻓﻲ واﻗﻊ اﻟﺤﻴﺎة‬‫ﻳﻤﻜﻦ ﺃﻥ ﻳﺘﻐﲑ ﻛﻞ ﻣﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﰲ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻟﺘﻄﺒﻴﻘﺎﺕ‬ ‫‪‬‬‫ﺍﻟﻌﻤﻠﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ‪ ،‬ﻛﲈ ﰲ ﺑﺎﻟﻮﻥ ﺍﻟﻄﻘﺲ ﰲ ﺍﻟﺸﻜﻞ ‪ .7-4‬ﻛﲈ ﻳﻤﻜﻦ ﲨﻊ ﻗﺎﻧﻮﻥ‬‫ﺑﻮﻳﻞ ﻭﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﻭﻗﺎﻧﻮﻥ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﰲ ﻗﺎﻧﻮﻥ ﻭﺍﺣﺪ ﻳﻄﻠﻖ ﻋﻠﻴﻪ ﺍﻟﻘﺎﻧﻮﻥ‬ ‫‪ ‬ﺍﻟﻀﻐﻂ ﻟﻮﻋﺎﺀ ﺍﻟﻀﻐﻂ ﻏﻄﺎﺀ‬‫ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‪ ،‬ﻭﻫﻮ ﳛ ﹼﺪﺩ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﻟﻜﻤﻴﺔ‬‫ﳏ ﹼﺪﺩﺓ ﻣﻦ ﺍﻟﻐﺎﺯ‪ .‬ﻭﻳﻮﺟﺪ ﺑﲔ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﺜﻼﺛﺔ ﻧﻔﺲ ﺍﻟﻌﻼﻗﺔ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﻟﻘﻮﺍﻧﲔ‬ ‫ﳏﻜﻢ ﺍﻹﻏﻼﻕ‪ ،‬ﻭﺣﺠﻤﻪ ﺛﺎﺑﺖ‪ .‬ﻭﻋﻨﺪ‬‫ﺍﻷﺧﺮ￯‪ .‬ﻓﺎﻟﻀﻐﻂ ﻳﺘﻨﺎﺳﺐ ﻋﻜﺴ ﹰﹼﻴﺎ ﻣﻊ ﺍﳊﺠﻢ‪ ،‬ﻭﻃﺮﺩ ﹰﹼﻳﺎ ﻣﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪.‬‬ ‫ﺗﺴﺨﻴﻨﻪ ﻳــﺰﺩﺍﺩ ﺍﻟﻀﻐﻂ ﰲ ﺍﻹﻧــﺎﺀ‪،‬‬ ‫ﻭﺑﺰﻳﺎﺩﺓ ﺍﻟﻀﻐﻂ ﺗﺴﺘﻤﺮ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﻭﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﺭﻳﺎﺿ ﹼﹰﻴﺎ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻵﰐ‪:‬‬ ‫ﰲ ﺍﻻﺭﺗﻔﺎﻉ‪ ،‬ﻓﻴﺘﻢ ﺑﺬﻟﻚ ﻃﻬﻮ ﺍﻟﻄﻌﺎﻡ‬ ‫ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‬ ‫ﺑﴪﻋﺔ ﺃﻛﱪ‪.‬‬‫‪VP‬‬ ‫‪_P1V1‬‬ ‫=‬ ‫‪_P2V2‬‬ ‫‪98‬‬ ‫‪T‬‬ ‫‪T1‬‬ ‫‪T2‬‬‫ﺣﻴﺚ ﺣﺎﺻﻞ ﴐﺏ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻣﻘﺴﻮ ﹰﻣﺎ ﻋﲆ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ‬ ‫ﳌﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺴﺎﻭﻱ ﻣﻘﺪﺍ ﹰﺭﺍ ﺛﺎﺑ ﹰﺘﺎ‪.‬‬‫ﺍ‪ ‬ﻳﺴﺎﻋﺪﻙ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﻋﲆ ﺣﻞ‬‫ﺍﳌﺴﺎﺋﻞ ﺍﻟﺘﻲ ﺗﺘﻀﻤﻦ ﺃﻛﺜﺮ ﻣﻦ ﻣﺘﻐﲑ ﻭﺍﺣﺪ‪ ،‬ﻛﲈ ﻳﻘﺪﻡ ﻟﻚ ﻃﺮﻳﻘﺔ ﻟﺘﺬﻛﺮ ﺍﻟﻘﻮﺍﻧﲔ‬‫ﺍﻟﺜﻼﺛﺔ ﺍﻷﺧﺮ￯ ﺩﻭﻥ ﺗﺬﻛﺮ ﻣﻌﺎﺩﻻﲥﺎ‪ ،‬ﻓﺈﺫﺍ ﻛﻨﺖ ﻗﺎﺩ ﹰﺭﺍ ﻋﲆ ﻛﺘﺎﺑﺔ ﻣﻌﺎﺩﻟﺔ ﻗﺎﻧﻮﻥ‬‫ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﻌﺎﻡ ﻓﺈﻧﻪ ﻳﻤﻜﻨﻚ ﺍﺷﺘﻘﺎﻕ ﺍﻟﻘﻮﺍﻧﲔ ﺍﻷﺧﺮ￯ ﻣﻦ ﺧﻼﻝ ﺗﺬﻛﺮ ﺍﳌﺘﻐﲑ‬ ‫ﺍﻟﺜﺎﺑﺖ ﰲ ﻛﻞ ﺣﺎﻟﺔ‪.‬‬‫ﻣﺜ ﹰﻼ ﺇﺫﺍ ﺑﻘﻴﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺛﺎﺑﺘﺔ ﺑﻴﻨﲈ ﺗﻐﲑ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻓﺈﻥ ‪.T2=T1‬‬‫ﻭﺑﻌﺪ ﺗﺒﺴﻴﻂ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﻟﻌﺎﻡ ﲢﺖ ﻫﺬﻩ ﺍﻟﻈﺮﻭﻑ ﺳﺘﺠﺪ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺃﺻﺒﺤﺖ‬ ‫‪ ،P1V1 =P2V2‬ﻭﺍﻟﺘﻲ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗﺴﺘﻨﺘﺞ ﺃﳖﺎ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‪.‬‬‫‪   ‬ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‪ ،‬ﻭﻗﺎﻧﻮﻥ ﺟﺎﻱ‪-‬ﻟﻮﺳﺎﻙ ﻣﻦ ﺍﻟﻘﺎﻧﻮﻥ‬ ‫ﺍﳉﺎﻣﻊ ﻟﻠﻐﺎﺯﺍﺕ‪.‬‬

‫‪74‬‬‫‪ ‬ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﻛﻤﻴﺔ ﻣﻦ ﻏﺎﺯ ﻣﺎ ﲢﺖ ﺿﻐﻂ ‪ ، 110 KPa‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ 30.0˚C‬ﻳﺴﺎﻭﻱ ‪،2.00 L‬‬ ‫ﻭﺍﺭﺗﻔﻌﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺇﱃ ‪ ،80.0˚C‬ﻭﺯﺍﺩ ﺍﻟﻀﻐﻂ ﻭﺃﺻﺒﺢ ‪ ،440 KPa‬ﻓﲈ ﻣﻘﺪﺍﺭ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬ ‫ﺗﻐﲑ ﻛﻞ ﻣﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ؛ ﻟﺬﻟﻚ ﳚﺐ ﺃﻥ ﺗﺴﺘﺨﺪﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‪.‬‬‫ﻟﻘﺪ ﺯﺍﺩ ﺍﻟﻀﻐﻂ ﺃﺭﺑﻊ ﻣﺮﺍﺕ‪ ،‬ﻟﻜﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﱂ ﺗﺮﺗﻔﻊ ﺑﻤﺜﻞ ﻫﺬﺍ ﺍﳌﻌﺎﻣﻞ ﺍﻟﻀﺨﻢ‪ ،‬ﻟﺬﻟﻚ ﻓﺈﻥ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ ﺳﻴﻜﻮﻥ ﺃﻗﻞ‬ ‫‪‬‬ ‫‪P1 = 110 kPa‬‬ ‫ﻣﻦ ﺍﳊﺠﻢ ﺍﻻﺑﺘﺪﺍﺋﻲ‪.‬‬ ‫‪T1 = 30.0 ºC‬‬ ‫‪V2 = ? L‬‬ ‫‪‬‬ ‫‪P2 = 440 kPa‬‬ ‫‪T2 = 80.0 °C‬‬ ‫‪V1 = 2.00 L‬‬ ‫‪ 2‬ﺣﻞ اﻟﻤﻄﻠﻮب‬ ‫ﺣ ﹼﻮﻝ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ ﻣﻦ ﺍﻟﺴﻴﻠﻴﺰﻳﺔ ﺇﱃ ﻣﻄﻠﻘﺔ‪.‬‬ ‫‪TK = 273 + TC‬‬ ‫‪‬‬ ‫‪T1 = 273 + 30.0°C = 303.0 K‬‬ ‫‪T130.0°C‬‬ ‫‪T2 = 273 + 80.0°C = 353.0 K‬‬ ‫‪T230.0°C‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﻌﺎﻡ‪ ،‬ﻟﺘﺠﺪ ﻗﻴﻤﺔ ‪ V‬ﺛﻢ ﻋﻮﺽ ﺍﻟﻘﻴﻢ ﺍﳌﻌﺮﻭﻓﺔ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﺃﻋﻴﺪ ﺗﺮﺗﻴﺒﻬﺎ‪.‬‬ ‫‪_P1V1‬‬ ‫‪=_PT22V2‬‬ ‫‪‬‬ ‫‪V2‬‬ ‫‪T1‬‬ ‫‪P1110kPaP2440kPaT1303.0K‬‬ ‫‪( )( )V2‬‬‫=‬‫‪V1‬‬‫‪_P1‬‬ ‫‪_T2‬‬ ‫‪P2‬‬ ‫‪T1‬‬ ‫‪( )( )V2‬‬ ‫=‬ ‫‪2.00‬‬ ‫‪L‬‬ ‫‪_110 kPa‬‬ ‫‪_353.0 K‬‬ ‫‪440 kPa‬‬ ‫‪303.0 K‬‬ ‫‪( )( )V2‬‬ ‫‪T2353.0K‬‬ ‫=‬ ‫‪2.00‬‬ ‫‪L‬‬ ‫‪_110 kPa‬‬ ‫‪_353.0 K‬‬ ‫‪= 0.58 L‬‬ ‫‪ ‬‬ ‫‪440 kPa‬‬ ‫‪303.0 K‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬‫ﺗﻐﲑ ﺍﻟﻀﻐﻂ ﺑﺸﻜﻞ ﺃﻛﱪ ﻣﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻟﺬﺍ ﻓﻘﺪ ﻗﻞ ﺍﳊﺠﻢ ‪ .‬ﺍﻟﻮﺣﺪﺓ ﻫﻲ)‪ ،(L‬ﻭﻫﻲ ﺣﺪﺓ ﻗﻴﺎﺱ ﺍﳊﺠﻢ‪ ،‬ﻭﻫﻨﺎﻙ ﺭﻗﲈﻥ ﻣﻌﻨﻮﻳﺎﻥ‪.‬‬ ‫‪‬‬ ‫‪  ‬‬‫‪ .11‬ﹸﲢﺪﺙ ﻋﻴﻨﺔ ﻣﻦ ﺍﳍﻮﺍﺀ ﰲ ﺣﻘﻨﺔ ﺿﻐ ﹰﻄﺎ ﻣﻘﺪﺍﺭﻩ ‪ ،1.02 atm‬ﻋﻨﺪ ‪ ،22.0˚C‬ﻭﻭﺿﻌﺖ ﻫﺬﻩ ﺍﳊﻘﻨﺔ ﰲ ﲪﺎﻡ ﻣﺎﺀ ﻳﻐﲇ )ﺩﺭﺟﺔ‬‫ﺣﺮﺍﺭﺓ ‪ (100.0˚C‬ﻭﺍﺯﺩﺍﺩ ﺍﻟﻀﻐﻂ ﺇﱃ ‪ 1.23 atm‬ﺑﺪﻓﻊ ﻣﻜﺒﺲ ﺍﳊﻘﻨﺔ ﺇﱃ ﺍﻟﺪﺍﺧﻞ‪ ،‬ﳑﺎ ﺃﺩ￯ ﺇﱃ ﻧﻘﺼﺎﻥ ﺍﳊﺠﻢ ﺇﱃ‬ ‫‪ 0.224 ml‬ﻓﻜﻢ ﻛﺎﻥ ﺍﳊﺠﻢ ﺍﻻﺑﺘﺪﺍﺋﻲ؟ ‪0.00°C‬‬ ‫‪ .12‬ﳛﺘﻮﻱ ﺑﺎﻟﻮﻥ ﻋﲆ ‪ 146.0 ml‬ﻣﻦ ﺍﻟﻐﺎﺯ ﺍﳌﺤﺼﻮﺭ ﲢﺖ ﺿﻐﻂ ﻣﻘﺪﺍﺭﻩ ‪ 1.30 atm‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫‪5.0˚C‬ﻓﺈﺫﺍ ﺗﻀﺎﻋﻒ ﺍﻟﻀﻐﻂ ﻭﺍﻧﺨﻔﻀﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺇﱃ ‪ 2.0˚C‬ﻓﻜﻢ ﻳﻜﻮﻥ ﺣﺠﻢ ﺍﻟﻐﺎﺯ ﰲ ﺍﻟﺒﺎﻟﻮﻥ؟ ‪1.00atm‬‬ ‫‪   .13‬ﺇﺫﺍ ﺯﺍﺩﺕ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﰲ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺍﳌﺠﺎﻭﺭﺓ ﻟﺘﺼﻞ ﺇﱃ ‪ ، 30.0˚C‬ﻭﺯﺍﺩ ﺍﻟﻀﻐﻂ ﺇﱃ ‪30.0ml 1.20‬‬ ‫‪ atm‬ﻓﻬﻞ ﻳﺘﺤﺮﻙ ﻣﻜﺒﺲ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺇﱃ ﺃﻋﲆ ﺃﻡ ﺇﱃ ﺃﺳﻔﻞ؟‬‫‪99‬‬

‫‪Combined‬‬ ‫‪T‬‬ ‫‪PV‬‬ ‫‪PV‬‬ ‫‪‬‬ ‫‪71‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪Charles’s‬‬ ‫‪‬‬ ‫‪Combined‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪_PT11V1=_PT22V2‬‬ ‫‪‬‬ ‫‪P_P1‬‬ ‫‪T‬‬ ‫‪_P2‬‬ ‫‪V‬‬ ‫‪P_V1‬‬ ‫‪=T _TV22V‬‬ ‫‪P1PV1 = P2VV2‬‬ ‫‪‬‬ ‫ﻣﻘﺪﺍﺭ ﺍﻟﻐﺎﺯ‬ ‫‪T1‬‬ ‫=‬ ‫‪T2‬‬ ‫‪T1‬‬ ‫‪‬‬ ‫‪PV‬‬ ‫‪ined‬ﻣ‪b‬ﻘ‪m‬ـ‪o‬ﺪﺍ‪C‬ﺭ ﺍﻟﻐـﺎﺯ ﻭﺩﺭﺟـﺔ ﺍﳊﺮﺍ‪’s‬ﺭ‪s‬ﺓ‪harle‬ﻣ‪C‬ﻘﺪﺍﺭ ﺍﻟﻐﺎﺯ ﻭﺍﻟﻀﻐﻂ ‪yle’s‬ﻣ‪o‬ﻘ‪B‬ﺪﺍﺭ ﺍﻟﻐﺎﺯ ﻭﺍﳊﺠﻢ‬ ‫‪Combined‬‬ ‫‪T‬‬ ‫‪T‬‬ ‫‪T‬‬ ‫‪PV‬‬ ‫‪PV‬‬ ‫‪PV‬‬ ‫‪Gay-Lussac’s‬‬ ‫‪Boyle’s‬‬ ‫‪Charles’s‬‬ ‫‪T‬‬ ‫‪TT‬‬ ‫‪T‬‬ ‫‪PV‬‬ ‫‪PV‬‬ ‫‪PV‬‬‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﺑﻪ‬ ‫ﻗﺎﻡ‬ ‫ﺍﻟﺬﻱ‬ ‫‪Charles’s‬‬ ‫‪74637.aiTGay-Lussac’sTBoyle’s‬ﻻ‪-8‬ﺑﺪ‪ A‬ﺃ‪2‬ﻧ‪-1‬ﻚ‪13‬ﻻ‪C‬ﺣﻈﺖ‬ ‫‪T‬‬ ‫ﺃﻥ ﺍﻟﻌﻤﻞ‬‫ﺷـﺎﺭ‪V‬ﻝ ﻭﺟﺎ ‪P‬ﻱ‪ -‬ﻟﻮﺳـﺎﻙ ﻗﺪ ﺳـﺒﻖ ﺗﻄﻮﻳﺮ ﺍﻟﺘﺪﺭﻳ‪n‬ﺞ‪ e‬ﺍ‪b‬ﳌﻄﻠﻖ )‪ ،(K‬ﻋﲆ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃ‪V‬ﻥ ﻗﺎﻧﻮﻧﻴﻬ‪P‬ﲈ ﺗﻄﻠﺒﺎ‬‫‪ay-Lussac’s‬ﺍ‪G‬ﺳﺘﺨﺪﺍﻡ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ )‪ .(K‬ﺣﻴﺚ ﺍﺳﺘﺨﺪﻡ ﺍﻟﻌﻠﲈﺀ ﰲ ﺍﻟﻘﺮﻥ ‪ 1Bo7yl0e’0s‬ﻭﺑﺪﺍﻳﺎﺕ ﺍﻟﻘﺮﻥ ‪18‬‬ ‫‪T‬ﺣﺮﺍﺭ‪i‬ﺓ‪.a‬ﳐ‪7‬ﺘﻠ‪3‬ﻔ‪6‬ﺔ‪7.4‬ﻓ‪8n‬ﻌ‪b-e‬ﲆ‪2PA‬ﺳ‪1‬ـﺒ‪-‬ﻴ‪3‬ﻞ‪1‬ﺍﳌ‪C‬ﺜﺎﻝ‬‫ﻧﻔﺴﻪ‬ ‫ﺍ‪T‬ﻟﻌ ‪P‬ﴫ‬ ‫ﰲ‬ ‫ﺣﺘ ‪V‬ﻰ‬ ‫ﻓﺮﻧﺴﺎ‬ ‫ﰲ‬ ‫ﺭﻳﻮﻣﺮ‬ ‫ﺗﺪﺭﻳﺞ‬ ‫ﺍﺳـﺘﺨﺪﻡ‬ ‫ﻣﻘﺎﻳﻴﺲ‬ ‫‪P‬‬‫ﺍﻟﺬﻱ ﻋﺎﺵ ﻓﻴﻪ ﺷﺎﺭﻝ ﺗﻘﺮﻳ ﹰﺒﺎ‪ .‬ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﻟﺘﺪﺭﻳﺞ ﺃﻭ ﺃﻱ ﺗﺪﺭﻳ‪c’s‬ﺞ‪ssa‬ﻻ‪u‬ﻳ‪-L‬ﻌ‪y‬ﺘ‪a‬ﻤ‪G‬ﺪ ﻋﲆ ﺍﻟﺼﻔﺮ ﺍﳌﻄﻠﻖ‬‫‪874637.ai‬ﺗ‪A-‬ﺼﺒ‪12‬ﺢ‪-‬ﺍﳌ‪3‬ﻌ‪1‬ﺎ‪C‬ﺩﻟﺔ ﺍﻟﺘﻲ ﺗﻌﱪ ﻋﻦ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﺃﻛﺜﺮ ﺗﻌﻘﻴ ﹰﺪﺍ؛ ﻓﻬﻲ ﲢﺘﺎﺝ ﺇﱃ ﺛﺎﺑﺘﲔ ﺇﺿﺎﻓﺔ ﺇ‪T‬ﱃ ﺍﳊﺠﻢ ‪V‬‬‫‪en‬ﻭ‪b‬ﺩﺭ ‪P‬ﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ .T‬ﻭﻗﺪ ﺑ ﹼﺴ‪P‬ﻂ ﺍﻟﺘﺪﺭﻳﺞ ﺍﳌﻄﻠﻖ ﺍﻷﻣﻮﺭ‪ ،‬ﻭﻧﺘﺠﺖ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺴﺘﺨﺪﻣﺔ ﺍﻵﻥ‪.‬‬ ‫‪V‬‬ ‫‪TV‬‬ ‫‪T‬‬‫ﺃﻳ ﹰﻀﺎ‬ ‫ﰲ‪.ai‬ﻋﻴ‪7‬ﻨﺔ‪63‬ﻣ‪4‬ﻦ‪7‬ﺍ‪8‬ﻟ‪-‬ﻐﺎ‪A‬ﺯ‪-1.2‬ﻭﻳ‪3‬ﻤ‪1‬ﻜ‪C‬ﻨﻚ‬ ‫ﻣ’ﺘ‪es‬ﻐ‪arl‬ﲑﺍ‪Ch‬ﺕ‬ ‫ﻛﻴﻒ‬ ‫ﺍﻵﻥ‬ ‫ﻋﺮﻓﺖ‬ ‫ﻭﺍ ‪d‬ﳊ‪e‬ﺮ‪n‬ﺍ‪i‬ﺭ‪b‬ﺓ‪om‬ﻭ‪C‬ﺍﳊﺠﻢ‬ ‫ﺍﻟﻀﻐﻂ‬ ‫ﺗﺆﺛﺮ‬‫ﺍ‪P‬ﺳﺘﺨﺪﺍﻡ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﺘ‪P‬ﻲ ﺗﻢ ﺗﻠﺨﻴﺼﻬﺎ ﰲ ﺍ ‪P‬ﳉﺪﻭﻝ ‪ 7-1‬ﺇﺫﺍ ﻛﺎﻧﺖ‪n‬ﻛ‪e‬ﻤ‪b‬ﻴﺔ ﺍﻟﻐﺎﺯ ﺛﺎﺑﺘﺔ‪ ،‬ﻟﻜﻦ‬ ‫‪P‬‬ ‫‪ T‬ﻣﺎﺫﺍ ﳛﺪﺙ ﺇﺫﺍ‪V‬ﺗﻐ ‪T‬ﲑﺕ ﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ؟‪V‬ﻫﺬﺍ ﻣﺎ ﺳﺘﺪﺭﺳﻪ ﻻﺣ ﹰﻘﺎ‪.‬‬ ‫‪Combined‬‬ ‫’‪Charles‬‬ ‫‪PP‬‬ ‫‪P‬‬ ‫‪ T‬اﻟﺘﻘﻮﻳ‪T V‬ﻢ ‪P 7-1‬‬ ‫‪V TV T‬‬ ‫‪V‬‬ ‫‪Boyle’s‬‬ ‫‪Gay-Lussac’s‬‬ ‫‪Combined‬‬ ‫اﻟ ’ﺨ‪les‬ﻼ‪ChaPr‬ﺻﺔ‬ ‫‪P‬‬‫‪ .14‬اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻭﺿﺢﺍﻟﻌﻼﻗﺔﺑﲔﺍﻟﻀﻐﻂﻭﺩﺭﺟﺔﺍﳊﺮﺍﺭﺓﻭﺣﺠﻢﻛﻤﻴﺔﺛﺎﺑﺘﺔﻣﻦﺍﻟﻐﺎﺯ‪.‬‬‫ﺗﻨﺎﺳ ﹰﺒﺎ‬ ‫ﺗﺘﻨﺎ ‪V‬ﺳﺐ‬ ‫ﻣﻦ ﺍﻟﻐﺎﺯ‪،‬‬ ‫ﻛﻤﻴﺔ‪V‬ﺛﺎﺑﺘ‪T‬ﺔ‬ ‫ﺗﺆﺛﺮ ﰲ‬ ‫ﺍﻟ‪T‬ﺘﻲ‬ ‫ﺃﻱ ﺍﳌﺘﻐﲑﺍﺕ‪V‬ﺍﻟﺜﻼﺛﺔ‪،‬‬ ‫ﺍ ‪T‬ﴍﺡ‬ ‫‪.V15‬‬ ‫ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻋﲆ ﺃﻥ ‪T‬ﺣﺠﻢ ﻣﻘﺪﺍﺭ‬ ‫ﻳﻨﺺ‬ ‫‪Boyle’s‬‬ ‫ﳏ ﹼﺪﺩ‬ ‫‪Combined‬‬ ‫’‪Charles‬‬ ‫ﻃﺮﺩ ﹰﹼﻳﺎ‪ ،‬ﻭﺃﳞﺎ ﺗﺘﻨﺎﺳﺐ ﻋﻜﺴ ﹼﹰﻴﺎ؟‬ ‫‪Gay-Lussac’s‬‬ ‫ﻛ ﹼﹰﻼ‪P‬ﻣﻦ‬ ‫‪P‬‬ ‫ﹸﺃﻃﻠﻖ‬ ‫ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻋﻜﺴ ﹼﹰﻴﺎ ﻣﻊ‬‫ﺍﻻﺑﺘﺪﺍﺋﻲ‬ ‫ﺣﺠﻤﻪ‬ ‫ﺗﻌﺮﻑ‬ ‫ﻭﺃﻧﺖ‬ ‫ﺍﳉﻮﻱ‪،‬‬ ‫ﺍﻟﻐﻼﻑ‬ ‫ﺇﱃ‬ ‫ﻃﻘﺲ‬ ‫ﺑﺎﻟﻮﻥ‬ ‫ﺣﻠﻞ‬ ‫‪.16‬‬ ‫‪V‬‬ ‫ﺿﻐﻄﻪ ﻋﻨﺪ ﺛﺒﻮﺕ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪.‬‬ ‫‪TV‬‬ ‫‪T‬‬ ‫ﻳ‪s‬ﻨ’‪sac‬ﺺ‪s‬ﻗ‪u‬ﺎ‪L‬ﻧ‪-‬ﻮ‪ay‬ﻥ‪G‬ﺷﺎﺭﻝ ﻋﲆ ﺃﻥ ﺣ ‪’s‬ﺠ‪le‬ﻢ‪y‬ﻣ‪o‬ﻘ‪B‬ﺪﺍﺭ‬‫ﻭﺩﺭﺟﺔﺣﺮﺍﺭﺗﻪﻭﺿﻐﻂﺍﳍﻮﺍﺀﻓﻴﻪ‪.‬ﻣﺎﺍﳌﻌﻠﻮﻣﺎﺕﺍﻟﺘﻲﲢﺘﺎﺝﺇﻟﻴﻬﺎﳊﺴﺎﺏﺍﳊﺠﻢﺍﻟﻨﻬﺎﺋﻲ‬‫ﻟﻠﺒﺎﻟﻮﻥ ﻋﻨﺪﻣﺎ ﻳﺼﻞ ﺇﱃ ﺃﻗﴡ ﺍﺭﺗﻔﺎﻉ ﻟﻪ؟ ﻭﺃﻱ ﺍﻟﻘﻮﺍﻧﲔ ﺗﺴﺘﺨﺪﻡ ﳊﺴﺎﺏ ﺍﳊﺠﻢ؟‬ ‫ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻃﺮﺩ ﹼﹰﻳﺎ ﻣﻊ ﺩﺭﺟﺔ‬‫ﺣﺮﺍﺭﺗﻪ ﺍﳌﻄﻠﻘﺔ ﻋﻨﺪ ﺛﺒﻮﺕ ﺍﻟﻀﻐﻂ‪ .17 .‬ﺍﺳﺘﻨﺘﺞ ﳌﺎﺫﺍ ﹸﺗﻀﻐﻂ ﺍﻟﻐﺎﺯﺍﺕ ﺍ‪T‬ﻟﺘﻲ‪c’s‬ﺗ‪sa‬ﺴ‪s‬ﺘ‪Lu‬ﺨ‪y-‬ﺪ‪a‬ﻡ‪G‬ﰲ ﺍ‪V‬ﳌﺴﺘ‪T‬ﺸﻔﻴﺎ ‪’s‬ﺕ‪oy،le‬ﻭ‪B‬ﻣﻨﻬﺎ ﺍ ‪V‬ﻷﻛﺴﺠﲔ؟‬‫ﻭﳌﺎﺫﺍ ﳚﺐ ﲪﺎﻳﺘﻬﺎ ﻣﻦ ﺍﺭﺗﻔﺎﻉ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ ؟ ﻭﻣﺎﺫﺍ ﳚﺐ ﺃﻥ ﳛﺪﺙ ﻟﻸﻛﺴﺠﲔ‬ ‫ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﻋﲆ ﺃﻥ‬ ‫ﺍﳌﻀﻐﻮﻁ ﻗﺒﻞ ﺍﺳﺘﻨﺸﺎﻗﻪ؟‬ ‫ﺿﻐﻂ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ‬‫ﻃﺮﺩ ﹼﹰﻳﺎ ﻣﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﻄﻠﻘﺔ ﻋﻨﺪ ‪ .18‬ﺍﺣﺴﺐ ﳛﺘﻮﻱ ﺇﻧﺎﺀ ﺑﻼﺳﺘﻴﻜﻲ ﺻﻠﺐ ﻋﲆ ‪ 1.00 L‬ﻣﻦ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ ﻋﻨﺪ ﺿﻐﻂ ﺟﻮﻱ‬‫ﻣﻘﺪﺍﺭﻩ ‪ ،660 torr‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ، 22.0˚C‬ﻣﺎ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﺍﻟﺬﻱ ﳛﺪﺛﻪ ﺍﻟﻐﺎﺯ‬ ‫ﺛﺒﻮﺕ ﺍﳊﺠﻢ‪.‬‬ ‫ﻋﻨﺪ ﺍﺭﺗﻔﺎﻉ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺇﱃ ‪44.6˚C‬؟‬ ‫ﻳﺮﺑﻂ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﺑﲔ‬‫ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﰲ ‪ .19‬ﺻ ﹼﻤﻢ ﺧﺮﻳﻄﺔ ﻣﻔﺎﻫﻴﻤﻴﺔ ﺗﻮ ﹼﺿﺢ ﻓﻴﻬﺎ ﺍﻟﻌﻼﻗﺎﺕ ﺑﲔ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﰲ ﻗﻮﺍﻧﲔ ﺑﻮﻳﻞ‪ ،‬ﻭﺷﺎﺭﻝ‪ ،‬ﻭﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ‪.‬‬ ‫ﻣﻌﺎﺩﻟﺔ ﻭﺍﺣﺪﺓ‪.‬‬ ‫‪100‬‬

‫‪7-2‬‬‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ‪‬ﻗﺎﻧﻮن اﻟﻐﺎز اﻟﻤﺜﺎﻟﻲ ‪The Ideal Gas Law‬‬ ‫ا ﻫﺪاف‬ ‫‪‬‬‫‪ ‬ﺗﻌﻠﻢ ﺃﻥ ﺇﺿﺎﻓﺔ ﺍﳍﻮﺍﺀ ﺇﱃ ﺇﻃﺎﺭ ﺍﻟﺴﻴﺎﺭﺓ ﻳﺰﻳﺪ ﻣﻦ ﺿﻐﻂ ﺍﳍﻮﺍﺀ ﰲ ﺍﻹﻃﺎﺭ‪،‬‬ ‫‪  ‬ﻋﺪﺩ ﺍﳉﺴﻴﲈﺕ ﺑﺎﳊﺠﻢ‬‫ﻭﻟﻜـﻦ ﻫـﻞ ﺗﻌﻠﻢ ﺃﻥ ﻗﻴﻤﺔ ﺍﻟﻀﻐﻂ ﺍﳌﺤﺪﺩﺓ ﻟﻺﻃﺎﺭ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﻀﻐﻂ ﰲ ﺍﻹﻃﺎﺭ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ‬ ‫ﻣﺴﺘﺨﺪ ﹰﻣﺎ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ‪.‬‬‫ﺑـﺎﺭ ﹰﺩﺍ؟ ﻓﻌﻨﺪﻣـﺎ ﺗﺘﺤﺮﻙ ﺇﻃﺎﺭﺍﺕ ﺍﻟﺴـﻴﺎﺭﺍﺕ ﻋـﲆ ﺍﻟﻄﺮﻳﻖ ﻳﻌﻤﻞ ﺍﻻﺣﺘـﻜﺎﻙ ﻋﲆ ﺭﻓﻊ ﺩﺭﺟﺔ‬ ‫‪  ‬ﻛﻤﻴـﺔ ﺍﻟﻐـﺎﺯ ﺑﻀﻐـﻄﻪ‬ ‫ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻓﻴﺰﻳﺪ ﺍﻟﻀﻐﻂ‪.‬‬ ‫ﻭﺩﺭﺟـــﺔ ﺣــﺮﺍﺭﺗــﻪ ﻭﺣﺠﻤﻪ‬ ‫ﻣﺴﺘﺨﺪ ﹰﻣﺎ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫‪  ‬ﺑﲔ ﺧﺼـﺎﺋـﺺ ﺍﻟﻐـﺎﺯ‬ ‫ﻣﺒﺪأ أﻓﻮﺟﺎدرو ‪Avogadro’s Principle‬‬ ‫ﺍﳊﻘﻴﻘﻲ ﻭﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬‫ﲣﺘﻠﻒ ﺣﺠﻮﻡ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯﺍﺕ‪ ،‬ﻭﻣﻊ ﺫﻟﻚ ﺗﻔﱰﺽ ﻧﻈﺮﻳﺔ ﺍﳊﺮﻛﺔ ﺍﳉﺰﻳﺌﻴﺔ ﺃﻥ ﺟﺴﻴﲈﺕ‬ ‫ﻣﺮاﺟﻌﺔ اﻟﻤﻔﺮدات‬‫ﺍﻟﻐﺎﺯ ﰲ ﺃﻱ ﻋﻴﻨﺔ ﺗﻜﻮﻥ ﻣﺘﺒﺎﻋﺪﺓ ﻛﺜ ﹰﲑﺍ ﺟ ﹰﹼﺪﺍ‪ ،‬ﺑﺤﻴﺚ ﻳﺼﺒﺢ ﺗﺄﺛﲑ ﺣﺠﻢ ﺍﳉﺴﻴﲈﺕ ﻗﻠﻴ ﹰﻼ‬ ‫‪ ‬ﻭﺣﺪﺓ ﻗﻴﺎﺳـﻴـﺔ ﺩﻭﻟﻴـﺔ‬‫ﺟ ﹰﹼﺪﺍ ﻋﲆ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﻳﺸﻐﻠﻪ ﺍﻟﻐﺎﺯ‪ .‬ﻓﻤﺜ ﹰﻼ ﻳﺸﻐﻞ ‪ 1000‬ﺟﺴﻴﻢ ﻣﻦ ﻏﺎﺯ ﺍﻟﻜﺮﺑﺘﻮﻥ ﺍﻟﻜﺒﲑﺓ‬ ‫ﺗﺴﺘﺨـﺪﻡ ﻟﻘﻴـﺎﺱ ﻛﻤﻴـﺔ ﺍﳌـﺎﺩﺓ‪،‬‬‫ﻧﺴﺒ ﹰﹼﻴﺎ ﺍﳊﺠﻢ ﻧﻔﺴﻪ ﻟـ ‪ 1000‬ﺟﺴﻴﻢ ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ﺍﻷﺻﻐﺮ ﺣﺠ ﹰﲈ ﻋﻨﺪ ﻧﻔﺲ ﺩﺭﺟﺔ‬ ‫ﻭﲤﺜﻞ ﻣـﻘـﺪﺍﺭ ﺍﳌـﺎﺩﺓ ﺍﻟﻨﻘـﻴـﺔ‬‫ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ‪ .‬ﻭﻛﺎﻥ ﺃﻓﻮﺟﺎﺩﺭﻭ ﰲ ﻋﺎﻡ ‪1811‬ﻡ ﺃﻭﻝ ﻣﻦ ﻗﺪﻡ ﻫﺬﻩ ﺍﻟﻔﻜﺮﺓ‪ .‬ﻭﻳﻨﺺ ﻣﺒﺪﺃ‬ ‫ﺍﻟﺘﻲ ﲢﺘﻮﻱ ﻋﲆ ‪ 6.02 X 1023‬ﻣﻦ‬‫ﺃﻓﻮﺟﺎﺩﺭﻭ ﻋﲆ ﺃﻥ ﺍﳊﺠﻮﻡ ﺍﳌﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺨﺘﻠﻔﺔ ﲢﺘﻮﻱ ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻣﻦ ﺍﳉﺴﻴﲈﺕ‬ ‫ﺍﳉﺴﻴﲈﺕ‪.‬‬‫ﻋﻨﺪ ﻧﻔﺲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ‪ .‬ﻭﻳﺒﲔ ﺍﻟﺸﻜﻞ ‪ 7-5‬ﺣﺠﻮ ﹰﻣﺎ ﻣﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺛﺎﲏ ﺃﻛﺴﻴﺪ‬ ‫اﻟﻤﻔﺮدات اﻟﺠﺪﻳﺪة‬ ‫ﺍﻟﻜﺮﺑﻮﻥ ﻭﺍﳍﻴﻠﻴﻮﻡ ﻭﺍﻷﻛﺴﺠﲔ‪.‬‬ ‫ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ‬‫‪ ‬ﺩﺭﺳـﺖ ﺳـﺎﺑ ﹰﻘﺎ ﺃﻥ ﺍﳌـﻮﻝ ﺍﻟﻮﺍﺣـﺪ ﻣـﻦ ﺃﻱ ﻣـﺎﺩﺓ ﳛﺘـﻮﻱ ﻋـﲆ‬ ‫ﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ‬‫‪ 6.02 × 1023‬ﻣﻦ ﺍﳉﺴـﻴﲈﺕ‪ .‬ﻭﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ ﻟﻐﺎﺯ ﻫﻮ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﻳﺸـﻐﻠﻪ ‪ 1 mol‬ﻣﻨﻪ‬ ‫ﺛﺎﺑﺖ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ )‪(R‬‬ ‫ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،0.0˚C‬ﻭﺿﻐﻂ ﺟﻮﻱ ‪.1atm‬‬ ‫ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‬‫ﻭﺗﻌﺮﻑ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ 0.0˚C‬ﻭﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ ‪ 1atm‬ﺑﺪﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﺍﳌﻌﻴﺎﺭﻳﲔ‪.‬‬‫ﻫﺬﺍ ﻭﻗﺪ ﺑ ﱠﲔ ﺃﻓﻮﺟﺎﺩﺭﻭ ﺃﻥ ‪ 1mol‬ﻣﻦ ﺃﻱ ﻏﺎﺯ ﻳﺸﻐﻞ ﺣﺠ ﹰﲈ ﻣﻘﺪﺍﺭﻩ ‪ ،22.4 L‬ﻟﺬﺍ ﻳﻤﻜﻨﻚ‬‫ﺍﺳﺘﻌﲈﻝ ‪ 22.4 L/mol‬ﺑﻮﺻﻔﻪ ﻣﻌﺎﻣﻞ ﲢﻮﻳﻞ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺍﻟﻐﺎﺯ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‪ .‬ﻓﺈﺫﺍ‬‫ﺭﻏﺒﺖ ﻣﺜ ﹰﻼ ﰲ ﻣﻌﺮﻓﺔ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﰲ ﻋﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﺣﺠﻤﻬﺎ ‪ ، 3.72 L‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‪،‬‬ ‫ﻓﻴﺘﻌﲔ ﻋﻠﻴﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ ﻟﺘﺤﻮﻳﻞ ﻭﺣﺪﺍﺕ ﺍﳊﺠﻢ ﺇﱃ ﻣﻮﻻﺕ‪.‬‬ ‫‪3.72‬‬ ‫‪L‬‬ ‫×‬ ‫‪_1 mol‬‬ ‫=‬ ‫‪0.166‬‬ ‫‪mol‬‬ ‫‪22.4 L‬‬ ‫‪‬‬ ‫‪  7-5‬‬ ‫‪‬‬ ‫‪     ‬‬ ‫‪ ‬‬ ‫‪  ‬‬ ‫‪‬‬ ‫‪     ‬‬ ‫‪‬‬‫‪101‬‬

‫‪75‬‬‫‪ ‬ﺍﳌﻜﻮﻥ ﺍﻟﺮﺋﻴﺲ ﻟﻠﻐﺎﺯ ﺍﻟﻄﺒﻴﻌﻲ ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﺍﳌﻨﺎﺯﻝ ﻷﻏﺮﺍﺽ ﺍﻟﺘﺪﻓﺌﺔ ﻭﺍﻟﻄﻬﻮ ﻫﻮ ﺍﳌﻴﺜﺎﻥ ‪ .CH4‬ﺍﺣﺴﺐ ﺣﺠﻢ‬ ‫‪ 2.00 Kg‬ﻣﻦ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪.STP‬‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﻳﻤﻜﻦ ﺣﺴﺎﺏ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﻣﻦ ﺧﻼﻝ ﻗﺴﻤﺔ ﻛﺘﻠﺔ ﺍﻟﻌﻴﻨﺔ )‪ (m‬ﻋﲆ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ‪ .M‬ﻭﻷﻥ ﺍﻟﻐﺎﺯ ﲢﺖ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‬ ‫)‪ ،(STP‬ﻟﺬﺍ ﻳﻤﻜﻨﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ ﻟﺘﺤﻮﻳﻞ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﺇﱃ ﺣﺠﻢ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪V=?L‬‬ ‫‪m = 2.00 kg‬‬ ‫‪T = 0.00 ˚C‬‬ ‫‪P = 1.00 atm‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬‫‪( ) ( )M = 1 C atom‬‬ ‫ﺣ ﹼﺪﺩ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﻤﻴﺜﺎﻥ‬ ‫‪_12.01 amu‬‬ ‫‪+ 4 H atoms‬‬ ‫‪_1.01 amu‬‬ ‫‪‬‬ ‫‪1 C atom‬‬ ‫‪1 H atom‬‬ ‫‪‬‬‫‪= 12.01 amu + 4.04 amu = 16.05 amu = 16.05 g/mol‬‬ ‫‪gmol‬‬ ‫‪( )2.00 kg‬‬ ‫ﺣ ﹼﺪﺩ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﻴﺜﺎﻥ‬ ‫‪_1000 g‬‬ ‫‪= 2.00 × 103 g‬‬ ‫‪g Kg ‬‬ ‫‪1 kg‬‬ ‫‪ ‬‬ ‫‪_m‬‬ ‫=‬ ‫‪_2.00 ×_103 g‬‬ ‫=‬ ‫‪125‬‬ ‫‪mol‬‬ ‫‪M‬‬ ‫‪16.05 g/mol‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ ﻟﺘﺤﺪﻳﺪ ﺣﺠﻢ ﺍﳌﻴﺜﺎﻥ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪.STP‬‬ ‫‪_22.4 L‬‬‫‪V‬‬ ‫=‬ ‫‪125‬‬ ‫‪mol‬‬ ‫×‬ ‫=‬ ‫‪2.80‬‬ ‫×‬ ‫‪10‬‬ ‫‪3‬‬ ‫‪L‬‬ ‫‪22.4Lmol‬‬ ‫‪1 mol‬‬ ‫‪ ‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬‫ﻣﻘﺪﺍﺭ ﺍﳌﻴﺜﺎﻥ ﺍﳌﻮﺟﻮﺩ ﺃﻛﱪ ﻣﻦ ‪ 1 mol‬؛ ﻟﺬﺍ ﳚﺐ ﺃﻥ ﺗﺘﻮﻗﻊ ﺣﺠ ﹰﲈ ﻛﺒ ﹰﲑﺍ‪ ،‬ﻭﻫﺬﺍ ﻳﺘﻔﻖ ﻣﻊ ﺍﻹﺟﺎﺑﺔ‪ .‬ﺍﻟﻮﺣﺪﺓ ﻫﻲ ) ‪ ،( L‬ﻭﻫﻲ‬ ‫ﻭﺣﺪﺓ ﻗﻴﺎﺱ ﺍﳊﺠﻢ‪ ،‬ﻭﻫﻨﺎﻙ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻣﻌﻨﻮﻳﺔ‪.‬‬ ‫‪‬‬‫‪ .20‬ﻣﺎ ﺣﺠﻢ ﺍﻟﻮﻋﺎﺀ ﺍﻟﻼﺯﻡ ﻻﺣﺘﻮﺍﺀ ‪ 0.0459 mol‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ‪ N2‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟‬‫‪ .21‬ﻣﺎ ﻛﺘﻠﺔ ﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺑﺎﳉﺮﺍﻣﺎﺕ‪ ،‬ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺑﺎﻟﻮﻥ ﺣﺠﻤﻪ ‪ 1.0 L‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟‬‫‪ .22‬ﻣﺎ ﺍﳊﻴﺰ )‪ ،(ml‬ﺍﻟﺬﻱ ﻳﺸﻐﻠﻪ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﺍﻟﺬﻱ ﻛﺘﻠﺘﻪ ‪ 0.00922 g‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟‬‫‪ .23‬ﻣﺎ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﺗﺸﻐﻠﻪ ﻛﺘﻠﺔ ﻣﻘﺪﺍﺭﻫﺎ ‪ 0.416 g‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻜﺮﺑﺘﻮﻥ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﻟﻘﻴﺎﺳﻴﺔ ‪STP‬؟‬ ‫‪ .24‬ﺍﺣﺴﺐ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﺗﺸﻐﻠﻪ ﻛﺘﻠﺔ ﻣﻘﺪﺍﺭﻫﺎ ‪ 4.5 Kg‬ﻣﻦ ﻏﺎﺯ ﺍﻹﻳﺜﻴﻠﲔ ‪ C2H4‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟‬‫‪   .25‬ﺇﻧﺎﺀ ﺑﻼﺳﺘﻴﻜﻲ ﻣﺮﻥ ﳛﺘﻮﻱ ‪ 0.86 g‬ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ﺑﺤﺠﻢ )‪ .(19.2 L‬ﻓﺈﺫﺍ ﹸﺃﺧﺮﺝ ‪ 0.205 g‬ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ﻋﻨﺪ‬ ‫ﺿﻐﻂ ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺛﺎﺑﺘﲔ‪ ،‬ﻓﲈ ﺍﳊﺠﻢ ﺍﳉﺪﻳﺪ؟‬ ‫‪102‬‬

‫ﻗﺎﻧﻮن اﻟﻐﺎز اﻟﻤﺜﺎﻟﻲ ‪The Ideal Gas Law‬‬ ‫ﻳﻤﻜﻦ ﲨﻊ ﻛﻞ ﻣﻦ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ ﻭﻗﻮﺍﻧﲔ ﺑﻮﻳﻞ ﻭﺷﺎﺭﻝ ﻭﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﰲ ﻋﻼﻗﺔ‬ ‫ﺭﻳﺎﺿﻴﺔ ﻭﺍﺣﺪﺓ ﺗﺼﻒ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﻋﺪﺩ ﻣﻮﻻﺕ ﺍﻟﻐﺎﺯ‪.‬‬ ‫ﺗﻌﻄﻲ ﻫﺬﻩ ﺍﻟﺼﻴﻐﺔ ﻧﺘﺎﺋﺞ ﺃﻓﻀﻞ ﻟﻠﻐﺎﺯﺍﺕ ﺍﻟﺘﻲ ﺗﻨﻄﺒﻖ ﻋﻠﻴﻬﺎ ﺍﻓﱰﺍﺿﺎﺕ ﻧﻈﺮﻳﺔ ﺍﳊﺮﻛﺔ‬ ‫ﺍﳉﺰﻳﺌﻴﺔ‪ ،‬ﺍﻟﺘﻲ ﺗﻌﺮﻑ ﺑﺎﻟﻐﺎﺯﺍﺕ ﺍﳌﺜﺎﻟﻴﺔ‪ .‬ﺇﻥ ﺣﺠﻮﻡ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯﺍﺕ ﺻﻐﲑﺓ ﺟ ﹰﹼﺪﺍ‪ ،‬ﻭﺑﻴﻨﻬﺎ‬ ‫ﻓﺮﺍﻏﺎﺕ ﻛﺒﲑﺓ ﻟﺪﺭﺟﺔ ﺃﻥ ﻗﻮ￯ ﺍﻟﺘﺠﺎﺫﺏ ﺃﻭ ﺍﻟﺘﻨﺎﻓﺮ ﻓﻴﲈ ﺑﻴﻨﻬﺎ ﺗﺼﺒﺢ ﺃﻗﻞ ﻣﺎ ﻳﻤﻜﻦ‪.‬‬ ‫‪ ‬ﻳﺮﺑﻂ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﺑﲔ‬ ‫ﻣﺘﻐﲑﺍﺕ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﳌﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪_P1V1‬‬ ‫=‬ ‫‪_P2V2‬‬ ‫‪T1‬‬ ‫‪T2‬‬ ‫ﻭﺗﺒﻘﻰ ﻋﻼﻗﺔ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺩﺍﺋ ﹰﲈ ﻧﻔﺴﻬﺎ ﻟﻌﻴﻨﺔ ﳏ ﹼﺪﺩﺓ ﻣﻦ ﺍﻟﻐﺎﺯ‪ .‬ﻭﻳﻤﻜﻦ‬‫‪ 7-6‬‬‫‪  ‬‬ ‫ﺇﻋﺎﺩﺓ ﻛﺘﺎﺑﺔ ﺍﻟﻌﻼﻗﺔ ﺍﳌﻤﺜﻠﺔ ﰲ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻵﰐ ‪:‬‬‫‪    ‬‬‫‪‬‬ ‫ﺛﺎﺑ ﹰﺘﺎ‬ ‫ﻣﻘﺪﺍ ﹰﺭﺍ‬ ‫=‬ ‫‪_PV‬‬ ‫‪‬‬ ‫‪T‬‬ ‫اﻟﻤﻄﻮﻳﺎت‬ ‫ﻳﻮ ﹼﺿﺢ ﺍﻟﺸﻜﻞ ‪ 7-6‬ﺃﻥ ﺯﻳﺎﺩﺓ ﻣﻘﺪﺍﺭ ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩ ﰲ ﺍﻟﻌﻴﻨﺔ ﻳﺆﺩﻱ ﺇﱃ ﺯﻳﺎﺩﺓ ﺍﻟﻀﻐﻂ‪ ،‬ﺇﺫﺍ‬‫ﺃﺩﺧﻞ ﻣﻌﻠﻮﻣﺎﺕ ﻣﻦ ﻫﺬﺍ ﺍﻟﻘﺴﻢ‬ ‫ﻛﺎﻧﺖ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﺛﺎﺑﺘﲔ‪ ،‬ﻛﲈ ﺃ ﹼﻥ ﺍﳊﺠﻢ ﻳﺰﺩﺍﺩ ﻋﻨﺪ ﺇﺿﺎﻓﺔ ﺍﳌﺰﻳﺪ ﻣﻦ ﺟﺴﻴﲈﺕ‬ ‫ﰲ ﻣﻄﻮﻳﺘﻚ‪.‬‬ ‫ﺍﻟﻐﺎﺯ‪ .‬ﻭﻧﺤﻦ ﻧﻌﺮﻑ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﳊﺠﻢ ﻭﺍﻟﻀﻐﻂ ﻳﺘﻨﺎﺳﺒﺎﻥ ﺗﻨﺎﺳ ﹰﺒﺎ ﻃﺮﺩ ﹼﹰﻳﺎ ﻣﻊ ﻋﺪﺩ ﺍﳌﻮﻻﺕ‬ ‫)‪ ،(n‬ﻟﺬﺍ ﻳﻤﻜﻦ ﻭﺿﻊ ﻋﺪﺩ ﺍﳌﻮﻻﺕ )‪ (n‬ﰲ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‪ ،‬ﻛﲈ ﻳﺄﰐ‪:‬‬ ‫ﺛﺎﺑ ﹰﺘﺎ‬ ‫=‬ ‫‪_PV‬‬ ‫‪nT‬‬ ‫ﻭﻟﻘﺪ ﺣﺪﺩﺕ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﺘﻲ ﺍﺳﺘﺨﺪﻣﺖ ﻓﻴﻬﺎ ﻗﻴﻢ ﻣﻌﺮﻭﻓﺔ ﻟﻜﻞ ﻣﻦ ‪ V، T،P.n‬ﻗﻴﻤﺔ ﻫﺬﺍ‬ ‫ﺍﻟﺜﺎﺑﺖ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﻌﺮﻑ ﺑﺜﺎﺑﺖ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪ .R‬ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻐﻂ ﻣﻘﻴ ﹰﺴﺎ‬ ‫ﺑﻮﺣﺪﺓ ‪ atm‬ﻓﺈﻥ ﻗﻴﻤﺔ ‪ R‬ﻫﻲ ‪. 0.0821 L.atm/mol.K‬‬ ‫ﻻﺣﻆ ﺃﻥ ﻭﺣﺪﺓ ‪ R‬ﲡﻤﻊ ﺑﺒﺴﺎﻃﺔ ﻭﺣﺪﺍﺕ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻷﺭﺑﻊ‪ .‬ﻭﻳﺒﲔ ﺍﳉﺪﻭﻝ ‪ 7-2‬ﺍﻟﻘﻴﻢ‬ ‫ﺍﻟﺮﻗﻤﻴﺔ ﻟـ ‪ R‬ﺑﻮﺣﺪﺍﺕ ﳐﺘﻠﻔﺔ ﻟﻠﻀﻐﻂ‪.‬‬ ‫‪  ‬ﳌﺎﺫﺍ ﺃﺿﻴﻒ ﻋﺪﺩ ﺍﳌﻮﻻﺕ )‪ (n‬ﺇﱃ ﺍﳌﻘﺎﻡ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺃﻋﻼﻩ؟‬ ‫ﻋﻨﺪ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻦ ‪ R‬ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺃﻋﻼﻩ‪ ،‬ﻭﻋﻨﺪ ﺇﻋﺎﺩﺓ ﺗﺮﺗﻴﺐ ﺍﳌﺘﻐﲑﺍﺕ ﺗﻨﺘﺞ ﺍﻟﺼﻴﻐﺔ ﺍﻷﻛﺜﺮ‬ ‫‪R 72‬‬ ‫ﺷﻴﻮ ﹰﻋﺎ ﻟﻘﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؛ ﺣﻴﺚ ﻳﺼﻒ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﺍﻟﺴﻠﻮﻙ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﻟﻠﻐﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫ﻣﻦ ﺣﻴﺚ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﻋﺪﺩ ﻣﻮﻻﺕ ﺍﻟﻐﺎﺯ ﺍﳌﺘﻮﺍﻓﺮﺓ‪.‬‬ ‫‪R‬‬ ‫‪R‬‬ ‫ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫‪_L·atm‬‬ ‫‪0.0821‬‬ ‫‪P‬‬ ‫‪V‬‬ ‫‪mol·K‬‬ ‫‪n‬‬ ‫‪PV = nRT‬‬ ‫‪R‬‬ ‫‪_L·kPa‬‬ ‫‪8.314‬‬ ‫‪T‬‬ ‫‪mol·K‬‬‫‪_L·mmHg‬‬ ‫‪62.4‬‬ ‫ﺇﻥ ﺣﺎﺻﻞ ﴐﺏ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﰲ ﻣﻘﺪﺍﺭ ﻣﻌﲔ ﻣﻦ ﺍﻟﻐﺎﺯ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺛﺎﺑﺘﺔ ﻳﺴﺎﻭﻱ‬ ‫‪mol·K‬‬ ‫ﻣﻘﺪ ﹰﺭﺍ ﺛﺎﺑ ﹰﺘﺎ‪.‬‬‫‪103‬‬

‫‪76‬‬‫‪‬ﺍﺣﺴﺐ ﻋﺪﺩ ﻣﻮﻻﺕ ﻏﺎﺯ ﺍﻷﻣﻮﻧﻴﺎ ‪ NH3‬ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﻭﻋﺎﺀ ﺣﺠﻤﻪ ‪ 3.0 L‬ﻋﻨﺪ ‪ 3.0 × 102 K‬ﻭﺿﻐﻂ‬ ‫)‪.(1.5 atm‬‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﺃﻋﻄﻴﺖ ﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﻟﻌﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ‪ .‬ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪ ،‬ﻭﺍﺧﱰ ﻗﻴﻤﺔ ﺍﻟﺜﺎﺑﺖ ‪ R‬ﺑﺎﻻﻋﺘﲈﺩ ﻋﲆ‬‫ﻭﺣﺪﺓ ﺍﻟﻀﻐﻂ ﰲ ﺍﻟﺴـﺆﺍﻝ‪ .‬ﻻﺣـﻆ ﺃ ﱠﻥ ﹺﻗﻴﻢ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻗﺮﻳﺒﺔ ﻣﻦ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‪ ،‬ﻟﻜﻦ ﺍﳊﺠﻢ ﺃﺻﻐﺮ ﻛﺜ ﹰﲑﺍ ﻣﻦ‬ ‫‪ ،22.4 L‬ﻓﻌﻠﻴﻚ ﺃﻥ ﺗﺘﻮﻗﻊ ﺃ ﹼﻥ ﺍﻹﺟﺎﺑﺔ ﺃﻗﻞ ﻛﺜ ﹰﲑﺍ ﻣﻦ ﻣﻮﻝ ﻭﺍﺣﺪ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪n = ? mol‬‬ ‫‪V = 3.0 L‬‬ ‫‪T = 3.00 × 102 K‬‬ ‫‪P = 1.50 atm‬‬ ‫‪_L·atm‬‬ ‫‪R‬‬ ‫=‬ ‫‪0.0821‬‬ ‫‪mol·K‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪ ،‬ﺛﻢ ﻋ ﱢﻮﺽ ﺑﺎﻟﻘﻴﻢ ﺍﳌﻌﺮﻭﻓﺔ ﻹﳚﺎﺩ ﻗﻴﻤﻪ )‪(n‬‬ ‫‪PV = nRT‬‬ ‫‪‬‬ ‫‪n‬‬ ‫=‬ ‫‪_PV‬‬ ‫‪n ‬‬ ‫‪RT‬‬ ‫)‪_(1.5_0 atm)(3.0_L‬‬ ‫‪V3.0LT3.00× 102KP1.50atm‬‬ ‫=‬‫‪( )n‬‬ ‫‪R0.0821L·atmmol·K‬‬ ‫‪_L·atm‬‬ ‫‪0.0821‬‬ ‫‪(3.00‬‬ ‫×‬ ‫)‪102 K‬‬ ‫‪mol·K‬‬‫=‬ ‫)‪_(1.5_0 atm)(3.0_L‬‬ ‫=‬ ‫‪0.18‬‬ ‫‪mol‬‬ ‫‪ ‬‬‫‪( )n‬‬ ‫‪0.0821‬‬ ‫‪_L·atm‬‬ ‫‪(3.00‬‬ ‫‪× 102‬‬ ‫)‪K‬‬ ‫‪mol·K‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬ ‫ﺗﺘﻔﻖ ﺍﻹﺟﺎﺑﺔ ﻣﻊ ﺗﻮﻗﻊ ﺃ ﹼﻥ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﺃﻗﻞ ﻛﺜ ﹰﲑﺍ ﻣﻦ ‪ ، 1 mol‬ﻭﺣﺪﺓ ﺍﻹﺟﺎﺑﺔ ‪ ،mol‬ﻭﲢﺘﻮﻱ ﺭﻗﻤﲔ ﻣﻌﻨﻮﻳﲔ‪.‬‬ ‫‪‬‬ ‫‪ .26‬ﻣﺎ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ 2.49 mol‬ﻣﻦ ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩ ﰲ ﺇﻧﺎﺀ ﺳﻌﺘﻪ ‪ ، 1.00 L‬ﻭﲢﺖ ﺿﻐﻂ ﻣﻘﺪﺍﺭﻩ ‪143 KPa‬‬ ‫‪ .27‬ﺍﺣﺴﺐ ﺣﺠﻢ ‪ 0.323 mol‬ﻣﻦ ﻏﺎﺯ ﻣﺎ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ 256 K‬ﻭﺿﻐﻂ ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪0.90 atm‬‬‫‪ .28‬ﻣــﺎ ﻣﻘﺪﺍﺭ ﺿﻐﻂ ‪ ، 0.108 mol‬ﺑـﻮﺣﺪﺓ ﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ )‪ (atm‬ـ ﻟﻌﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪،20.0˚C‬‬ ‫ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻤﻬﺎ ‪0.050 L‬؟‬ ‫‪ .29‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﻏﺎﺯ ﺣﺠﻤﻪ ‪ 0.044 L‬ﻳﺴﺎﻭﻱ ‪ 3.81 atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،25.0˚C‬ﻓﲈ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﻟﻐﺎﺯ؟‬ ‫‪   .30‬ﻏﺎﺯ ﻣﺜﺎﱄ ﺣﺠﻤﻪ ‪ ،3.0 L‬ﻓﺈﺫﺍ ﺗﻀﺎﻋﻒ ﻋﺪﺩ ﻣﻮﻻﺗﻪ ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ ﻭﺑﻘﻲ ﺍﻟﻀﻐﻂ ﺛﺎﺑ ﹰﺘﺎ‪ ،‬ﻓﲈ ﺣﺠﻤﻪ ﺍﳉﺪﻳﺪ؟‬ ‫‪104‬‬

‫‪‬‬ ‫ﻗﺎﻧﻮن اﻟﻐﺎز اﻟﻤﺜﺎﻟﻲ ‪ -‬اﻟﻜﺘﻠﺔ اﻟﻤﻮﻟﻴﺔ واﻟﻜﺜﺎﻓﺔ‬ ‫‪‬‬ ‫‪The Ideal Gas Law - Molar Mass and Density‬‬ ‫ﺍﳌﻮﻝ ‪Mole‬‬‫ﺟﺎﺀﺕ ﻣﻦ ﺍﻟﻜﻠﻤﺔ ﺍﻷﳌﺎﻧﻴﺔ ‪،Mol‬ﻭﻫﻲ‬ ‫ﻳﻤﻜﻦ ﺃﻥ ﻳﺴﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﰲ ﺇﳚﺎﺩ ﺃﻱ ﻗﻴﻤﺔ ﻣﻦ ﻗﻴﻢ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻷﺭﺑﻌﺔ‬‫ﺍﺧﺘﺼـﺎﺭ ‪،Molekulargewicht‬‬ ‫‪ ،P،V،T،n‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻴﻢ ﺍﻟﺜﻼﺙ ﺍﻷﺧﺮ￯ ﻣﻌﺮﻭﻓﺔ‪ .‬ﻛﲈ ﻳﻤﻜﻦ ﺇﻋﺎﺩﺓ ﺗﺮﺗﻴﺐ ﺍﳌﻌﺎﺩﻟﺔ‬ ‫ﻭﺗﻌﻨﻲ ﺍﻟﻮﺯﻥ ﺍﳉﺰﻳﺌﻲ‪.‬‬ ‫‪ PV=nRT‬ﳊﺴﺎﺏ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻭﺍﻟﻜﺜﺎﻓﺔ ﻟﻌﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ‪.‬‬ ‫‪ ‬ﻹﳚﺎﺩ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻌﻴﻨﺔ ﻏﺎﺯ ﳚﺐ ﺃﻥ ﻳﻜﻮﻥ ﻛ ﹼﹰﻼ‬ ‫ﻣﻦ ﺍﻟﻜﺘﻠﺔ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﻭﺣﺠﻢ ﺍﻟﻐﺎﺯ ﻣﻌﺮﻭ ﹰﻓﺎ‪ .‬ﺗﺬﻛﺮ ﻣﺎ ﺗﻌﻠﻤﺘﻪ ﺳﺎﺑ ﹰﻘﺎ‪ ،‬ﺣﻴﺚ‬ ‫ﺇﻥ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﻟﻐﺎﺯ)‪ (n‬ﺗﺴﺎﻭﻱ ﺍﻟﻜﺘﻠﺔ )‪ (m‬ﻣﻘﺴﻮﻣﺔ ﻋﲆ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ )‪ .(M‬ﻟﺬﻟﻚ‬ ‫ﻳﻤﻜﻦ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻦ ‪ n‬ﺑﻤﻘﺪﺍﺭ ‪. m/M‬‬ ‫‪PV = nRT‬‬ ‫‪n‬‬ ‫=‬ ‫‪_m‬‬ ‫‪PV‬‬ ‫=‬ ‫‪_mRT‬‬ ‫‪M‬‬ ‫‪M‬‬ ‫ﻭﻳﻤﻜﻨﻚ ﺇﻋﺎﺩﺓ ﺗﺮﺗﻴﺐ ﺍﳌﻌﺎﺩﻟﺔ ﻟﺘﺼﺒﺢ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻵﰐ‪:‬‬ ‫‪M‬‬ ‫=‬ ‫‪_mRT‬‬ ‫‪PV‬‬ ‫‪ ‬ﺗﺬﻛﺮ ﺃﻥ ﻛﺜﺎﻓﺔ ﺃﻱ ﻣﺎﺩﺓ )‪ (D‬ﺗﺴـﺎﻭﻱ ﻛﺘﻠﺘﻬﺎ )‪ (m‬ﰲ‬ ‫ﻭﺣـﺪﺓ ﺍﳊﺠﻮﻡ )‪ ،(V‬ﻭﺑﻌﺪ ﺇﻋﺎﺩﺓ ﺗﺮﺗﻴﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻐـﺎﺯ ﺍﳌﺜﺎﱄ ﻹﳚﺎﺩ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻳﻤﻜﻦ‬ ‫ﺍﻟﺘﻌﻮﻳﺾ ﻋﻦ )‪ (m/V‬ﺑﺎﻟﻘﻴﻤﺔ ‪. D‬‬ ‫‪M‬‬ ‫=‬ ‫‪_mRT‬‬ ‫‪D=_mV‬‬ ‫‪M‬‬ ‫=‬ ‫‪_DRT‬‬ ‫‪PV‬‬ ‫‪P‬‬ ‫ﻳﻤﻜﻨﻚ ﺇﻋﺎﺩﺓ ﺗﺮﺗﻴﺐ ﺍﳌﻌﺎﺩﻟﺔ ﻹﳚﺎﺩ ﺍﻟﻜﺜﺎﻓﺔ ﻟﺘﺼﺒﺢ ﻋﲆ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ‪:‬‬ ‫‪D‬‬ ‫=‬ ‫‪_MP‬‬ ‫‪RT‬‬ ‫ﳌﺎﺫﺍ ﲢﺘﺎﺝ ﺇﱃ ﻣﻌﺮﻓﺔ ﻛﺜﺎﻓﺔ ﺍﻟﻐﺎﺯ؟ ﻓﻜﺮ ﰲ ﻃﺮﺍﺋﻖ ﺇﻃﻔﺎﺀ ﺍﳊﺮﻳﻖ‪ .‬ﺗﻌﺘﻤﺪ ﺇﺣﺪ￯ ﻃﺮﺍﺋﻖ‬ ‫ﺇﻃﻔﺎﺀ ﺍﳊﺮﻳﻖ ﻋﲆ ﻣﻨﻊ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻣﻦ ﺍﻟﻮﺻﻮﻝ ﻣﻦ ﺧﻼﻝ ﺗﻐﻄﻴﺔ ﺍﳊﺮﻳﻖ ﺑﻐﺎﺯ ﺁﺧﺮ‬ ‫ﻻ ﳛﱰﻕ ﻭﻻ ﻳﺴﺎﻋﺪ ﻋﲆ ﺍﻻﺣﱰﺍﻕ‪ ،‬ﻛﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ﺍﻟﺸﻜﻞ ‪ .7-7‬ﻟﺬﺍ ﳚﺐ ﺃﻥ ﺗﻜﻮﻥ‬ ‫ﻛﺜﺎﻓﺔ ﻫﺬﺍ ﺍﻟﻐﺎﺯ ﺃﻛﱪ ﻣﻦ ﻛﺜﺎﻓﺔ ﺍﻷﻛﺴﺠﲔ ﻟﻴﺤﻞ ﳏﻠﻪ‪.‬‬‫‪        7-7 ‬‬‫‪        ‬‬‫‪ ‬‬‫‪  ‬‬ ‫‪‬‬ ‫‪ ‬‬‫‪105‬‬

‫‪ ‬ﻻ ﲡﻌﻞ ﳖﺎﻳﺔ ﻃﺮﻑ ﺍﻷﺳﻄﻮﺍﻧﺔ ﻳﻼﻣﺲ ﺍﻟﺸﻤﻌﺔ‬ ‫إﻋﺪاد ﻧﻤﻮذج ﻟﻄﻔﺎﻳﺔ ﺣﺮﻳﻖ‬ ‫ﳌﺎﺫﺍ ﻳﺴﺘﺨﺪﻡ ﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻹﻃﻔﺎﺀ ﺍﳊﺮﻳﻖ؟ ﺍﳌﺸﺘﻌﻠﺔ‪.‬‬ ‫‪ .7‬ﻭﺑﻴﻨـﲈ ﻳﺴـﺘﻤﺮ ﺍﻟﺘﻔﺎﻋـﻞ ﰲ ﺍﻟـﻜﺄﺱ ﰲ ﺇﻧﺘـﺎﺝ ﻏـﺎﺯ ﺛﺎﲏ‬ ‫اﻟﺨﻄﻮات‬‫‪A‬‬ ‫‪B‬‬ ‫‪J L DFDKM EGEALN‬ﺃ‪EC‬ﻛ‪C‬ﺴ‪K‬ﻴ‪I‬ﺪ‪B‬ﺍ‪D‬ﻟ‪B‬ﻜ‪J‬ﺮﺑ‪HA‬ﻮ‪AC‬ﻥ‪ ،I‬ﻣ‪G‬ﺮ‪B‬ﺭ ﺍﻟ‪H‬ﻐ‪F‬ﺎ‪A‬ﺯ ﺑ‪G‬ﺤ‪E‬ﺬﺭ ﺷ‪F‬ﺪ‪D‬ﻳﺪ‪E،‬ﻭﻟﻴ‪C‬ﺲ‪D‬ﺍﻟ‪B‬ﺴﺎﺋ‪C‬ﻞ‪A‬‬ ‫‪FHMFBO GNIGCP‬‬ ‫‪ I .1NPNJ‬ﺍ‪M‬ﻗ‪MO‬ﺮﺃ ﺗ‪L‬ﻌ‪H‬ﻠ‪L‬ﻴ‪N‬ﲈﺕ‪KG‬ﺍ‪M‬ﻟ‪K‬ﺴ ‪F‬ﻼ‪LJ‬ﻣ‪J‬ﺔ ﰲ‪EI‬ﺍ‪KP‬ﳌ‪I‬ﺨﺘ‪D‬ﱪ‪H.JOH‬‬ ‫‪OOK‬‬ ‫‪PP‬‬ ‫ﰲ ﺍﻷﺳﻄﻮﺍﻧﺔ‪ .‬ﺳﺠﻞ ﻣﻼﺣﻈﺎﺗﻚ‪.‬‬ ‫‪ .2‬ﻗـﺲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺑﺎﺳـﺘﺨﺪﺍﻡ ﻣﻘﻴﺎﺱ ﺍﳊـﺮﺍﺭﺓ‪ ،‬ﻭﺍﻟﻀﻐﻂ‬ ‫ﺍﳉـﻮﻱ ﺑﺎﺳـﺘﺨﺪﺍﻡ ﺍﻟﺒﺎﺭﻭﻣـﱰ‪ ،‬ﺛـﻢ ﺳـﺠﻞ ﺍﻟﺒﻴﺎﻧـﺎﺕ ﺍﻟﺘﻲ‬ ‫ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ‪.‬‬ ‫‪ .3‬ﻟ ﹼﻒﻗﻄﻌﺔﻣـﻦﻭﺭﻕﺍﻟﻘﺼﺪﻳﺮﺃﺑﻌﺎﺩﻫﺎ ‪23cm×30cm‬‬ ‫ﺗﺤﻠﻴﻞ‬ ‫ﻋﲆ ﺃﺳـﻄﻮﺍﻧﺔ ﺍﺭﺗﻔﺎﻋﻬﺎ ‪ 30 cm‬ﻭﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪6 cm‬‬ ‫‪  .1‬ﺍﺣﺴﺐ ﺍﳊﺠﻢ ﺍﳌﻮﻻﺭﻱ ﻟﻐﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ‬ ‫ﺗﻘﺮﻳﺒ ﹰﺎ ﺛﻢ ﺃﻟﺼﻖ ﺃﻃﺮﺍﻑ ﻗﻄﻌﺔ ﺍﻟﻘﺼﺪﻳﺮ‪.‬‬ ‫‪CO2‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻐﺮﻓﺔ ﻭﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ ﺍﻟﻌﺎﺩﻱ‪.‬‬ ‫‪ .4‬ﺍﺳﺘﺨﺪﻡ ﺃﻋﻮﺍﺩ ﺍﻟﺜﻘﺎﺏ ﻹﺷﻌﺎﻝ ﺍﻟﺸﻤﻌﺔ‪.‬‬ ‫‪  .2‬ﻛﺜﺎﻓﺔ ﻛﻞ ﻣﻦ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻭﺍﻷﻛﺴﺠﲔ‬ ‫‪ ‬ﺍﺳـﻜﺐ ﺍﳌـﺎﺀ ﻓﻮﻕ ﺃﻋﻮﺍﺩ ﺍﻟﺜﻘـﺎﺏ ﻗﺒﻞ ﺭﻣﻴﻬﺎ‪،‬‬ ‫ﻭﺍﻟﻨﻴﱰﻭﺟﲔ ﺑﻮﺣﺪﺓ ‪ g/L‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻐﺮﻓﺔ‪.‬‬ ‫ﻭﺍﺑﺘﻌﺪ ﻋﻦ ﻣﺼﺎﺩﺭ ﺍﻟﻠﻬﺐ‪.‬‬ ‫ﺗﺬﻛﺮ ﺃﻥ ﻋﻠﻴﻚ ﺣﺴﺎﺏ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻜﻞ ﻏﺎﺯ ﺣﺘﻰ‬ ‫‪ .5‬ﺿـﻊ ‪ 30 g‬ﻣﻦ ﺻـﻮﺩﺍ ﺍﳋﺒـﺰ ‪ NaHCO3‬ﰲ ﻛﺄﺱ ﻛﺒﲑﺓ‪،‬‬ ‫ﻭﺃﺿـﻒ ﺇﻟﻴﻬـﺎ ‪ 40 ml‬ﻣـﻦ ﺍﳋـﻞ ‪ CH3COOH‬ﺗﺮﻛﻴﺰﻩ‬ ‫ﺗﺘﻤﻜﻦ ﻣﻦ ﺣﺴﺎﺏ ﻛﺜﺎﻓﺔ ﻛﻞ ﻏﺎﺯ‪.‬‬ ‫)‪.(5%‬‬ ‫‪  .3‬ﻫﻞ ﺗﺪﻋﻢ ﻣﻼﺣﻈﺎﺗﻚ ﻭﺣﺴﺎﺑﺎﺗﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺛﺎﲏ‬ ‫‪ .6‬ﺿﻊ ﺃﺳﻄﻮﺍﻧﺔ ﺍﻟﻘﺼﺪﻳﺮ ﺑﴪﻋﺔ ﻓﻮﻕ ﳍﺐ ﺍﻟﺸﻤﻌﺔ ﺑﺰﺍﻭﻳﺔ‬ ‫ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﰲ ﻣﻜﺎﻓﺤﺔ ﺍﳊﺮﺍﺋﻖ؟ ﻭﳌﺎﺫﺍ؟‬ ‫ﻣﻘﺪﺍﺭﻫﺎ )˚‪.(45‬‬ ‫اﻟﻐﺎز اﻟﺤﻘﻴﻘﻲ ﻣﻘﺎﺑﻞ اﻟﻐﺎز اﻟﻤﺜﺎﻟﻲ ‪Real Versus Ideal Gases‬‬ ‫ﻣﺎﺫﺍ ﻳﻌﻨﻲ ﻣﺼﻄﻠﺢ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟ ﺗﺘﺒﻊ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺜﺎﻟﻴﺔ ﻓﺮﺿﻴﺎﺕ ﻧﻈﺮﻳﺔ ﺍﳊﺮﻛﺔ ﺍﳉﺰﻳﺌﻴﺔ ﺍﻟﺘﻲ ﺩﺭﺳﺘﻬﺎ‬ ‫ﺳﺎﺑ ﹰﻘﺎ‪ .‬ﻓﺤﺠﻢ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻳﻜﺎﺩ ﻳﻜﻮﻥ ﻣﻌﺪﻭ ﹰﻣﺎ‪ ،‬ﻛﲈ ﺃﻥ ﻫﺬﻩ ﺍﳉﺴﻴﲈﺕ ﻻ ﺗﺸﻐﻞ ﺣﻴ ﹰﺰﺍ‪ ،‬ﻭﻻ‬ ‫ﺗﻮﺟﺪ ﻗﻮ￯ ﲡﺎﺫﺏ ﺑﻴﻨﻬﺎ‪ ،‬ﻭﻻ ﺗﺘﺠﺎﺫﺏ ﻣﻊ ﺟﺪﺭﺍﻥ ﺍﻟﻮﻋﺎﺀ ﺍﳌﻮﺟﻮﺩﺓ ﻓﻴﻪ‪ ،‬ﻭﻻ ﺗﺘﻨﺎﻓﺮ ﻣﻌﻪ‪ .‬ﻭﺗﺘﺤﺮﻙ ﻫﺬﻩ‬ ‫ﺍﳉﺴﻴﲈﺕ ﺣﺮﻛﺔ ﻋﺸﻮﺍﺋﻴﺔ ﺩﺍﺋﻤﺔ ﰲ ﺧﻄﻮﻁ ﻣﺴﺘﻘﻴﻤﺔ ﺣﺘﻰ ﻳﺼﻄﺪﻡ ﺑﻌﻀﻬﺎ ﺑﺒﻌﺾ ﺃﻭ ﺑﺠﺪﺍﺭ ﺍﻟﻮﻋﺎﺀ‬ ‫ﺍﻟﺬﻱ ﳛﺘﻮﳞﺎ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﺘﺼﺎﺩﻣﺎﺕ ﻣﺮﻧﺔ‪ ،‬ﳑﺎ ﻳﻌﻨﻲ ﺃﻥ ﺍﻟﻄﺎﻗﺔ ﺍﳊﺮﻛﻴﺔ ﻟﻠﻨﻈﺎﻡ ﻻ ﺗﺘﻐﲑ‪ .‬ﻭﻳﺘﺒﻊ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯ ﲢﺖ ﻛﻞ ﺍﻟﻈﺮﻭﻑ ﻣﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪.‬‬ ‫ﻭﻟﻜﻦ ﰲ ﺍﳊﻘﻴﻘﺔ ﻟﻴﺲ ﻫﻨﺎﻙ ﻏﺎﺯ ﻣﺜﺎﱄ؛ ﻓﺠﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﳍﺎ ﺣﺠﻢ ﻭ ﺇﻥ ﻛﺎﻥ ﺻﻐ ﹰﲑﺍ‪ ،‬ﻭﺗﻮﺟﺪ ﺑﻴﻨﻬﺎ‬ ‫ﻗﻮ￯ ﲡﺎﺫﺏ‪ ،‬ﻛﲈ ﺃﻥ ﺍﻟﺘﺼﺎﺩﻣﺎﺕ ﻓﻴﲈ ﺑﻴﻨﻬﺎ ﻭﺑﲔ ﺍﻟﻮﻋﺎﺀ ﻟﻴﺴﺖ ﺗﺼﺎﺩﻣﺎﺕ ﻣﺮﻧﺔ ﲤﺎ ﹰﻣﺎ‪ .‬ﻭﻋﲆ ﺍﻟﺮﻏﻢ ﻣﻦ‬ ‫ﺫﻟﻚ ﺗﺴﻠﻚ ﻣﻌﻈﻢ ﺍﻟﻐﺎﺯﺍﺕ ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﰲ ﻧﻄﺎﻗﺎﺕ ﻭﺍﺳﻌﺔ ﻣﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ .‬ﻛﲈ ﺃﻥ‬ ‫ﺍﳊﺴﺎﺑﺎﺕ ﺍﻟﺘﻲ ﲡﺮﻱ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﺗﻘﺎﺭﺏ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ‪.‬‬ ‫‪‬ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻧﻈﺮﻳﺔ ﺍﳊﺮﻛﺔ ﺍﳉﺰﻳﺌﻴﺔ ﻭﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫‪106‬‬

‫‪PV1 = nRT1 PV2 = nRT2‬‬ ‫‪‬‬ ‫‪_V1‬‬ ‫=‬ ‫‪_nR‬‬ ‫‪_V2‬‬ ‫=‬ ‫‪_nR‬‬ ‫‪ ‬ﺇﺫﺍ ﺃﺗﻘﻨﺖ ﺍﻻﺳﱰﺍﺗﻴﺠﻴﺎﺕ ﺍﻵﺗﻴﺔ‪ ،‬ﻓﺈﻥ ﻋﻠﻴﻚ ﺗﺬﻛﺮ ﻗﺎﻧﻮﻥ‬ ‫‪T1‬‬ ‫‪P‬‬ ‫‪T2‬‬ ‫‪P‬‬ ‫ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻓﻘﻂ‪ .‬ﺧﺬ ﻣﺜﺎ ﹰﻻ‪ ،‬ﺍﻟﻜﻤﻴﺔ ﺍﻟﺜﺎﺑﺘﺔ ﻣﻦ ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩﺓ ﲢﺖ ﺿﻐﻂ ﺛﺎﺑﺖ‪.‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﳊﻞ ﺍﳌﺴﺎﺋﻞ ﺍﻟﺘﻲ ﺗﺘﻀﻤﻦ ﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪.‬‬ ‫‪_V1‬‬ ‫=‬ ‫‪_V2‬‬ ‫‪ .1‬ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻟﻜﺘﺎﺑﺔ ﻣﻌﺎﺩﻟﺘﲔ ﺗﺼﻔﺎﻥ ﻋﻴﻨﺔ ﺍﻟﻐﺎﺯ ﻋﻨﺪ ﺩﺭﺟﺔ‬ ‫‪T1‬‬ ‫‪T2‬‬ ‫ﺣﺮﺍﺭﺓ ﻭﺣﺠﻢ ﳐﺘﻠﻔﲔ )ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﺘﻲ ﻻ ﺗﺘﻐﲑ ﺗﻈﻬﺮ ﺑﺎﻟﻠﻮﻥ ﺍﻷﲪﺮ(‪.‬‬ ‫‪ .2‬ﺍﻋﺰﻝ ﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻭﳘﺎ ﺍﻟﻘﻴﻤﺘﺎﻥ ﺍﻟﻠﺘﺎﻥ ﺗﺘﻐﲑﺍﻥ ﰲ ﺍﳉﻬﺔ ﻧﻔﺴﻬﺎ‬ ‫ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ‪.‬‬ ‫‪ .3‬ﻭﻷﻥ ﻛ ﹼﹰﻼ ﻣﻦ ‪ P،R،n‬ﺛﺎﺑﺖ ﲢﺖ ﻫﺬﻩ ﺍﻟﻈﺮﻭﻑ‪ ،‬ﻓﺈﻧﻪ ﻳﻤﻜﻨﻚ ﺟﻌﻞ ﻛﻞ ﻣﻦ‬ ‫ﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻣﺘﺴﺎﻭﻳﲔ ﻻﺷﺘﻘﺎﻕ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‪.‬‬ ‫‪‬‬ ‫ﺍﺷﺘﻖ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻭﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﻭﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﺍﺳﺘﻨﺎ ﹰﺩﺍ ﺇﱃ ﺍﻟﻘﺎﻋﺪﺓ ﺃﻋﻼﻩ‪.‬‬ ‫‪‬ﻣﺘﻰ ﻳﻜـﻮﻥ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻏﲑ ﻣﻨﺎﺳـﺐ ﻟﻼﺳـﺘﺨﺪﺍﻡ ﻣﻊ ﺍﻟﻐﺎﺯ‬ ‫ﺍﳊﻘﻴﻘـﻲ؟ ﲢﻴـﺪ ﻣﻌﻈﻢ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳊﻘﻴﻘﻴﺔ ﰲ ﺳـﻠﻮﻛﻬﺎ ﻋﻦ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻋﻨـﺪ ﺍﻟﻀﻐﻂ ﺍﻟﻌﺎﱄ ﻭﺩﺭﺟﺎﺕ‬ ‫ﺍﳊـﺮﺍﺭﺓ ﺍﳌﻨﺨﻔﻀـﺔ‪ .‬ﻭﻳﺴـﻠﻚ ﻏـﺎﺯ ﺍﻟﻨﻴﱰﻭﺟـﲔ ﰲ ﺍﳋـﺰﺍﻥ ﺍﻟﻈﺎﻫـﺮ ﰲ ﺍﻟﺸـﻜﻞ ‪ 7-8‬ﺳـﻠﻮﻙ ﺍﻟﻐﺎﺯ‬ ‫ﺍﳊﻘﻴﻘـﻲ‪ .‬ﻭﻋﻨﺪ ﺍﻧﺨﻔﺎﺽ ﺩﺭﺟﺎﺕ ﺣـﺮﺍﺭﺓ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﺗﻨﺨﻔﺾ ﻃﺎﻗﺔ ﺟﺴـﻴﲈﺗﻪ ﺍﳊﺮﻛﻴﺔ‪ ،‬ﻭﻫﺬﺍ‬ ‫ﻳﻌﻨﻲ ﺃﻥ ﻗﻮ￯ ﺍﻟﺘﺠﺎﺫﺏ ﺑﲔ ﻫﺬﻩ ﺍﳉﺴﻴﲈﺕ ﻗﻮﻳﺔ‪ ،‬ﳑﺎ ﳚﻌﻠﻬﺎ ﺗﺆﺛﺮ ﰲ ﺳﻠﻮﻛﻬﺎ‪ .‬ﻭﻋﻨﺪﻣﺎ ﺗﻨﺨﻔﺾ ﺩﺭﺟﺔ‬ ‫ﺍﳊﺮﺍﺭﺓ ﺑﻘﺪﺭ ﻛﺎ ﹴﻑ ﻳﺘﻜﺎﺛﻒ ﺍﻟﻐﺎﺯ ﺍﳊﻘﻴﻘﻲ ﻣﻜ ﹼﻮ ﹰﻧﺎ ﺳـﺎﺋ ﹰﻼ‪ .‬ﻭﻳﺴـﻠﻚ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ﰲ ﺍﳋﺰﺍﻥ ﺍﻟﻈﺎﻫﺮ ﰲ‬ ‫ﺍﻟﺸـﻜﻞ ‪ 7-8‬ﺃﻳ ﹰﻀﺎ ﺳـﻠﻮ ﹶﻙ ﺍﻟﻐﺎﺯ ﺍﳊﻘﻴﻘﻲ‪ .‬ﻭﺗﻌﻤﻞ ﺯﻳﺎﺩﺓ ﺍﻟﻀﻐﻂ ﻋﲆ ﺍﻟﻐﺎﺯ ﻋﲆ ﺇﺟﺒﺎﺭ ﺟﺴـﻴﲈﺗﻪ ﻋﲆ‬ ‫ﺍﻻﻗـﱰﺍﺏ ﺑﻌﻀﻬـﺎ ﻣﻦ ﺑﻌﺾ‪ ،‬ﺣﺘـﻰ ﻳﺼﺒﺢ ﻣﻦ ﻏﲑ ﺍﳌﻤﻜﻦ ﺇﳘﺎﻝ ﺍﳊﺠﻢ ﺍﻟﺬﻱ ﺗﺸـﻐﻠﻪ ﺍﳉﺴـﻴﲈﺕ‪.‬‬ ‫ﻭﺗﺘﺤﻮﻝ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳊﻘﻴﻘﻴﺔ ـ ﻭﻣﻨﻬﺎ ﺍﻟﱪﻭﺑﺎﻥ ـ ﺇﱃ ﺳﺎﺋﻞ ﺇﺫﺍ ﺗﻌﺮﺿﺖ ﻟﻀﻐﻂ ﻛﺎ ﹴﻑ‪.‬‬‫‪ 7-8‬‬‫‪     ‬‬ ‫‪‬‬ ‫‪      ‬‬ ‫‪270 ‬‬ ‫‪    (-196˚C) ‬‬ ‫‪       ‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪ ‬‬ ‫‪‬‬‫‪107‬‬

‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪  7-9‬‬ ‫‪‬‬ ‫‪    ‬‬ ‫‪   ‬‬ ‫‪ ‬‬ ‫‪ ‬‬ ‫‪ ‬ﺗﺆﺛﺮ ﻃﺒﻴﻌﺔ ﺍﳉﺴـﻴﲈﺕ ﺍﻟﺘﻲ ﻳﺘﻜـ ﹼﻮﻥ ﻣﻨﻬﺎ ﺍﻟﻐﺎﺯ ﰲ ﺳـﻠﻮﻛﻪ‬ ‫ﺑﻄﺮﻳﻘـﺔ ﻣﺜﺎﻟﻴﺔ‪ .‬ﻓﻤﺜ ﹰﻼ ﻳﻮﺟﺪ ﺑﲔ ﺟﺴـﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺍﻟﻘﻄﺒﻴﺔ ﻛﲈ ﰲ ﺑﺨـﺎﺭ ﺍﳌﺎﺀ ﻗﻮ￯ ﲡﺎﺫﺏ ﺃﻛﱪ‬ ‫ﻣـﻦ ﺍﻟﻘﻮ￯ ﺍﻟﺘﻲ ﺗﻜﻮﻥ ﺑﲔ ﺟﺴـﻴﲈﺕ ﺍﻟﻐﺎﺯﺍﺕ ﻏـﲑ ﺍﻟﻘﻄﺒﻴﺔ ﻛﺎﳍﻴﻠﻴـﻮﻡ‪ .‬ﻓﺘﻨﺠﺬﺏ ﺍﻷﻃﺮﺍﻑ‬ ‫ﺍﳌﺨﺘﻠﻔﺔ ﻟﻠﺠﺴﻴﲈﺕ ﺍﻟﻘﻄﺒﻴﺔ ﺑﻌﻀﻬﺎ ﻧﺤﻮ ﺑﻌﺾ ﺑﻮﺳﺎﻃﺔ ﻗﻮ￯ ﻛﻬﺮﻭﺳﺘﺎﺗﻴﻜﻴﺔ‪ ،‬ﻛﲈ ﰲ ﺍﻟﺸﻜﻞ‬ ‫‪ ،7-9‬ﻟﺬﺍ‪ ،‬ﻻ ﺗﺴـﻠﻚ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﻘﻄﺒﻴﺔ ﺳـﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪ .‬ﻭﺗﺸﻐﻞ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯﺍﺕ ﻏﲑ‬ ‫ﺍﻟﻘﻄﺒﻴـﺔ ﺍﻟﻜﺒـﲑﺓ ﺍﳊﺠﻢ ﻛﺎﻟﺒﻴﻮﺗـﺎﻥ ‪ C4H10‬ﺣﻴ ﹰﺰﺍ ﺃﻛﱪ ﻣﻦ ﺍﳊﻴﺰ ﺍﻟﺬﻱ ﻳﺸـﻐﻠﻪ ﻋﺪﺩ ﳑﺎﺛﻞ ﻣﻦ‬ ‫ﺟﺴـﻴﲈﺕ ﻏﺎﺯ ﺻﻐﲑﺓ ﺍﳊﺠﻢ ﻛﺎﳍﻴﻠﻴﻮﻡ ‪ .He‬ﻭﳍﺬﺍ ﺍﻟﺴـﺒﺐ ﲤﻴﻞ ﺟﺴـﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺍﻟﻜﺒﲑﺓ ﺇﱃ‬ ‫ﺍﻻﺑﺘﻌﺎﺩ ﻋﻦ ﺍﻟﺴﻠﻮﻙ ﺍﳌﺜﺎﱄ ﺃﻛﺜﺮ ﻣﻦ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯ ﺍﻟﺼﻐﲑﺓ‪.‬‬ ‫‪ .31‬اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻓﴪ ﳌﺎﺫﺍ ﻳﻨﻄﺒﻖ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ ﻋﲆ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﺘﻲ ﺗﺘﻜﻮﻥ‬ ‫اﻟﺘﻘﻮﻳﻢ ‪7-2‬‬ ‫ﻣﻦ ﺟﺰﻳﺌﺎﺕ ﺻﻐﲑﺓ ﻭﺍﻟﺘﻲ ﺗﺘﻜﻮﻥ ﻣﻦ ﺟﺰﻳﺌﺎﺕ ﻛﺒﲑﺓ؟‬ ‫اﻟﺨﻼﺻﺔ‬ ‫‪ .32‬ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫ﻳﻨﺺ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ ﻋﲆ ﺃﻥ ﺍﳊﺠﻮﻡ‬ ‫‪ .33‬ﺣ ﹼﻠﻞ ﻛﻴﻒ ﻳﻨﻄﺒﻖ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻋﲆ ﺍﻟﻐﺎﺯ ﺍﳊﻘﻴﻘﻲ ﻣﺴﺘﺨﺪ ﹰﻣﺎ ﻧﻈﺮﻳﺔ‬ ‫ﺍﳌﺘﺴـﺎﻭﻳﺔ ﻣـﻦ ﺍﻟﻐـﺎﺯﺍﺕ ﻋﻨـﺪ ﻧﻔـﺲ‬ ‫ﺍﻟﻀﻐـﻂ ﻭﺩﺭﺟﺔ ﺍﳊـﺮﺍﺭﺓ ﲢﺘﻮﻱ ﻋﲆ‬ ‫ﺍﳊﺮﻛﺔ ﺍﳉﺰﻳﺌﻴﺔ؟‬ ‫ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻣﻦ ﺍﳉﺴﻴﲈﺕ‪.‬‬ ‫‪ .34‬ﺗﻮﻗﻊ ﺍﻟﻈﺮﻭﻑ ﺍﻟﺘﻲ ﳛﺘﻤﻞ ﺃﻥ ﳜﺘﻠﻒ ﻋﻨﺪﻫﺎ ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳊﻘﻴﻘﻲ ﻋﻦ‬ ‫ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟‬ ‫ﻳﺮﺑﻂ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ ﻣﻊ‬ ‫ﺿﻐﻄﻪ ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ ﻭﺣﺠﻤﻪ‪.‬‬ ‫‪ .35‬ﺿﻊ ﰲ ﻗﺎﺋﻤﺔ‪ ،‬ﺍﻟﻮﺣﺪﺍﺕ ﺍﻷﻛﺜﺮ ﺷﻴﻮ ﹰﻋﺎ ﻟﻠﻤﺘﻐﲑﺍﺕ ﰲ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫ﻳﻤﻜـﻦ ﺍﺳـﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐـﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫‪ .36‬ﺍﺣﺴﺐ ﻛﺘﻠﺔ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ‪ C3H8‬ﺍﳌﻮﺟﻮﺩ ﰲ ﺩﻭﺭﻕ ﺣﺠﻤﻪ ‪ 2.0 L‬ﻋﻨﺪ‬ ‫ﻹﳚـﺎﺩ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴـﺔ ﻟﻠﻐﺎﺯ ﺇﺫﺍ ﻛﺎﻧﺖ‬ ‫ﺿﻐﻂ ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪ 1.00 atm‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪.-15.0˚C‬‬ ‫ﻛﺘﻠـﺔ ﺍﻟﻐـﺎﺯ ﻣﻌﺮﻭﻓـﺔ‪ ،‬ﻭﻳﻤﻜـﻦ ﺃﻳ ﹰﻀﺎ‬ ‫ﺍﺳـﺘﺨﺪﺍﻣﻪ ﻹﳚـﺎﺩ ﻛﺜﺎﻓـﺔ ﺍﻟﻐـﺎﺯ ﺇﺫﺍ‬ ‫‪ .37‬ﺍﺭﺳﻢ ﺭﺳ ﹰﲈ ﺑﻴـﺎﻧـ ﹰﹼﻴﺎ ﻭﺍﺳﺘﺨـﺪﻣـﻪ ﻳﻨﺨـﻔـﺾ ﺿﻐـﻂ ﺇﻃﺎﺭﺍﺕ ﺍﻟﺴـﻴـﺎﺭﺍﺕ‬ ‫ﺑﻤﻘﺪﺍﺭ ‪ (14.7psi=1.0 atm) 1psi‬ﻋﻨﺪ ﺍﻧﺨﻔﺎﺽ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫ﻛﺎﻧﺖ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻣﻌﺮﻭﻓﺔ‪.‬‬ ‫ﺑﻤﻘﺪﺍﺭ ‪ ، 6˚C‬ﺍﺭﺳﻢ ﺭﺳ ﹰﲈ ﺑﻴﺎﻧ ﹰﹼﻴﺎ ﻳﻮﺿﺢ ﺍﻟﺘﻐﲑ ﰲ ﺍﻟﻀﻐﻂ ﺩﺍﺧﻞ ﺍﻹﻃﺎﺭ‪،‬‬ ‫ﻋﻨﺪﻣﺎ ﺗﺘﻐﲑ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ ﻣﻦ ‪ 20˚C‬ﺇﱃ ‪) -20˚C‬ﺍﻓﱰﺽ ﺃﻥ ﺍﻟﻀﻐﻂ‬ ‫ﺗﺴﻠﻚ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳊﻘﻴﻘﻴﺔ ﻋﻨﺪ ﺍﻟﻀﻐﻂ‬ ‫ﺍﻟﻌﺎﱄ ﻭﺩﺭﺟـﺎﺕ ﺍﳊـﺮﺍﺭﺓ ﺍﳌﻨﺨﻔﻀﺔ‬ ‫ﻳﺴﺎﻭﻱ ‪ 30 Psi‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪.(20.0˚C‬‬ ‫ﺳﻠﻮ ﹰﻛﺎ ﻣﻐﺎﻳ ﹰﺮﺍ ﻟﺴﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫‪108‬‬

‫‪7-3‬‬‫اﻟﺤﺴﺎﺑﺎت اﻟﻤﺘﻌﻠﻘﺔ ﺑﺎﻟﻐﺎزات ‪Gas Stoichiometry‬‬ ‫ﻫﺪاف‬ ‫ا‬ ‫‪ ‬ﺍﻟـﻨـﺴـﺐ ﺍﳊـﺠـﻤـﻴـﺔ‬ ‫‪‬‬‫ﻟﻠﻐﺎﺯﺍﺕ ﺍﳌﺘـﻔـﺎﻋﻠـﺔ ﻭﺍﻟﻨﺎﺗـﺠﺔ اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ‪‬‬ ‫ﻣﺴﺘﺨﺪ ﹰﻣﺎ ﺍﳌﻌﺎﻣﻼﺕ ﺍﳌﻮﺟﻮﺩﺓ ‪ ‬‬‫‪ ‬ﻟﻜﻲ ﺗﻘﻮﻡ ﺑﺼﻨﺎﻋﺔ ﺍﻟﻜﻴﻚ ﻣﻦ ﺍﳌﻬﻢ ﺃﻥ ﺗﻀﻴﻒ ﺍﳌﻘﺎﺩﻳﺮ ﺑﻨﺴـﺐ ﺻﺤﻴﺤﺔ‪.‬‬ ‫ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪.‬‬‫‪ ‬ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﳊﺴﺎﺏ ﻭﺑﻄﺮﻳﻘﺔ ﻣﺸـﺎﲠﺔ ﻓﺈﻥ ﻧﺴ ﹰﺒﺎ ﺻﺤﻴﺤﺔ ﻣﻦ ﺍﳌﺘﻔﺎﻋﻼﺕ ﺗﻠﺰﻡ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﺍﻟﻜﻴﻤﻴﺎﺋﻲ ﻟﻠﺤﺼﻮﻝ ﻋﲆ‬ ‫ﻛﻤﻴﺎﺕ ﺍﻟـﻐـﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻄﻠﻮﺑﺔ‪.‬‬ ‫ﻭﺍﻟﻨﺎﲡﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﺍﻟﻜﻴﻤﻴﺎﺋﻲ‪ .‬اﻟﺤﺴﺎﺑﺎت اﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﻟﻠﺘﻔﺎﻋﻼت اﻟﻤﺘﻀﻤﻨﺔ ﻟﻠﻐﺎزات‬ ‫‪Stoichiometry of Reactions Involving Gases‬‬ ‫ﻣﺮاﺟﻌﺔ اﻟﻤﻔﺮدات‬‫‪ ‬ﺍﻟﺮﻗﻢ ﺍﻟﺬﻱ ﻳﻜﺘﺐ ﺗﻄﺒﻖ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﰲ ﺣﺴﺎﺏ ﺍﳌﺘﻔﺎﻋﻼﺕ ﺃﻭ ﺍﻟﻨﻮﺍﺗﺞ ﺍﻟﻐﺎﺯﻳﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻼﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪.‬‬‫ﻋﻦ ﻳﺴﺎﺭ ﺍﳌﻮﺍﺩ ﺍﳌﺘﻔﺎﻋﻠﺔ ﺃﻭ ﺍﻟﻨﺎﲡﺔ ﺗﺬﻛﺮ ﺃﻥ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﻟﺘﻔﺎﻋﻼﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﲤﺜﻞ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﻮﺍﺩ ﺍﳌﺸﺎﺭﻛﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ‪ .‬ﻋﲆ‬ ‫ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﻭﺍﻟﺬﻱ ﳜﱪﻧﺎ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ ﻳﺘﻔﺎﻋﻞ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻣﻊ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻹﻧﺘﺎﺝ ﺑﺨﺎﺭ ﺍﳌﺎﺀ‪.‬‬ ‫)‪2H2(g) + O2(g) → 2H O2 (g‬‬ ‫ﻋﻦ ﺃﻗﻞ ﻋﺪﺩ ﻣﻦ ﺟﺴﻴﲈﺕ ﺍﳌﺎﺩﺓ‬‫ﲣﱪﻙ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﺑﺎﻟﻨﺴﺐ ﺍﳌﻮﻟﻴﺔ ﻟﻠﻤﻮﺍﺩ ﰲ ﺍﻟﺘﻔﺎﻋﻞ؛ ﻓﻤﺜ ﹰﻼ ﺗﺒﲔ ﻣﻌﺎﺩﻟﺔ‬ ‫ﺍﳌﺘﻀﻤﻨﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬‫ﺍﻟﺘﻔﺎﻋﻞ ﺃﻋﻼﻩ ﺃ ﹼﻥ ‪ 2 mol‬ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﺗﺘﻔﺎﻋﻞ ﻣﻊ ‪ 1 mol‬ﻣﻦ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻭﻳﻨﺘﺞ‬ ‫‪ 2 mol‬ﻣﻦ ﺑﺨﺎﺭ ﺍﳌﺎﺀ‪.‬‬‫ﻛﲈ ﻳﻨﺺ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ ﻋﲆ ﺃ ﹼﻥ ﺍﳊﺠﻮﻡ ﺍﳌﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺍﻟﻐﺎﺯﺍﺕ ﻋﻨﺪ ﻧﻔﺲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬‫ﻭﺍﻟﻀﻐﻂ ﳍﺎ ﻋﺪﺩ ﺍﳉﺴﻴﲈﺕ ﻧﻔﺴﻪ‪ ،‬ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﻣﻌﺎﻣﻼﺕ ﺍﳌﻮﺍﺩ ﺍﻟﻐﺎﺯﻳﺔ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‬‫ﺍﳌﻮﺯﻭﻧﺔ ﻻﲤﺜﻞ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﻓﻘﻂ‪ ،‬ﻭﺇﻧﲈ ﲤﺜﻞ ﺍﳊﺠﻮﻡ ﺍﻟﻨﺴﺒﻴﺔ ﺃﻳ ﹰﻀﺎ‪ .‬ﳍﺬﺍ ﻓﺈﻥ ‪ 2 L‬ﻣﻦ ﻏﺎﺯ‬ ‫ﺍﳍﻴﺪﺭﻭﺟﲔ ﺳﺘﺘﻔﺎﻋﻞ ﻣﻊ ‪ 1 L‬ﻣﻦ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻹﻧﺘﺎﺝ ‪ 2 L‬ﻣﻦ ﺑﺨﺎﺭ ﺍﳌﺎﺀ‪.‬‬ ‫اﻟﺤﺴﺎﺑﺎت اﻟﻜﻴﻤﻴﺎﺋﻴﺔ ‪ :‬ﺣﺴﺎب اﻟﺤﺠﻢ‬ ‫‪Stoichiometry and Volume-Volume Problems‬‬‫ﻹﳚﺎﺩ ﺣﺠﻢ ﻏﺎﺯ ﻣﺘﻔﺎﻋﻞ ﺃﻭ ﻧﺎﺗﺞ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﺍﻟﻜﻴﻤﻴﺎﺋﻲ ﳚﺐ ﻋﻠﻴﻚ ﻣﻌﺮﻓﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‬‫ﺍﳌﻮﺯﻭﻧﺔ ﳍﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ ﻭﺣﺠﻢ ﻏﺎﺯ ﺁﺧﺮ ﻣﺸﺎﺭﻙ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﻋﲆ ﺍﻷﻗﻞ‪ .‬ﺍﻓﺤﺺ ﺍﻟﺘﻔﺎﻋﻞ ﰲ‬‫ﺍﻟﺸﻜﻞ ‪ 7-10‬ﻣﺜ ﹰﻼ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﻮﺿﺢ ﺍﺣﱰﺍﻕ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ‪ ،‬ﻭﻫﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ ﻣﺄﻟﻮﻑ ﻟﻚ؛ ﺇﺫ ﳛﺪﺙ‬ ‫ﻛﻠﲈ ﺃﺷﻌﻠﺖ ﻣﻮﻗﺪ ﺑﻨﺰﻥ‪.‬‬‫‪‬‬ ‫‪+ ‬‬ ‫‪→   +‬‬ ‫‪‬‬ ‫‪ 7-10‬‬‫)‪CH4(g‬‬ ‫)‪+ 2O2(g‬‬ ‫→‬ ‫‪+‬‬ ‫)‪2H2O(g‬‬ ‫‪ ‬‬ ‫)‪CO2(g‬‬ ‫‪ ‬‬ ‫‪ ‬‬‫‪1 mol‬‬ ‫‪2 mol‬‬ ‫‪1 mol‬‬ ‫‪2 mol‬‬‫‪1 vol‬‬ ‫‪2 vol‬‬ ‫‪1 vol‬‬ ‫‪2 vol‬‬ ‫‪ ‬‬‫‪109‬‬

‫ﻭﻷ ﹼﻥ ﺍﳌﻌﺎﻣﻼﺕ ﲤﺜﻞ ﺍﻟﻨﺴﺐ ﺍﳊﺠﻤﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ ﺍﳌﺸﺎﺭﻛﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﻓﺈﻧﻪ ﻳﻤﻜﻨﻚ ﺃﻥ ﲢﺪﺩ ﺃﻧﻪ ﻳﻠﺰﻡ‬‫‪ 2 L‬ﻣﻦ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻟﺘﺘﻔﺎﻋﻞ ﲤﺎ ﹰﻣﺎ ﻣﻊ ‪ 1 L‬ﻣﻦ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ‪ .‬ﻛﲈ ﺃ ﹼﻥ ﺍﻻﺣﱰﺍﻕ ﺍﻟﻜﺎﻣﻞ ﻟـ ‪ 1 L‬ﻣﻦ‬ ‫ﺍﳌﻴﺜﺎﻥ ﺳﻮﻑ ﻳﻨﺘﺞ ‪ 1 L‬ﻣﻦ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻭ ‪ 2 L‬ﻣﻦ ﺑﺨﺎﺭ ﺍﳌﺎﺀ‪.‬‬‫ﻻﺣﻆ ﺃﻧﻪ ﱂ ﻳﺘﻢ ﲢﺪﻳﺪ ﺃﻱ ﻣﻦ ﺍﻟﻈﺮﻭﻑ ﻣﺜﻞ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ .‬ﻓﻼ ﺣﺎﺟﻪ ﺇﻟﻴﻬﺎ ﰲ ﺍﳊﺴﺎﺑﺎﺕ‬‫ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ؛ ﻭﺫﻟﻚ ﻷﻧﻪ ﺑﻌﺪ ﺍﳋﻠﻂ ﺳﻴﻜﻮﻥ ﻛﻼ ﺍﻟﻐﺎﺯﻳﻦ ﰲ ﻧﻔﺲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ‪ .‬ﻭﻳﻤﻜﻦ‬‫ﺃﻥ ﺗﺘﻐﲑ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﰲ ﺃﺛﻨﺎﺀ ﺍﻟﺘﻔﺎﻋﻞ‪ ،‬ﻟﻜﻦ ﺍﻟﺘﻐﲑ ﰲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻳﺆﺛﺮ ﰲ ﻛﻞ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﻮﺟﻮﺩﺓ‬ ‫ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ‪ .‬ﻟﺬﺍ ﻓﺈﻧﻚ ﻻ ﲢﺘﺎﺝ ﻷﺧﺬ ﺣﺎﻟﺘﻲ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺑﻌﲔ ﺍﻻﻋﺘﺒﺎﺭ‪.‬‬ ‫‪77‬‬ ‫اﻟﻜﻴﻤﻴﺎء ﻓﻲ واﻗﻊ‬ ‫اﻟﺤﻴﺎة‬‫‪‬ﻣﺎ ﺣﺠﻢ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﺍﻟﻼﺯﻡ ﻹﺣﺮﺍﻕ ‪ 4.0 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ‪C3H8‬‬ ‫‪    ‬‬ ‫ﺣﺮ ﹰﻗﺎ ﻛﺎﻣ ﹰﻼ‪ .‬ﺍﻓﱰﺽ ﺃﻥ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺛﺎﺑﺘﺎﻥ‪.‬‬ ‫‪‬‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬ ‫‪  ‬ﺗـﻠـﺰﻡ ﻧﺴﺐ‬‫ﻟﻘﺪ ﺃﻋﻄﻴﺖ ﺣﺠﻢ ﺍﻟﻐﺎﺯ ﺍﳌﺘﻔﺎﻋﻞ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪ .‬ﺗﺬﻛﺮ ﺃﻥ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‬ ‫ﺻﺤـﻴـﺤـﺔ ﻣـﻦ ﺍﻟـﻐـﺎﺯﺍﺕ‬ ‫ﰲ ﻛـﺜـﲑ ﻣﻦ ﺍﻟﺘـﻔـﺎﻋـﻼﺕ‬ ‫ﺍﳌﻮﺯﻭﻧﺔ ﺗﺰﻭﺩﻙ ﺑﺎﻟﻨﺴﺐ ﺍﳊﺠﻤﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ ﻭﺍﻟﻨﺎﲡﺔ‪.‬‬ ‫ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪ .‬ﻭﺭﻏﻢ ﺃﻥ ﻛﺜ ﹰﲑﺍ‬ ‫ﻣﻦ ﺃﻓـﺮﺍﻥ ﺻﻨﺎﻋﺔ ﺍﻟﻔﺨﺎﺭ‬ ‫‪‬‬ ‫‪‬‬ ‫ﻳﺘﻢ ﺗﻐﺬﻳﺘﻬﺎ ﺑﻐﺎﺯ ﺍﳌﻴﺜﺎﻥ ﻓﺈﻥ‬ ‫‪VC3H8 = 4.00 L‬‬ ‫ﻣﺰ ﹰﳚﺎ ﳏـﺪ ﹰﺩﺍ ﻣﻦ ﺍﻟﱪﻭﺑﺎﻥ‬ ‫‪V02 = ? L‬‬ ‫ﻭﺍﳍﻮﺍﺀ ﻳﻤﻜﻦ ﺃﻥ ﻳﺴﺘﺨﺪﻡ‬ ‫ﻭﻗﻮ ﹰﺩﺍ ﰲ ﻫﺬﻩ ﺍﻷﻓﺮﺍﻥ ﺇﻥ ﱂ‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫ﻳﺘﻮﺍﻓﺮ ﺍﳌﻴﺜﺎﻥ‪.‬‬‫ﺍﺳﺘﺨﺪﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺍﳌﻮﺯﻭﻧﺔ ﻻﺣﱰﺍﻕ ‪ ،C3H8‬ﺛﻢ ﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺍﳊﺠﻤﻴﺔ ﻟﻜﻞ ﻣﻦ ‪ C3H8‬ﻭ ‪ ،O2‬ﺛﻢ ﺟﺪ‬ ‫‪110‬‬ ‫ﺣﺠﻢ ﻏﺎﺯ ‪O2‬‬‫)‪C3H8(g) + 5O2(g) → 3CO2(g) + 4H O2 (g‬‬ ‫‪‬‬ ‫‪_5 vol O2‬‬ ‫‪O2C3H8‬‬ ‫‪1 vol C3H8‬‬ ‫‪_5 vol O2‬‬‫‪VO2‬‬ ‫=‬ ‫‪(4.00‬‬ ‫‪L‬‬ ‫)‪C3H8‬‬ ‫×‬ ‫‪C3H8‬‬ ‫‪1 vol C3H8‬‬ ‫‪O2 ‬‬ ‫‪= 20.0 L O2‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬‫ﺗﻮﺿﺢ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﻣﻌﺎﺩﻟﺔ ﺗﻔﺎﻋﻞ ﺍﻻﺣﱰﺍﻕ ﺃ ﹼﻥ ﺣﺠﻢ ﻏﺎﺯ ‪ O2‬ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﺍﻟﺘﻔﺎﻋﻞ ﺃﻛﱪ ﻛﺜ ﹰﲑﺍ‬‫ﻣﻦ ﺣﺠﻢ ‪ ،C3H8‬ﻭﻫﺬﺍ ﻳﺘﻮﺍﻓﻖ ﻣﻊ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺘﻲ ﺗﻢ ﺣﺴﺎﲠﺎ‪ .‬ﻭﺣﺪﺓ ﺍﻹﺟﺎﺑﺔ ﻫﻲ)‪ ،(L‬ﻭﻫﻮ ﻭﺣﺪﺓ‬ ‫ﺣﺠﻢ‪ ،‬ﻭﻫﻨﺎﻙ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻣﻌﻨﻮﻳﺔ‪.‬‬ ‫‪‬‬‫‪ .38‬ﻛﻢ ﻟ ﹰﱰﺍ ﻣﻦ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ‪ C3H8‬ﻳﻠﺰﻡ ﻟﻜﻲ ﲢﱰﻕ ﺣﺮ ﹰﻗﺎ ﻛﺎﻣ ﹰﻼ ﻣﻊ ‪ 34.0 L‬ﻣﻦ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ؟‬ ‫‪ .39‬ﻣﺎ ﺣﺠﻢ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﺍﻟﻼﺯﻡ ﻟﻠﺘﻔﺎﻋﻞ ﲤﺎ ﹰﻣﺎ ﻣﻊ ‪ 5.00 L‬ﻣﻦ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻹﻧﺘﺎﺝ ﺍﳌﺎﺀ؟‬ ‫‪ .40‬ﻣﺎ ﺣﺠﻢ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﺍﻟﻼﺯﻡ ﻻﺣﱰﺍﻕ ‪ 2.36 L‬ﻣﻦ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ ‪ CH4‬ﺣﺮ ﹰﻗﺎ ﻛﺎﻣ ﹰﻼ؟‬‫‪   .41‬ﻳﺘﻔﺎﻋﻞ ﻏﺎﺯﺍ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻭﺍﻷﻛﺴﺠﲔ ﻹﻧﺘﺎﺝ ﻏﺎﺯ ﺃﻛﺴﻴﺪ ﺛﺎﲏ ﺍﻟﻨﻴﱰﻭﺟﲔ ‪ .N2O‬ﻣﺎ‬ ‫ﺣﺠﻢ ﻏﺎﺯ ‪ O2‬ﺍﻟﻼﺯﻡ ﻻﻧﺘﺎﺝ ‪ 34 L‬ﻣﻦ ﻏﺎﺯ ‪N2O‬؟‬

‫‪     7-11 ‬‬‫‪     ‬‬‫‪     ‬‬ ‫‪‬‬ ‫‪‬‬ ‫اﻟﺤﺴﺎﺑﺎت اﻟﻜﻴﻤﻴﺎﺋﻴﺔ ‪ :‬ﺣﺴﺎﺑﺎت اﻟﺤﺠﻢ – اﻟﻜﺘﻠﺔ‬ ‫‪ ‬‬ ‫‪Stoichiometry and Problems‬‬ ‫ﺍﻟﻨﺴﺒﺔ‬ ‫‪    ‬ﻳﻤﻜﻨﻚ ﺗﻄﺒﻴﻖ ﻣﺎ‪‬ﺗ‪‬ﻌﻠﻤﺘﻪ ﻋﻦ ﺍﳊﺴﺎﺑﺎﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﻋﲆ ﺇﻧﺘﺎﺝ‬ ‫ﺍﻷﻣﻮﻧﻴﺎ ‪ NH3‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ‪ .N2‬ﻓﻤﺼﺎﻧﻊ ﺍﻷﺳﻤﺪﺓ ﺗﺴﺘﺨﺪﻡ ﺍﻷﻣﻮﻧﻴﺎ ﻟﺼﻨﺎﻋﺔ ﺍﻷﺳﻤﺪﺓ‬ ‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻜﻤﻴﺔ ﺑﲔ ﺷﻴﺌﲔ‪.‬‬ ‫ﺍﻟﻐﻨﻴﺔ ﺑﺎﻟﻨﻴﱰﻭﺟﲔ؛ ﻓﺎﻟﻨﻴﱰﻭﺟﲔ ﻋﻨﴫ ﻣﻬﻢ ﻟﻨﻤﻮ ﺍﻟﻨﺒﺎﺗﺎﺕ‪ .‬ﻭﻳﻌﺪ ﺗﺜﺒﻴﺖ ﺍﻟﻨﺒﺎﺗﺎﺕ ﻟﻨﻴﱰﻭﺟﲔ‬‫ﺍﻟﻨﺴـﺒﺔ ﺑﲔ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻭﺍﻷﻛﺴﺠﲔ‬ ‫ﺍﳉﻮ ﰲ ﺍﻟﱰﺑﺔ‪ ،‬ﻭﲢﻠﻴﻞ ﺍﳌﻮﺍﺩ ﺍﻟﻌﻀﻮﻳﺔ‪ ،‬ﻭﳐﻠﻔﺎﺕ ﺍﳊﻴﻮﺍﻧﺎﺕ‪ ،‬ﻣﻦ ﺍﳌﺼﺎﺩﺭ ﺍﻟﻄﺒﻴﻌﻴﺔ ﻟﻠﻨﻴﱰﻭﺟﲔ‬ ‫ﰲ ﺍﻟﱰﺑﺔ‪ .‬ﻫﺬﻩ ﺍﳌﺼﺎﺩﺭ ﻻ ﺗﻮﻓﺮ ﻣﺎ ﻳﻜﻔﻲ ﻣﻦ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻟﺴﺪ ﺣﺎﺟﺔ ﺍﳌﺰﺭﻭﻋﺎﺕ‪ .‬ﻳﻮﺿﺢ‬ ‫ﰲ ﺟﺰﻱﺀ ﺍﳌﺎﺀ ﻫﻲ‪2:1‬‬ ‫ﺍﻟﺸﻜﻞ ‪ 7-11‬ﻣﺰﺍﺭ ﹰﻋﺎ ﻳﺴﻤﺪ ﺍﻷﺭﺽ ﺑﺴﲈﺩ ﻏﻨﻲ ﺑﺎﻟﻨﻴﱰﻭﺟﲔ‪ ،‬ﻭﻫﺬﺍ ﳚﻌﻞ ﺍﳌﺰﺍﺭﻉ ﻗﺎﺩ ﹰﺭﺍ ‪ -‬ﺑﺈﺫﻥ‬ ‫ﺍﷲ ‪ -‬ﻋﲆ ﺇﻧﺘﺎﺝ ﻛﻤﻴﺎﺕ ﺃﻛﺜﺮ ﻣﻦ ﺍﳌﺤﺼﻮﻝ‪.‬‬ ‫ﻳﻮﺿﺢ ﺍﳌﺜﺎﻝ ‪ 7-8‬ﻛﻴﻒ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﰲ ﺇﻧﺘﺎﺝ ﻣﻘﺪﺍﺭ ﳏﺪﻭﺩ ﻣﻦ ﺍﻷﻣﻮﻧﻴﺎ‪.‬‬ ‫ﺗﺬﻛﺮ ﻋﻨﺪ ﺣﻞ ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﺗﺒﲔ ﺃﻋﺪﺍﺩ ﺍﳌﻮﻻﺕ ﻭﺍﳊﺠﻮﻡ ﺍﻟﻨﺴﺒﻴﺔ‬ ‫ﻟﻠﻐﺎﺯﺍﺕ ﻓﻘﻂ‪ ،‬ﻭﻟﻴﺲ ﻛﺘﻠﻬﺎ‪ .‬ﻟﺬﺍ ﳚﺐ ﺃﻥ ﻳﺘﻢ ﲢﻮﻳﻞ ﻛﻞ ﺍﻟﻜﺘﻞ ﺍﳌﻌﻄﺎﺓ ﺇﱃ ﻣﻮﻻﺕ ﺃﻭ ﺣﺠﻮﻡ‬ ‫ﻗﺒﻞ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﺟﺰ ﹰﺀﺍ ﻣﻦ ﺍﻟﻨﺴﺒﺔ‪ .‬ﺗﺬﻛﺮ ﺃﻳ ﹰﻀﺎ ﺃﻥ ﻭﺣﺪﺓ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﳚﺐ ﺃﻥ ﺗﻜﻮﻥ ﺑﺎﻟﻜﻠﻔﻦ‪.‬‬ ‫‪78‬‬ ‫‪‬ﲢ ﹼﴬ ﺍﻷﻣﻮﻧﻴﺎ ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻭﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻭﻓﻖ ﺍﳌﻌﺎﺩﻟﺔ ‪:‬‬ ‫)‪N2(g) + 3H2(g) → 2NH3(g‬‬‫ﺇﺫﺍ ﺗﻔﺎﻋﻞ ‪ 5.00 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﲤﺎ ﹰﻣﺎ ﻣﻊ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻋﻨﺪ ﺿﻐﻂ ﺟﻮﻱ ‪ 3.00 atm‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،298 K‬ﻓﲈ ﻛﻤﻴﺔ‬ ‫ﺍﻷﻣﻮﻧﻴﺎ )‪ (g‬ﺍﻟﺘﻲ ﺗﻨﺘﺞ ﻋﻦ ﺍﻟﺘﻔﺎﻋﻞ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﻟﻘﺪ ﺃﻋﻄﻴﺖ ﺍﳊﺠﻢ ﻭﺍﻟﻀﻐﻂ‪ ،‬ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻟﻌﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ‪ ،‬ﻛﲈ ﺃﻥ ﺍﻟﻨﺴﺒﺔ ﺍﳊﺠﻤﻴﺔ ﻭﺍﳌﻮﻟﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ ﻭﺍﻟﻨﺎﲡﺔ ﻣﻌﻄﺎﺓ‬‫ﻣﻦ ﺧﻼﻝ ﻣﻌﺎﻣﻼﲥﺎ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ‪ .‬ﻳﻤﻜﻦ ﲢﻮﻳﻞ ﺍﳊﺠﻢ ﺇﱃ ﻣﻮﻻﺕ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪ ،‬ﻭﻣﻦ ﺛﻢ‬ ‫ﺣﺴﺎﺏ ﺍﻟﻜﺘﻠﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪mNH3 = ? g‬‬ ‫‪VN2 = 5.00 L‬‬ ‫‪P = 3.00 atm‬‬ ‫‪T = 298 K‬‬‫‪111‬‬

‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫ﺣﺪﺩ ﻋﺪﺩ ﻟﱰﺍﺕ ﻏﺎﺯ ﺍﻷﻣﻮﻧﻴﺎ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺃﻥ ﺗﻨﺘﺞ ﻋﻦ ‪ 5.00 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ‪.‬‬ ‫‪_1 vol N2‬‬ ‫‪ NH3N2‬‬ ‫‪( ) 2 vol NH3‬‬ ‫‪NH3 N2‬‬‫‪5.00 L N2‬‬ ‫‪_2 vol NH3‬‬ ‫‪= 10.0 L NH3‬‬ ‫‪1 vol N2‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻹﳚﺎﺩ ﻗﻴﻤﺔ ‪ .n‬ﻭﻣﻦ ﺛﻢ ﺍﺣﺴﺐ ﻋﺪﺩ ﻣﻮﻻﺕ ‪NH3‬‬ ‫‪PV = nRT‬‬ ‫‪‬‬ ‫‪n‬‬ ‫=‬ ‫‪_PV‬‬ ‫‪n‬‬ ‫‪V5.00LP3.0atmT298K‬‬ ‫‪RT‬‬ ‫=‬ ‫)‪_(3.00 atm_)(10.0 L‬‬ ‫‪( )n‬‬ ‫‪0.0821‬‬ ‫‪_L·atm‬‬ ‫‪(298‬‬ ‫)‪K‬‬ ‫‪mol·K‬‬ ‫)‪_(3.00 atm_)(10.0 L‬‬‫‪( )n‬‬ ‫=‬ ‫=‬ ‫‪1.23‬‬ ‫‪mol‬‬ ‫‪NH3‬‬ ‫‪‬‬ ‫‪_L·atm‬‬ ‫‪0.0821‬‬ ‫‪(298‬‬ ‫)‪K‬‬ ‫‪mol·K‬‬‫= ‪( ) ( )M‬‬‫‪1_N atom ×_14.01 amu‬‬ ‫‪+‬‬ ‫‪3_H atoms ×_1.01 amu‬‬ ‫‪NH3‬‬ ‫‪1 N atom‬‬ ‫‪1 H atom‬‬ ‫‪= 17.04 amu‬‬ ‫‪gmol‬‬ ‫‪M = 17.04 g/mol‬‬ ‫ﺣﻮﻝ ﻣﻮﻻﺕ ﺍﻷﻣﻮﻧﻴﺎ ﺇﱃ ﺟﺮﺍﻣﺎﺕ ﺍﻷﻣﻮﻧﻴﺎ‬ ‫‪ ‬‬‫‪1.23‬‬ ‫‪mol‬‬ ‫‪NH3‬‬ ‫×‬ ‫‪_17.04 g NH3‬‬ ‫=‬ ‫‪21.0‬‬ ‫‪g‬‬ ‫‪NH3‬‬ ‫‪1 mol NH3‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬‫ﻟﺘﻔﺤﺺ ﺇﺟﺎﺑﺘﻚ‪ ،‬ﺍﺣﺴﺐ ﺣﺠﻢ ﺍﻟﻨﻴﱰﻭﺟﲔ ﺍﳌﺘﻔﺎﻋﻞ ﻋﻨﺪ )‪ ،(STP‬ﺛﻢ ﺍﳊﺠﻢ ﺍﳌﻮﱄ ﻭﺍﻟﻨﺴﺒﺔ ﺍﳌﻮﻟﻴﺔ ﺑﲔ ‪N2 ،NH3‬؛ ﻟﺘﺤﺪﻳﺪ ﻋﺪﺩ‬ ‫ﻣﻮﻻﺕ ‪ NH3‬ﺍﻟﻨﺎﲡﺔ‪ .‬ﻭﺣﺪﺓ ﺍﻹﺟﺎﺑﺔ ﻫﻲ ﺍﳉﺮﺍﻡ‪ ،‬ﻭﻫﻲ ﻭﺣﺪﺓ ﻗﻴﺎﺱ ﺍﻟﻜﺘﻠﺔ‪ ،‬ﻭﻫﻨﺎﻙ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻣﻌﻨﻮﻳﺔ‪.‬‬ ‫‪‬‬‫‪ .42‬ﻧﱰﺍﺕ ﺍﻷﻣﻮﻧﻴﻮﻡ ﻣﻜﻮﻥ ﺷﺎﺋﻊ ﰲ ﺍﻷﺳﻤﺪﺓ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪ .‬ﺍﺳﺘﺨﺪﻡ ﺍﻟﺘﻔﺎﻋﻞ ﺍﻟﺘﺎﱄ ﳊﺴﺎﺏ ﻛﺘﻠﺔ ﻧﱰﺍﺕ ﺍﻷﻣﻮﻧﻴﻮﻡ ﺍﻟﺼﻠﺒﺔ ﺍﻟﺘﻲ ﳚﺐ‬ ‫ﺃﻥ ﺗﺴﺘﺨﺪﻡ ﻟﻠﺤﺼﻮﻝ ﻋﲆ ‪ 0.100 L‬ﻣﻦ ﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻨﻴﱰﻭﺟﲔ‪.‬‬ ‫)‪NH4NO3(s) → N2O(g) + 2H2O(g‬‬‫‪ .43‬ﻋﻨﺪ ﺗﺴﺨﲔ ﻛﺮﺑﻮﻧﺎﺕ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ‪ CaCO3‬ﺗﺘﺤﻠﻞ ﻟﺘﻜﻮﻥ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ‪ CaO‬ﺍﻟﺼﻠﺐ ﻭﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ‪. CO2‬‬ ‫ﻣﺎ ﻋﺪﺩ ﻟﱰﺍﺕ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺍﻟﺘﻲ ﺗﺘﻜﻮﻥ ﻋﻨﺪ ‪ STP‬ﺇﺫﺍ ﲢﻠﻞ ‪ 2.38 Kg‬ﻣﻦ ﻛﺮﺑﻮﻧﺎﺕ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ﲤﺎ ﹰﻣﺎ؟‬ ‫‪ .44‬ﻋﻨﺪﻣﺎ ﻳﺼﺪﺃ ﺍﳊﺪﻳﺪ ﻳﻜﻮﻥ ﻗﺪ ﺗﻔﺎﻋﻞ ﻣﻊ ﺍﻷﻛﺴﺠﲔ ﻟﻴﻜﻮﻥ ﺃﻛﺴﻴﺪ ﺍﳊﺪﻳﺪ)‪(II‬‬ ‫)‪4Fe(s) + 3O2(g) → 2Fe2O3(s‬‬ ‫ﺍﺣﺴﺐ ﺣﺠﻢ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻋﻨﺪ ‪ STP‬ﺍﻟﻼﺯﻡ ﻟﻴﺘﻔﺎﻋﻞ ﻣﻊ ‪ 52.0 g‬ﻣﻦ ﺍﳊﺪﻳﺪ ﲤﺎ ﹰﻣﺎ‪.‬‬‫‪   .45‬ﺃﺿﻴﻔﺖ ﻛﻤﻴﺔ ﻓﺎﺋﻀﺔ ﻣﻦ ﲪﺾ ﺍﻷﺳﻴﺘﻴﻚ ﺇﱃ ‪ 28g‬ﻣﻦ ﻛﺮﺑﻮﻧﺎﺕ ﺍﻟﺼﻮﺩﻳﻮﻡ ﺍﳍﻴﺪﺭﻭﺟﻴﻨﻴﺔ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪،25 °C‬‬‫ﻭﺿﻐﻂ ‪ 1atm‬ﻭﰲ ﺃﺛﻨﺎﺀ ﺍﻟﺘﻔﺎﻋﻞ ﺑﺮﺩ ﺍﻟﻐﺎﺯ ﺑﺤﻴﺚ ﺃﺻﺒﺤﺖ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ )‪ .(20 °C‬ﻣﺎ ﺣﺠﻢ ﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺍﻟﻨﺎﺗﺞ؟‬ ‫)‪NaHCO3(aq) + CH3COOH(aq) → NaCH3COO(aq) + CO2(g) + H2O(l‬‬ ‫‪112‬‬

‫‪   7-12 ‬‬‫‪‬‬‫‪ ‬‬‫‪‬‬ ‫‪ ‬‬ ‫ﺗﻌﺘﻤﺪ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺼﻨﺎﻋﻴﺔ ﻋﲆ ﺍﳊﺴﺎﺑﺎﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﻟﺘﻲ ﺩﺭﺳﺘﻬﺎ ﰲ ﺍﻷﻣﺜﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ؛ ﻓﻐﺎﺯ ﺍﻹﻳﺜﲔ‬ ‫‪ C2H4‬ﻣﺜ ﹰﻼ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﺪﻋﻰ ﺃﻳ ﹰﻀﺎ ﺍﻹﺛﻴﻠﲔ‪ ،‬ﻫﻮ ﺍﳌﺎﺩﺓ ﺍﳋﺎﻡ ﻟﺼﻨﺎﻋﺔ ﻣﺒﻠﻤﺮ ﺍﻟﺒﻮﱄ ﺇﻳﺜﻴﻠﲔ‪ .‬ﻳﻨﺘﺞ ﺍﻟﺒﻮﱄ‬ ‫ﺇﺛﻴﻠﲔ ﻋﻨﺪﻣﺎ ﺗﺘﺤﺪ ﳎﻤﻮﻋﺔ ﻛﺒﲑﺓ ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻷﺳﺎﺳﻴﺔ )ﺟﺰﻳﺌﺎﺕ ﺍﻹﻳﺜﲔ ‪ (-CH2-CH2-‬ﰲ‬ ‫ﺻﻮﺭﺓ ﻧﻤﻂ ﻣﺘﻜﺮﺭ ﰲ ﺳﻼﺳﻞ‪ .‬ﻭﺗﺴﺘﺨﺪﻡ ﻫﺬﻩ ﺍﳌﺒﻠﻤﺮﺍﺕ ﰲ ﺻﻨﺎﻋﺔ ﺍﻟﻜﺜﲑ ﻣﻦ ﻣﺴﺘﻠﺰﻣﺎﺕ ﺍﳊﻴﺎﺓ‬ ‫ﺍﻟﻴﻮﻣﻴﺔ‪ ،‬ﻛﲈ ﻳﺒﲔ ﺍﻟﺸﻜﻞ ‪ .7-12‬ﻭﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻮﺿﺢ ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻣﺔ ﻟﺘﻔﺎﻋﻞ ﺍﻟﺒﻠﻤﺮﺓ‪ ،‬ﺣﻴﺚ‬ ‫ﲤﺜﻞ ‪ n‬ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﳌﺘﻜﺮﺭﺓ‪.‬‬ ‫—)‪n(C2H )4 (g) → —(CH2 –CH2)n(s‬‬ ‫ﻟﻮ ﻛﻨﺖ ﻣﻬﻨﺪ ﹰﺳﺎ ﰲ ﻣﺼﻨﻊ ﻟﺼﻨﺎﻋﺔ ﺍﻟﺒﻮﱄ ﺇﺛﻴﻠﲔ ﻓﺈﻧﻚ ﺳﺘﺤﺘﺎﺝ ﳌﻌﺮﻓﺔ ﺑﻌﺾ ﺧﺼﺎﺋﺺ ﻏﺎﺯ‬ ‫ﺍﻹﺛﻴﻠﲔ‪ ،‬ﻭﻣﻌﺮﻓﺔ ﺗﻔﺎﻋﻼﺕ ﺍﻟﺒﻠﻤﺮﺓ ﺃﻳ ﹰﻀﺎ‪ ،‬ﻭﺳﺘﺴﺎﻋﺪﻙ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﺘﻌﻠﻘﺔ ﺑﻘﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﻋﲆ‬ ‫ﺣﺴﺎﺏ ﻛﺘﻠﺔ ﻭﺣﺠﻢ ﺍﳌﺎﺩﺓ ﺍﳋﺎﻡ ﺍﻟﻼﺯﻣﺔ ﲢﺖ ﺩﺭﺟﺎﺕ ﺣﺮﺍﺭﺓ ﻭﺿﻐﻂ ﳐﺘﻠﻔﺔ ﻟﺼﻨﺎﻋﺔ ﺃﻧﻮﺍﻉ ﳐﺘﻠﻔﺔ‬ ‫ﻣﻦ ﺍﻟﺒﻮﱄ ﺇﺛﻴﻠﲔ‪.‬‬ ‫‪ .46‬اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻓﴪﻋﻨﺪﻣﺎﻳﺘﻔﺎﻋﻞﻏﺎﺯﺍﻟﻔﻠﻮﺭﻣﻊﺑﺨﺎﺭﺍﳌﺎﺀﳛﺪﺙﺍﻟﺘﻔﺎﻋﻞﺍﻵﰐ‪:‬‬ ‫اﻟﺘﻘﻮﻳﻢ ‪7-3‬‬ ‫)‪2F2(g) + 2H O2 (g) → O2(g) + 4HF(g‬‬ ‫اﻟﺨﻼﺻﺔ‬ ‫ﲢـﺪﺩ ﺍﻟـﻤﻌﺎﻣـﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻟـﺔ‬‫ﻓﺈﺫﺍ ﺑﺪﺃ ﺍﻟﺘﻔﺎﻋﻞ ﺑـ ‪ 2 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﻔﻠﻮﺭ ﻓﲈ ﺣﺠﻢ ﺑﺨﺎﺭ ﺍﳌﺎﺀ )‪ (L‬ﺍﻟﻼﺯﻡ ﻟﻠﺘﻔﺎﻋﻞ‬ ‫ﺍﻟﻜﻴﻤﻴﺎﺋﻴـﺔ ﺍﳌـﻮﺯﻭﻧــﺔ ﺍﻟﻨﺴـ ﹶﺐ‬‫ﻣﻊ ﻏﺎﺯ ﺍﻟﻔﻠﻮﺭ؟ ﻭﻣﺎ ﺣﺠﻢ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻭﻏﺎﺯ ﻓﻠﻮﺭﻳﺪ ﺍﳍﻴﺪﺭﻭﺟﲔ ﺍﻟﻨﺎﲡﲔ؟‬ ‫ﺍﳊﺠـﻤـﻴـﺔ ﻟﻠﻐــﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ‬‫‪ .47‬ﺣﻠﻞﻫﻞﻳﺘﻨﺎﺳﺐﺣﺠﻢﺍﻟﻐﺎﺯﺗﻨﺎﺳ ﹰﺒﺎﻃﺮﺩ ﹼﹰﻳﺎﺃﻭﻋﻜﺴ ﹰﹼﻴﺎﻣﻊﻋﺪﺩﻣﻮﻻﺕﺍﻟﻐﺎﺯﻋﻨﺪﺩﺭﺟﺔ‬ ‫ﻭﺍﻟﻨﺎﲡﺔ‪.‬‬ ‫ﺣﺮﺍﺭﺓ ﻭﺿﻐﻂ ﺛﺎﺑﺘﲔ؟ ﻓﴪ ﺇﺟﺎﺑﺘﻚ‪.‬‬ ‫ﻳﻤﻜﻦ ﺃﻥ ﺗﺴﺘﺨﺪﻡ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ‬‫‪ .48‬ﺍﺣﺴﺐﻳﺸﻐﻞ ‪1mol‬ﻣﻦﺍﻟﻐﺎﺯﺣﺠ ﹰﲈﻣﻘﺪﺍﺭﻩ‪ 22.4L‬ﻋﻨﺪ‪،STP‬ﺍﺣﺴﺐﺩﺭﺟﺔﺍﳊﺮﺍﺭﺓ‬ ‫ﻣﻊ ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ‬ ‫ﻭﺍﻟﻀﻐﻂ ﺍﻟﻼﺯﻣﲔ ﻹﺩﺧﺎﻝ‪ 2 mol‬ﻣﻦ ﺍﻟﻐﺎﺯ ﰲ ﺣﺠﻢ ‪22.4 L‬‬ ‫ﳊﺴﺎﺏ ﻛﻤﻴﺎﺕ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ‬‫‪ .49‬ﻓﴪ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻳﺘﻔﺎﻋﻞ ﻏﺎﺯ ﺍﻹﻳﺜﲔ ‪ C2H4‬ﻣﻊ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﻟﻴﻜﻮﻧﺎ ﻏﺎﺯ ﺛﺎﲏ‬ ‫ﺃﻭ ﺍﻟﻨﺎﲡﺔ ﻋﻦ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬‫ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻭﺍﳌﺎﺀ‪ .‬ﺍﻛﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﳍﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ‪ ،‬ﺛﻢ ﺟﺪ‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﻤﻮﺍﺩ ﺍﳌﻮﺟﻮﺩﺓ ﻋﲆ ﻛﻞ ﺟﻬﺔ ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ‪.‬‬‫‪113‬‬

‫‪‬‬ ‫�‬ ‫‪‬‬ ‫�‬‫��‬ ‫ﺗﻌﻴـﺶ ﺣﻴﺎﺗﻚ ﺍﻟﻴﻮﻣﻴﺔ ﻭﺗﻌﻤﻞ ﻭﺗﻠﻌـﺐ ﰲ ﺍﳍﻮﺍﺀ ﺣﻴﺚ ﻳﻜﻮﻥ‬ ‫ﺍﻟﻀﻐـﻂ‪ 1atm‬ﺗﻘﺮﻳ ﹰﺒـﺎ‪ ،‬ﻭﻧﺴـﺒﺔ ﺍﻷﻛﺴـﺠﲔ ‪ ، 21%‬ﻓﻬـﻞ‬ ‫‪‬‬ ‫ﺗﺴـﺎﺀﻟﺖ ﻳﻮ ﹰﻣﺎ‪ :‬ﻣـﺎﺫﺍ ﻳﻤﻜﻦ ﺃﻥ ﳛﺪﺙ ﻟﻮ ﻛﺎﻥ ﺍﻟﻀﻐﻂ ﻭﻧﺴـﺒﺔ‬ ‫ﺍﻷﻛﺴـﺠﲔ ﰲ ﺍﳍـﻮﺍﺀ ﺃﻛﺜﺮ؟ ﻫﻞ ﻛﻨﺖ ﺳـﺘﺘﻌﺎﰱ ﻣﻦ ﺍﳌﺮﺽ ﺃﻭ‬ ‫ﺍﻟﺸﻜﻞ ‪ 2‬ﺗﺒﺎﺩﻝ ﺍﻟﻐﺎﺯﺍﺕ ﺑﲔ ﺍﻟﺮﺋﺘﲔ ﻭﺟﻬﺎﺯ ﺍﻟﺪﻭﺭﺍﻥ‪.‬‬ ‫ﺍﳉﺮﻭﺡ ﺑﴪﻋﺔ؟ ﻫﺬﻩ ﺍﻷﺳﺌﻠﺔ ﻫﻲ ﺟﻮﻫﺮ ﺍﻟﻌﻼﺝ ﺑﺎﻷﻛﺴﺠﲔ‬‫‪  ‬ﺍﺳﺘﺨﺪﻡ ﺍﻟﺸﻜﻞ ‪ 2‬ﳌﻌﺮﻓﺔ‬ ‫ﺍﳌﻀﻐﻮﻁ‪.‬‬‫ﻛﻴﻒ ﻳﺴﺎﻋﺪ )‪ (HBOT‬ﻋﲆ ﻋﻼﺝ ﺍﻟﺘﺴﻤﻢ ﺑﻐﺎﺯ ﺃﻭﻝ ﺃﻛﺴﻴﺪ‬ ‫‪Hyperbaric medicine ‬‬ ‫ﺇﻥ ﻛﻠﻤـﺔ )‪ (hyper‬ﺗﻌﻨﻲ ﻋﺎﻟ ﹰﻴـﺎ ﺃﻭ ﺯﺍﺋ ﹰﺪﺍ‪ .‬ﻭ)‪ (bar‬ﻫﻲ ﻭﺣﺪﺓ‬ ‫ﺍﻟﻜﺮﺑﻮﻥ‪.‬‬ ‫ﺍﻟﻀﻐـﻂ‪ ،‬ﻭﺗﺴـﺎﻭﻱ ‪ ،100 KPa‬ﻭﻫﺬﺍ ﺗﻘﺮﻳ ﹰﺒـﺎ ﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ‬ ‫ﺍﻟﻄﺒﻴﻌﻲ‪ .‬ﳍـﺬﺍ ﻓﺈﻥ ﺍﳌﺼﻄﻠﺢ ‪ hyperbaric‬ﻳﺸـﲑ ﺇﱃ ﺿﻐﻂ‬‫‪ ‬ﻳﻨﺘﻘﻞ ﻏﺎﺯ ‪ O2‬ﻣـﻦ ﺍﻟﺮﺋﺘﲔ ﺇﱃ ﺍﻟﺪﻡ‪،‬‬ ‫ﺃﻋـﲆ ﻣﻦ ﺍﻟﻀﻐـﻂ ﺍﻟﻄﺒﻴﻌﻲ‪ .‬ﻳﺘﻌﺮﺽ ﺍﳌـﺮﴇ ﺍﻟﺬﻳﻦ ﻳﻌﺎﳉﻮﻥ‬ ‫ﺑﺎﻷﻛﺴـﺠﲔ ﺍﳌﻀﻐـﻮﻁ ﻟﻀﻐﻂ ﺃﻋﲆ ﻣﻦ ﺍﻟﻀﻐـﻂ ﺍﳉﻮﻱ ﻋﻨﺪ‬‫ﻭﻳﺮﺗﺒـﻂ ﻣ‪i‬ﻊ‪.a‬ﻫﻴ‪7‬ﻤ‪3‬ﻮ‪6‬ﺟﻠ‪4‬ﻮﺑ‪87‬ﲔ‪-‬ﺍﻟ‪A‬ـﺪ‪5‬ﻡ‪-0‬ﰲ‪3‬ﺧ‪1‬ﻼ‪C‬ﻳﺎ ﺍﻟﺪﻡ ﺍﳊﻤﺮﺍﺀ‪ ،‬ﻓﻴﺘﺤﺮﺭ‬ ‫ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ‪bCeO2‬ﻛﲈ ﻳﻈﻬﺮ ﻋﻨﺪ ﺍﳌﻮﺿﻊ ‪. A‬‬ ‫ﻣﺴﺘﻮ￯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ‪.‬‬ ‫‪  ‬ﻳﺮﺗﺒـﻂ ﺍﺭﺗﻔﺎﻉ ﺍﻟﻀﻐـﻂ ﻏﺎﻟ ﹰﺒﺎ ﻣـﻊ ﺍﺭﺗﻔﺎﻉ‬‫‪ ‬ﺇﺫﺍ ﺩﺧﻞ ﺃﻭﻝ ﺃﻛﺴـﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺇﱃ‬ ‫ﺗﺮﻛﻴـﺰ ﺍﻷﻛﺴـﺠﲔ ﺍﻟـﺬﻱ ﻳﺘﻠﻘـﺎﻩ ﺍﳌـﺮﴇ‪ .‬ﻭﻳﺸـﲑ ﺍﻟﻌـﻼﺝ‬ ‫ﺑﺎﻷﻛﺴﺠﲔ ﺍﳌﻀﻐﻮﻁ )‪ (HBOT‬ﺇﱃ ﻋﻼﺝ ﺑﻮﺳﺎﻃﺔ ﺃﻛﺴﺠﲔ‬‫ﺍﻟـﺪﻡ ﻛﲈ ﻳﻮﺿﺤﻪ ﺍﻟﺮﻣـﺰ ‪ ،B‬ﻋﻮ ﹰﺿﺎ ﻋﻦ ﺍﻷﻛﺴـﺠﲔ ﻓﺈﻧﻪ ﻳﺮﺗﺒﻂ‬ ‫ﺗﺮﻛﻴـﺰﻩ ‪ .100%‬ﻭﻳﺒﲔ ﺍﻟﺸـﻜﻞ ‪ 1‬ﻏﺮﻓﺔ ﺍﳌﻌﺎﳉﺔ ﺑﺎﻷﻛﺴـﺠﲔ‬‫ﻣﻊ ﺍﳍﻴﻤﻮﺟﻠﻮﺑﲔ‪ ،‬ﻭﺗﺒﺪﺃ ﺧﻼﻳﺎ ﺍﳉﺴﻢ ﲤﻮﺕ ﻧﺘﻴﺠﺔ ﺣﺮﻣﺎﳖﺎ ﻣﻦ‬ ‫ﺍﳌﻀﻐـﻮﻁ؛ ﺣﻴﺚ ﻳﻤﻜـﻦ ﺃﻥ ﻳﺼﻞ ﺍﻟﻀﻐﻂ ﰲ ﻫـﺬﻩ ﺍﻟﻐﺮﻓﺔ ﺇﱃ‬ ‫ﲬﺴﺔ ﺃﻭ ﺳﺘﺔ ﺃﺿﻌﺎﻑ ﺍﻟﻀﻐﻂ ﺍﻟﻌﺎﺩﻱ‪ .‬ﻭﺗﺴﺘﺨﺪﻡ ‪ HBOT‬ﰲ‬ ‫ﺍﻷﻛﺴﺠﲔ‪.‬‬ ‫ﻣﻌﺎﳉﺔ ﺍﻟﻜﺜـﲑ ﻣﻦ ﺍﳊﺎﻻﺕ‪ ،‬ﻭﻣﻨﻬﺎ ﺍﳊﺮﻭﻕ ﻭﺍﻟﺪﻭﺍﺭ ﻭﺍﳉﺮﻭﺡ‬‫‪  ‬ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺍﻷﻛﺴـﺠﲔ ﺍﻟﺬﻱ‬ ‫ﺍﻟﺘﻲ ﻻ ﺗﻠﺘﺌﻢ ﺑﴪﻋﺔ ﻭﺍﻷﻧﻴﻤﻴﺎ ﻭﺑﻌﺾ ﺍﻷﻣﺮﺍﺽ ﺍﳌﻌﺪﻳﺔ‪.‬‬‫ﳛﻤﻠـﻪ ﺍﳍﻴﻤﻮﺟﻠﻮﺑﲔ ﻳﺬﻭﺏ ﺍﻷﻛﺴـﺠﲔ ﰲ ﺑﻼﺯﻣﺎ ﺍﻟﺪﻡ ﻛﲈ ﻫﻮ‬‫ﻣﺒﲔ ﰲ ‪ .C‬ﻭﺗﺴـﺎﻋﺪ ﺍﳌﻌﺎﳉﺔ ﺑﺎﻷﻛﺴﺠﲔ )‪ (HBOT‬ﻋﲆ ﺯﻳﺎﺩﺓ‬‫ﺗﺮﻛﻴـﺰ ﺍﻷﻛﺴـﺠﲔ ﺍﳌﺬﺍﺏ ﺇﱃ ﺍﳌﻘـﺪﺍﺭ ﺍﻟﺬﻱ ﳛﺎﻓﻆ ﻋﲆ ﺍﳉﺴـﻢ‬ ‫ﺳﻠﻴ ﹰﲈ ‪.‬‬‫‪  ‬ﻳﺴـﺎﻋﺪ ﺍﻷﻛﺴـﺠﲔ‬‫ﺍﳌﻀﻐـﻮﻁ ﻋـﲆ ﺍﻟﺘﺨﻠﺺ ﻣﻦ ﺃﻭﻝ ﺃﻛﺴـﻴﺪ ﺍﻟﻜﺮﺑـﻮﻥ ﺍﳌﺮﺗﺒﻂ ﻣﻊ‬ ‫ﺍﳍﻴﻤﻮﺟﻠﻮﺑﲔ‪ ،‬ﻛﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ‪.D‬‬‫‪ ‬ﺃﻋﺪ ﻛﺘﻴﺐ ﻣﻌﻠﻮﻣﺎﺕ ﺣﻮﻝ‬ ‫‪ 1‬ﻳﺴﺘﻠﻘﻲ ﺍﳌﺮﻳﺾﰲﻏﺮﻓﺔ ﺍﻟﻌﻼﺝﰲﺃﺛﻨﺎﺀ)‪،(HBOT‬‬‫ﺍﺳـﺘﺨﺪﺍﻡ )‪ (HBOT‬ﻟﻌـﻼﺝ ﺍﳉـﺮﻭﺡ ﺍﻟﺘـﻲ ﻻ ﺗﻠﺘﺌﻢ‬ ‫ﻭﻳﺘﺤﻜﻢ ﺍﻟﻔﻨﻲ ﰲ ﺍﻟﻀﻐﻂ ﻭﻧﺴﺒﺔ ﺍﻷﻛﺴﺠﲔ‪.‬‬ ‫ﺑﴪﻋﺔ‪.‬‬ ‫‪114‬‬

‫‪‬‬ ‫‪‬‬ ‫‪ ‬ﻋﻨﺪﻣـﺎ ﻳﻜـﻮﻥ ﺿﻐـﻂ ﺑﺨﺎﺭ ﺍﳌـﺎﺀ ﺩﺍﺧﻞ‬ ‫ﺣﺒﺎﺕ ﺍﻟﻔﺸـﺎﺭ ﻛﺒ ﹰﲑﺍ ﺑﺸـﻜﻞ ﻛﺎ ﹴﻑ‪ ،‬ﺗﺘﺤﻮﻝ ﺍﳊﺒﺎﺕ ﺇﱃ ﻓﻮﺷـﺎﺭ‬ ‫ﻭﺗﻄﻠﻖ ﺑﺨﺎﺭ ﻣﺎﺀ‪ .‬ﻭﻳﻤﻜﻦ ﺍﺳـﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﰲ ﺇﳚﺎﺩ‬ ‫ﺍﻟﻀﻐﻂ ﰲ ﻫﺬﻩ ﺍﳊﺒﺎﺕ ﻋﻨﺪ ﺍﻧﻔﺠﺎﺭﻫﺎ‪.‬‬ ‫‪ ‬ﻣﺎ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﺍﻟﻼﺯﻡ ﻟﻨﻔﺶ ﺣﺒﺎﺕ ﺍﻟﻔﺸﺎﺭ؟‬ ‫‪‬‬ ‫‪ .12‬ﻗﺲ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻨﻬﺎﺋﻴﺔ ﻟﻠﻜﺄﺱ ﻭﺍﻟﺰﻳﺖ ﻭﺍﻟﻔﺸﺎﺭ‪.‬‬ ‫ﳐﺒﺎﺭ ﻣﺪﺭﺝ ‪10 ml‬‬ ‫ﺣﺒﺎﺕ ﻓﺸﺎﺭ )‪(20-18‬‬ ‫ﻛﺄﺱ ﺯﺟﺎﺟﻴﺔ ‪250 ml‬‬ ‫ﺯﻳﺖ ﻧﺒﺎﰐ ‪1.5 ml‬‬ ‫‪  .13‬ﲣﻠﺺ ﻣﻦ ﺣﺒﺎﺕ‬ ‫ﻣﺎﺳﻚ ﻛﺄﺱ‬ ‫ﺷﺒﻜﺔ ﺗﺴﺨﲔ ﻣﺮﺑﻌﺔ ‪2‬‬ ‫ﺍﻟﺬﺭﺓ ﻭﺍﻟﺰﻳﺖ ﺑﺎﺗﺒﺎﻉ ﺗﻌﻠﻴﲈﺕ ﻣﻌﻠﻤﻚ‪ .‬ﻧ ﹼﻈﻒ ﺍﻷﺩﻭﺍﺕ‬ ‫ﻣﻴﺰﺍﻥ‬ ‫ﻣﻮﻗﺪ ﺑﻨﺰﻥ‬ ‫ﺍﳌﺨﺘﱪﻳﺔ ﻭﺿﻌﻬﺎ ﰲ ﺃﻣﺎﻛﻨﻬﺎ‪.‬‬ ‫ﻣﺎﺀ ﻣﻘﻄﺮ‬ ‫ﺣﺎﻣﻞ ﺣﻠﻘﺔ‬ ‫‪‬‬ ‫ﻭﺭﻕ ﺗﻨﺸﻴﻒ‬ ‫ﺣﻠﻘﺔ ﺣﺪﻳﺪﻳﺔ ﺻﻐﲑﺓ‬‫‪CC‬‬ ‫ﺇﳚﺎﺩ‬ ‫ﺧﻼﻝ‬ ‫ﻣﻦ‬ ‫ﻭﺫﻟﻚ‬ ‫ﺑﺎﻟﻠﱰ‪،‬‬ ‫ﺍﻟﺬﺭﺓ‬ ‫ﺣﺒﺎﺕ‬ ‫ﺣﺠﻢ‬ ‫‪LLCECMMDF.D1NN‬‬ ‫‪EGAEOO‬‬ ‫‪FHBFPP‬‬ ‫‪GCIG‬‬ ‫‪HJDH‬‬ ‫‪AIKEI‬‬ ‫‪BJLFJ‬‬ ‫‪‬‬ ‫‪PHPL‬‬ ‫‪IM‬‬ ‫‪CKMGK DNLHLMOEMINPFJNOGKO‬‬ ‫‪DD‬‬ ‫‪EE‬‬ ‫‪FF‬‬ ‫‪GG‬‬ ‫‪HH A‬‬ ‫‪II B‬‬ ‫‪JJACA‬‬ ‫‪KKBDB‬‬ ‫ﺍﻟﻔﺮﻕ ﺑﲔ ﺣﺠﻢ ﺍﳌﺎﺀ ﺍﳌﻘﻄﺮ ﰲ ﺍﳌﺨﺒﺎﺭ ﻗﺒﻞ ﺇﺿﺎﻓﺔ ﺍﻟﺬﺭﺓ‬ ‫ﻭﺑﻌﺪﻩ‪.‬‬ ‫‪ .1‬ﺍﻗﺮﺃ ﺗﻌﻠﻴﲈﺕ ﺍﻟﺴﻼﻣﺔ ﰲ ﺍﳌﺨﺘﱪ‪.‬‬ ‫‪  .2‬ﺍﻟﻜﺘﻠﺔ ﺍﻟﻜﻠﻴﺔ ﻟﺒﺨﺎﺭ ﺍﳌﺎﺀ ﺍﳌﻨﻄﻠﻖ ﻣﺴﺘﺨﺪ ﹰﻣﺎ‬ ‫‪ .2‬ﺍﻋﻤﻞ ﺟﺪﻭ ﹰﻻ ﻟﺘﺴﺠﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ‪.‬‬ ‫‪ .3‬ﺿﻊ ‪ 5ml‬ﺗﻘﺮﻳ ﹰﺒﺎ ﻣﻦ ﺍﳌﺎﺀ ﺍﳌﻘﻄﺮ ﰲ ﳐﺒﺎﺭ ﻣﺪﺭﺝ‪ ،‬ﻭﺳﺠﻞ ﻗﻴﺎﺳﺎﺕ ﻛﺘﻞ ﺍﻟﻜﺄﺱ ﻭﺍﻟﺰﻳﺖ ﻭﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ ﻗﺒﻞ ﺍﻟﻨﻔﺶ‬ ‫ﻭﺑﻌﺪﻩ‪.‬‬ ‫ﺣﺠﻤﻪ‪.‬‬ ‫‪ .4‬ﺿﻊ ‪ 20 -18‬ﺣﺒﺔ ﻓﺸﺎﺭ ﰲ ﺍﳌﺨﺒﺎﺭ ﺍﳌﺪﺭﺝ ﻣﻊ ﺍﳌﺎﺀ‪ ،‬ﻭﺣ ﹼﺮﻙ ‪   .3‬ﺍﺳﺘﺨﺪﻡ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﲈﺀ؛ ﻹﳚﺎﺩ ﻋﺪﺩ ﻣﻮﻻﺕ‬ ‫ﺍﳌﺨﺒﺎﺭ ﺍﳌﺪﺭﺝ ﺑﻠﻄﻒ؛ ﻟﺘﺠﱪ ﻓﻘﺎﻗﻴﻊ ﺍﳍﻮﺍﺀ ﻋﲆ ﺍﳋﺮﻭﺝ‪ ،‬ﺍﳌﺎﺀ ﺍﳌﺘﺤﺮﺭﺓ‪.‬‬ ‫ﺛﻢ ﺳﺠﻞ ﺣﺠﻢ ﺍﳌﺎﺀ ﻭﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ ﻣ ﹰﻌﺎ‪.‬‬ ‫‪   .4‬ﺍﻋـﺘـﱪ ﺃﻥ ﺩﺭﺟـﺔ ﺣﺮﺍﺭﺓ ﺍﻟﺰﻳﺖ‬ ‫‪ .5‬ﺃﺧﺮﺝ ﺍﳊﺒﺎﺕ ﻣﻦ ﺍﳌﺨﺒﺎﺭ ﺍﳌﺪﺭﺝ ﻭﺟﻔﻔﻬﺎ‪.‬‬ ‫ﺍﳌـﻐـﲇ ‪ 225˚C‬ﻫﻲ ﺩﺭﺟﺔ ﺣـﺮﺍﺭﺓ ﺍﻟـﻐـﺎﺯ‪ ،‬ﻭﺍﺣﺴـﺐ‬ ‫‪ .6‬ﺿﻊ ﺍﳊﺒﺎﺕ ﺍﳉﺎﻓﺔ ﻣﻊ ‪ 1.0 – 1.5 ml‬ﻣﻦ ﺍﻟﺰﻳﺖ ﺍﻟﻨﺒﺎﰐ ﺿﻐـﻂ ﺍﻟﻐـﺎﺯ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫ﰲ ﻛﺄﺱ ﺯﺟﺎﺟﻴﺔ‪.‬‬ ‫‪  .5‬ﺑﲔ ﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ ﻭﺿﻐﻂ ﺑﺨﺎﺭ ﺍﳌﺎﺀ ﰲ ﺍﳊﺒﺎﺕ‪.‬‬ ‫‪ .7‬ﻗﺲ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻠﻜﺄﺱ ﻭﺍﻟﺰﻳﺖ ﻭﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ‪.‬‬ ‫‪  .6‬ﳌﺎﺫﺍ ﱂ ﺗﻨﻔﺶ ﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ ﲨﻴﻌﻬﺎ؟‬ ‫‪   .7‬ﺣ ﹼﺪﺩ ﻣﺼﺎﺩﺭ ﺍﳋﻄﺄ ﰲ ﻫﺬﻩ ﺍﻟﺘﺠﺮﺑﺔ‪،‬‬ ‫‪ .8‬ﺭﻛﺐ ﺍﳉﻬﺎﺯ‪ ،‬ﻛﲈ ﻳﻈﻬﺮ ﰲ ﺍﻟﺼﻮﺭﺓ‪.‬‬ ‫ﻭﺍﻗﱰﺡ ﻃﺮﻳﻘﺔ ﻟﺘﺼﺤﻴﺤﻬﺎ‪.‬‬ ‫‪ .9‬ﺳﺨﻦ ﺍﻟﻜﺄﺱ ﲠﺪﻭﺀ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻮﻗﺪ‪ ،‬ﻭﺣ ﹼﺮﻙ ﺍﳌﻮﻗﺪ ﺇﱃ‬ ‫ﺍﻷﻣﺎﻡ ﻭﺍﳋﻠﻒ ﻟﺘﺴﺨﲔ ﺍﻟﺰﻳﺖ ﺑﺎﻟﺘﺴﺎﻭﻱ‪.‬‬ ‫‪‬‬ ‫‪ .10‬ﻻﺣﻆ ﺍﻟﺘﻐﲑﺍﺕ ﰲ ﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ ﰲ ﺃﺛﻨﺎﺀ ﺍﻟﺘﺴﺨﲔ‪ ،‬ﺛﻢ‬ ‫‪ ‬ﻻﺧﺘﺒﺎﺭ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﺍﻟﻼﺯﻡ ﻟﻔﺮﻗﻌﺔ‬ ‫ﺃﻃﻔﺊ ﺍﳌﻮﻗﺪ ﻋﻨﺪﻣﺎ ﺗﺘﻔﺮﻗﻊ ﺣﺒﺎﺕ ﺍﻟﺬﺭﺓ‪.‬‬ ‫ﺃﻧﻮﺍﻉ ﳐﺘﻠﻔﺔ ﻣﻦ ﺣﺒﻮﺏ ﺍﻟﺬﺭﺓ‪.‬‬ ‫‪ .11‬ﺍﺳﺘﺨﺪﻡ ﻣﺎﺳﻚ ﺍﻟﻜﺄﺱ ﻹﺑﻌﺎﺩ ﺍﻟﻜﺄﺱ ﻋﻦ ﺍﳊﻠﻘﺔ‪ ،‬ﻭﺍﺗﺮﻛﻪ‬ ‫ﺣﺘﻰ ﻳﱪﺩ ﲤﺎ ﹰﻣﺎ‪.‬‬ ‫‪115‬‬

‫اﻟﻔﻜﺮة اﻟﻌﺎﻣﺔ ﺗﺴﺘﺠﻴﺐ ﺍﻟﻐﺎﺯﺍﺕ ﻟﺘﻐﲑﺍﺕ ﻛﻞ ﻣﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳊﺠﻢ ﻭﻋﺪﺩ ﺍﳉﺴﻴﲈﺕ ﺑﻄﺮﺍﺋﻖ‬ ‫ﻳﻤﻜﻦ ﺍﻟﺘﻨﺒﺆ ﲠﺎ‪.‬‬ ‫‪71‬‬ ‫ﺇﺫﺍ ﺗﻐـﲑ ﺿﻐﻂ ‪‬‬‫ﺃﻱ ﻛﻤﻴﺔ ﺛﺎﺑﺘـﺔ ﻣﻦ ﻏﺎﺯ ﺃﻭ ﺩﺭﺟﺔ • ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ ﻋﲆ ﺃﻥ ﺣﺠﻢ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻋﻜﺴ ﹼﹰﻴﺎ ﻣﻊ ﺿﻐﻄﻪ ﻋﻨﺪ‬ ‫ﺣﺮﺍﺭﲥﺎ ﺃﻭ ﺣﺠﻤﻬﺎ ﻓﺴﻮﻑ ﻳﺘﺄﺛﺮ ﺛﺒﻮﺕ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪P1V1 = P2V2 .‬‬ ‫ﺍﳌﺘﻐﲑﺍﻥ ﺍﻵﺧﺮﺍﻥ‪.‬‬‫• ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﻋﲆ ﺃﻥ ﺣﺠﻢ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻃﺮﺩ ﹰﹼﻳﺎ ﻣﻊ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ‬ ‫‪‬‬ ‫‪_V1‬‬ ‫=‬ ‫‪_V2‬‬ ‫ﺍﳌﻄﻠﻘﺔ ﻋﻨﺪ ﺛﺒﻮﺕ ﺍﻟﻀﻐﻂ‪.‬‬ ‫• ﻗﺎﻧﻮﻥ ﺑﻮﻳﻞ‬ ‫‪T1‬‬ ‫‪T2‬‬ ‫•‬ ‫• ﺍﻟﺼﻔﺮ ﺍﳌﻄﻠﻖ‬‫ﻳﻨﺺ ﻗﺎﻧﻮﻥ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﻋﲆ ﺃﻥ ﺿﻐﻂ ﻣﻘﺪﺍﺭ ﳏ ﹼﺪﺩ ﻣﻦ ﺍﻟﻐﺎﺯ ﻳﺘﻨﺎﺳﺐ ﻃﺮﺩ ﹰﹼﻳﺎ ﻣﻊ ﺩﺭﺟﺔ‬ ‫ﺣﺮﺍﺭﺗﻪ ﺍﳌﻄﻠﻘﺔ ﻋﻨﺪ ﺛﺒﺎﺕ ﺍﳊﺠﻢ‪.‬‬ ‫• ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ‬ ‫• ﻗﺎﻧﻮﻥ ﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ‬ ‫‪_P1‬‬ ‫=‬ ‫‪_P2‬‬ ‫• ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‬ ‫‪T1‬‬ ‫‪T2‬‬‫• ﻳﺮﺑﻂ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ ﻛ ﹼﹰﻼ ﻣﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﰲ ﻣﻌﺎﺩﻟﺔ ﻭﺍﺣﺪﺓ‪.‬‬ ‫‪_P1V1‬‬ ‫=‬ ‫‪_P2V2‬‬ ‫‪T1‬‬ ‫‪T2‬‬ ‫‪72‬‬ ‫ﻳﺮﺑـﻂ ﻗﺎﻧـﻮﻥ ‪‬‬‫ﺍﻟﻐـﺎﺯ ﺍﳌﺜﺎﱄ ﻋﺪﺩ ﺍﳉﺴـﻴﲈﺕ ﻣﻊ • ﻳﻨﺺ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ ﻋﲆ ﺃﻥ ﺍﳊﺠﻮﻡ ﺍﳌﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺍﻟﻐﺎﺯﺍﺕ ﻋﻨﺪ ﻧﻔﺲ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ‬ ‫ﻛﻞ ﻣـﻦ ﺍﻟﻀﻐﻂ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳊﺮﺍﺭﺓ ﲢﺘﻮﻱ ﻋﲆ ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻣﻦ ﺍﳉﺴﻴﲈﺕ‪.‬‬ ‫• ﻳﺮﺑﻂ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻛﻤﻴﺔ ﺍﻟﻐﺎﺯ ﻣﻊ ﺿﻐﻄﻪ ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ ﻭﺣﺠﻤﻪ‪.‬‬ ‫ﻭﺍﳊﺠﻢ‪.‬‬ ‫‪PV = nRT‬‬ ‫‪‬‬‫• ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﻹﳚﺎﺩ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﻐﺎﺯ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﺘﻠﺔ ﺍﻟﻐﺎﺯ ﻣﻌﺮﻭﻓﺔ‪،‬‬ ‫• ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ‬ ‫• ﺍﳊﺠﻢ ﺍﳌﻮﱄ‬ ‫ﻭﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻪ ﺃﻳ ﹰﻀﺎ ﻹﳚﺎﺩ ﻛﺜﺎﻓﺔ ﺍﻟﻐﺎﺯ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﺘﻠﺘﻪ ﺍﳌﻮﻟﻴﺔ ﻣﻌﺮﻭﻓﺔ ‪.‬‬ ‫‪_mRT‬‬ ‫‪_MP‬‬ ‫• ﺛﺎﺑﺖ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫‪M‬‬ ‫=‬ ‫‪D‬‬ ‫=‬ ‫• ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‬ ‫‪PV‬‬ ‫‪RT‬‬‫ﻣﻐﺎﻳ ﹰﺮﺍ‬ ‫ﺳﻠﻮ ﹰﻛﺎ‬ ‫ﺍﳌﻨﺨﻔﻀﺔ‬ ‫ﻋﻨﺪ ﺍﻟﻀﻐﻂ ﺍﻟﻌﺎﱄ ﻭﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ‬ ‫ﺍﳊﻘﻴﻘﻴﺔ‬ ‫ﺍﻟﻐﺎﺯﺍﺕ‬ ‫ﺗﺴﻠﻚ‬ ‫•‬ ‫ﻟﺴﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫‪73‬‬ ‫ﻋﻨﺪﻣـﺎ ﺗﺘﻔﺎﻋﻞ ‪‬‬‫ﺍﻟﻐـﺎﺯﺍﺕ ﻓـﺈﻥ ﺍﳌﻌﺎﻣـﻼﺕ ﰲ • ﲢﺪﺩ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﺍﻟﻨﺴﺐ ﺍﳊﺠﻤﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ‬ ‫ﺍﳌﻌـﺎﺩﻻﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴـﺔ ﺍﳌﻮﺯﻭﻧـﺔ ﻭﺍﻟﻨﺎﲡﺔ‪.‬‬‫ﺍﻟﺘﻲ ﲤﺜﻞ ﻫﺬﻩ ﺍﻟﺘﻔﺎﻋﻼﺕ ﺗﺸـﲑ • ﻳﻤﻜﻦ ﺃﻥ ﺗﺴﺘﺨﺪﻡ ﻗﻮﺍﻧﲔ ﺍﻟﻐﺎﺯﺍﺕ ﻣﻊ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﳊﺴﺎﺏ ﻛﻤﻴﺎﺕ‬ ‫ﺇﱃ ﺃﻋـﺪﺍﺩ ﺍﳌـﻮﻻﺕ ﻭﺍﳊﺠـﻮﻡ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺘﻔﺎﻋﻠﺔ ﺃﻭ ﺍﻟﻨﺎﲡﺔ ﻋﻦ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬ ‫ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ‪.‬‬ ‫‪116‬‬

‫‪ .57‬ﺍﺳﺘﻌﻤﻞ ﻗﻮﺍﻧﲔ ﺑﻮﻳﻞ ﻭﺷﺎﺭﻝ ﻭﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ ﳊﺴﺎﺏ‬ ‫‪ml‬‬ ‫‪7-1‬‬ ‫ﺍﻟﻘﻴﻢ ﺍﳌﻔﻘﻮﺩﺓ ﰲ ﻛﻞ ﳑﺎ ﻳﺄﰐ‪:‬‬ ‫‪‬‬‫‪V1 = 2.0 L, P1 = 0.82 atm, V2 = 1.0 L، P2 .a‬‬ ‫‪ .50‬ﺍﺫﻛﺮ ﻧﺼﻮﺹ ﻗﻮﺍﻧﲔ ﺑﻮﻳﻞ‪ ،‬ﻭﺷﺎﺭﻝ‪ ،‬ﻭﺟﺎﻱ‪ -‬ﻟﻮﺳﺎﻙ‬ ‫?=‬ ‫ﻭﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﻠﻐﺎﺯﺍﺕ‪ ،‬ﻭﺍﻛﺘﺐ ﻣﻌﺎﺩﻻﲥﺎ‪.‬‬‫‪V 1 = 250 mL, T 1 = ?, V 2 = 400 mL, .b‬‬ ‫‪ .51‬ﺇﺫﺍ ﺗﻨﺎﺳﺐ ﻣﺘﻐﲑﺍﻥ ﺗﻨﺎﺳ ﹼﹰﺒﺎ ﻋﻜﺴ ﹰﹼﻴﺎ ﻓﲈﺫﺍ ﳛﺪﺙ ﻷﺣﺪﳘﺎ‬ ‫ﺇﺫﺍ ﺯﺍﺩ ﺍﻵﺧﺮ؟‬ ‫‪T2 = 298 K‬‬ ‫‪ .52‬ﺇﺫﺍ ﺗﻨﺎﺳﺐ ﻣﺘﻐﲑﺍﻥ ﺗﻨﺎﺳ ﹰﹼﺒﺎ ﻃﺮﺩ ﹼﹰﻳﺎ ﻓﲈﺫﺍ ﳛﺪﺙ ﻷﺣﺪﳘﺎ ﺇﺫﺍ‬‫‪V 1 = 0.55 L, P 1 =740 mm Hg, V 2 = 0.80 L, .c‬‬ ‫ﺯﺍﺩ ﺍﻵﺧﺮ؟‬ ‫? = ‪P2‬‬ ‫‪ .53‬ﻣﺎ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰲ ﺣﺴﺎﺑﺎﺕ ﺍﻟﻐﺎﺯﺍﺕ؟‬‫‪  .58‬ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﻋﻴﻨﺔ ﻣﻦ ﺍﳍﻮﺍﺀ‬ ‫‪ .54‬ﺣ ﹼﺪﺩ ﻭﺣﺪﺍﺕ ﺍﻟﻀﻐﻂ ﻭﺍﳊﺠﻢ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻷﻛﺜﺮ‬ ‫ﺍﺳﺘﻌﲈ ﹰﻻ‪.‬‬‫‪ 2.5 L‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،22.0˚C‬ﻓﻜﻢ ﻳﺼﺒﺢ ﺣﺠﻢ ﻫﺬﻩ‬‫ﺍﻟﻌﻴﻨﺔ ﺇﺫﺍ ﻧﻘﻠﺖ ﺇﱃ ﺑﺎﻟﻮﻥ ﻫﻮﺍﺀ ﺳﺎﺧﻦ‪ ،‬ﺣﻴﺚ ﺗﺒﻠﻎ ﺩﺭﺟﺔ‬ ‫‪‬‬‫ﺍﳊﺮﺍﺭﺓ ‪ 43.0˚C‬؟ ﺍﻓﱰﺽ ﺃﻥ ﺍﻟﻀﻐﻂ ﺛﺎﺑﺖ ﺩﺍﺧﻞ ﺍﻟﺒﺎﻟﻮﻥ‪.‬‬ ‫‪ .55‬ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺷﺎﺭﻝ ﻟﺘﺤﺪﻳﺪ ﺻﺤﺔ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺸﻜﻞ ‪.7-13‬‬‫‪ .59‬ﻣﺎ ﺿﻐﻂ ﺣﺠﻢ ﺛﺎﺑﺖ ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻋﻨﺪ ﺩﺭﺟﺔ‬‫ﺣ ـﺮﺍﺭﺓ ‪ ،30.0˚C‬ﺇﺫﺍ ﻛﺎﻥ ﺿﻐﻂ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ‬ ‫‪‬‬ ‫‪ 1.11 atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﻣﻘﺪﺍﺭﻫﺎ ‪ 15.0˚C‬؟‬ ‫‪800‬‬ ‫‪700‬‬‫‪ .60‬ﻧﻘﻠﺖ ﻛﻤﻴﺔ ﻣﻦ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻣﻦ ﻭﻋﺎﺀ ﺻﻐﲑ ﺇﱃ ﻭﻋﺎﺀ‬‫ﺃﻛﱪ ﻣﻨﻪ‪ ،‬ﻛﲈ ﻫﻮ ﻣﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ‪ .7-14‬ﻣﺎ ﻣﻘﺪﺍﺭ ﺿﻐﻂ‬ ‫)‪(300 K, 600 ml‬‬ ‫‪600‬‬ ‫ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﰲ ﺍﻟﻮﻋﺎﺀ ﺍﻟﺜﺎﲏ؟‬ ‫‪500‬‬ ‫)‪400 (200 K, 400 ml‬‬ ‫‪N2‬‬ ‫‪300‬‬ ‫‪N2‬‬ ‫)‪200 (100 K, 200 ml‬‬ ‫‪100‬‬ ‫‪V1 = 500 ml‬‬ ‫‪V2 = 750 ml‬‬ ‫‪P1 = 108 KPa‬‬ ‫‪T2 = 21.0°C‬‬ ‫‪00 50 100 150 200 250 300 350 400‬‬ ‫‪T1 = 10.0°C‬‬ ‫‪K‬‬ ‫ﺍﻟﺸﻜﻞ ‪7-14‬‬ ‫ﺍﻟﺸﻜﻞ ‪7-13‬‬ ‫‪7-2‬‬ ‫‪   .56‬ﺃﻃﻠﻖ ﺑﺎﻟﻮﻥ ﻃﻘﺲ‪ ،‬ﻭﻛﺎﻥ ﺣﺠﻤﻪ‬ ‫‪‬‬ ‫‪ 5.0 X 104 L‬ﻋﻨﺪﻣﺎ ﻛﺎﻥ ﺿﻐﻄﻪ ‪ ،0.995 atm‬ﻭﺩﺭﺟﺔ‬ ‫‪ .61‬ﺍﺫﻛﺮ ﻧﺺ ﻣﺒﺪﺃ ﺃﻓﻮﺟﺎﺩﺭﻭ‪.‬‬ ‫ﺣﺮﺍﺭﺓ ﺍﳌﺤﻴﻂ ‪ ، 32.0˚C‬ﻭﺑﻌﺪ ﺇﻃﻼﻗﻪ ﺍﺭﺗﻔﻊ ﺇﱃ ﻋﻠﻮ ﻛﺎﻥ‬ ‫ﺍﻟﻀﻐﻂ ﻋﻨﺪﻩ ‪ 0.720 atm‬ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ – ‪.12.0˚C‬‬ ‫‪ .62‬ﺍﺫﻛﺮ ﻧﺺ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ‪.‬‬ ‫ﺍﺣﺴﺐ ﺣﺠﻢ ﺍﻟﺒﺎﻟﻮﻥ ﻋﻨﺪ ﻫﺬﺍ ﺍﻻﺭﺗﻔﺎﻉ‪.‬‬‫‪117‬‬

‫‪ .72‬ﺣ ﹼﺪﺩ ﻛﺜﺎﻓﺔ ﻏﺎﺯ ﺍﻟﻜﻠﻮﺭ ﻋﻨﺪ ﺩﺭﺟﺔ ‪ 22.0˚C‬ﻭﺿﻐﻂ‬ ‫‪ .63‬ﻣﺎ ﺣﺠﻢ ‪ 1mol‬ﻣﻦ ﺍﻟﻐﺎﺯ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ؟ ﻭﻣﺎ‬ ‫ﺟﻮﻱ )‪.(1.00 atm‬‬ ‫ﺣﺠﻢ ‪ 2mol‬ﻣﻦ ﺍﻟﻐﺎﺯ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ؟‬‫‪ .73‬ﺃﻱ ﺍﻟﻐﺎﺯﺍﺕ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-15‬ﻳﺸﻐﻞ ﺍﳊﺠﻢ ﺍﻷﻛﱪ ﰲ‬ ‫ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟ ﻓﴪ ﺇﺟﺎﺑﺘﻚ‪.‬‬ ‫‪ .64‬ﻣﺎ ﺍﳌﻘﺼﻮﺩ ﺑﺎﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟ ﻭﳌﺎﺫﺍ ﻻ ﻳﻮﺟﺪ ﻣﺜﻞ ﻫﺬﺍ ﺍﻟﻐﺎﺯ‬‫‪ .74‬ﺇﺫﺍ ﺍﺣﺘﻮ￯ ﻛﻞ ﻣﻦ ﺍﻟﻮﻋﺎﺋﲔ ﰲ ﺍﻟﺸﻜﻞ ‪ 7-15‬ﻋﲆ ‪4.0L‬‬ ‫ﰲ ﺍﻟﻄﺒﻴﻌﺔ؟‬‫ﻣﻦ ﺍﻟﻐﺎﺯ ﻓﲈ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﰲ ﻛﻞ ﻣﻨﻬﲈ؟ ﺍﻓﱰﺽ ﺃﻥ‬ ‫‪ .65‬ﻣﺎ ﺍﻟﴩﻃﺎﻥ ﺍﻟﻠﺬﺍﻥ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﻋﻨﺪﳘﺎ‬ ‫ﺍﻟﻐﺎﺯﺍﺕ ﻣﺜﺎﻟﻴﺔ‪.‬‬ ‫ﻣﺜﺎﻟ ﹰﹼﻴﺎ؟‬ ‫‪ .66‬ﻣﺎ ﻭﺣﺪﺍﺕ ﺍﳊﺮﺍﺭﺓ ﰲ ﻣﻌﺎﺩﻟﺔ ﻗﺎﻧﻮﻥ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟ ﻓﴪ‬‫‪‬‬ ‫‪‬‬ ‫ﺫﻟﻚ‪.‬‬‫‪C3H8‬‬ ‫‪N2‬‬ ‫‪‬‬ ‫‪  .67‬ﻳﺴـﺘﻌﻤﻞ ﻏـﺎﺯ ﺍﻟﱪﻭﺑـﺎﻥ ‪ C3H8‬ﻓـﻲ ﺍﳌﻨـﺎﺯﻝ‬ ‫ﻷﻏﺮﺍﺽ ﺍﻟﻄﻬﻲ ﻭﺍﻟﺘﺪﻓﺌﺔ ‪.‬‬‫‪C3H8 ‬‬ ‫‪N2 ‬‬ ‫‪.a‬ﺍﺣﺴـﺐ ﺣﺠـﻢ ‪ 0.540 mol‬ﻣﻦ ﺍﻟﱪﻭﺑﺎﻥ ﰲ ﺍﻟﻈﺮﻭﻑ‬ ‫ﺍﳌﻌﻴﺎﺭﻳﺔ‪.‬‬ ‫ﺍﻟﺸﻜﻞ ‪7-15‬‬ ‫‪.b‬ﻓﻜﺮ ﰲ ﺣﺠﻢ ﻫﺬﻩ ﺍﻟﻜﻤﻴﺔ ﻭﻣﻘﺪﺍﺭ ﺍﻟﱪﻭﺑﺎﻥ ﺍﳌﻮﺟﻮﺩ‬‫‪ .75‬ﹸﻣﻠﺊ ﺩﻭﺭﻕ ﺣﺠﻤﻪ ‪ 2.00 L‬ﺑﻐﺎﺯ ﺍﻹﻳﺜﺎﻥ ‪ C2H6‬ﻣﻦ‬ ‫ﻓﻴﻬﺎ‪ ،‬ﺛﻢ ﻓﴪ ﳌﺎﺫﺍ ﻳﺘﺤﻮﻝ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ﺇﱃ ﺳﺎﺋﻞ ﻗﺒﻞ‬‫ﺃﺳﻄﻮﺍﻧﺔ ﺻﻐﲑﺓ‪ ،‬ﻛﲈ ﻳﻈﻬﺮ ﰲ ﺍﻟﺸﻜﻞ ‪ .7-16‬ﻣﺎ ﻛﺘﻠﺔ‬ ‫ﻧﻘﻠﻪ؟‬‫ﺍﻹﻳﺜﺎﻥ ﰲ ﺍﻟﺪ‪i‬ﻭ‪a‬ﺭ‪7.‬ﻕ‪3‬؟‪C13-14A-8746‬‬ ‫‪P‬‬ ‫=‬ ‫‪b11.50e.80n°aCtm‬‬ ‫‪    .68‬ﻗﺎﺱ ﻛﻴﻤﻴﺎﺋﻲ ﺃﻗﻞ ﺿﻐﻂ ﻳﻤﻜﻦ‬ ‫‪T‬‬ ‫=‬ ‫ﺍﻟﻮﺻﻮﻝ ﺇﻟﻴﻪ ﰲ ﺍﳌﺨﺘﱪ ﻓﻜﺎﻥ ‪،1.0 X 10-15 mm Hg‬‬ ‫‪2.0 3.0‬‬ ‫ﻣﺎ ﻋﺪﺩ ﺟﺴﻴﲈﺕ ﻏﺎﺯ ﺣﺠﻤﻪ ‪ 1.00 L‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ‬ ‫‪0.0 1.0‬‬ ‫‪Atm‬‬ ‫‪4.0 5.0‬‬ ‫‪ 22.0˚C‬ﻋﻨﺪ ﻫﺬﺍ ﺍﻟﻀﻐﻂ؟‬ ‫‪ .69‬ﺍﺣﺴﺐ ﻋﺪﺩ ﻣﻮﻻﺕ ‪ O2‬ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﻭﻋﺎﺀ ﻣﻐﻠﻖ ﺣﺠﻤﻪ ‪2.00 L‬‬ ‫ﻭﺩﺭﺟـﺔ ﺣـﺮﺍﺭﺗـﻪ ‪ ،25.0˚C‬ﺇﺫﺍ ﻛـﺎﻥ ﺿﻐﻄﻪ )‪.(3.50 atm‬‬ ‫ﺍﻟﺸﻜﻞ ‪7-16‬‬ ‫ﻣﺎ ﻋﺪﺩ ﺍﳌﻮﻻﺕ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﻟﻮﻋﺎﺀ ﺇﺫﺍ ﺍﺭﺗﻔﻌﺖ ﺩﺭﺟﺔ‬ ‫ﺍﳊﺮﺍﺭﺓ ﺇﱃ ‪ 49.0˚C‬ﻭﺑﻘﻲ ﺍﻟﻀﻐﻂ ﺛﺎﺑ ﹰﺘﺎ؟‬‫‪ .76‬ﻣﺎ ﻛـﺜـﺎﻓـﺔ ﻋﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﺍﻟﻨـﻴـﺘـﺮﻭﺟـﲔ ‪ ،N2‬ﺿﻐـﻄـﻬﺎ‬‫‪i 5.30 atm‬ﰲ‪.a‬ﻭ‪7‬ﻋ‪3‬ﺎﺀ‪46‬ﺣ‪87‬ﺠ‪-‬ﻤ‪A‬ﻪ‪ 3C.1530-1L0‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫‪  .70‬ﻳﻮﺟﺪ ﻣﺮﻛﺐ ﺟﲑﺍﻧﻴﻮﻝ ﰲ ﺯﻳﺖ ﺍﻟﻮﺭﺩ ﺍﳌﺴﺘﺨﺪﻡ‬ ‫ﻣﻘﺪﺍﺭﻫﺎ ‪ 125˚C‬؟ ‪ben‬‬ ‫ﰲ ﺻﻨﺎﻋﺔ ﺍﻟﻌﻄﻮﺭ‪ .‬ﻣﺎ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﺠﲑﺍﻧﻴﻮﻝ ﺇﺫﺍ ﻛﺎﻧﺖ‬ ‫ﻛﺜﺎﻓﺔ ﺑﺨﺎﺭﻩ ‪ ، 0.480 g/L‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪260.0˚C‬‬‫‪ .77‬ﻣﺎ ﻋﺪﺩ ﻣﻮﻻﺕ ﻏﺎﺯ ﺍﳍﻴﻠﻴﻮﻡ ‪ He‬ﺍﻟﻼﺯﻣﺔ ﻟﺘﻌﺒﺌﺔ ﻭﻋﺎﺀ‬‫ﺣﺠﻤﻪ ‪ ،22 L‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ، 35.0˚C‬ﻭﺿﻐﻂ‬ ‫‪ ،‬ﻭﺿﻐﻂ ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪ 0.140 atm‬؟‬ ‫ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪ 3.1 atm‬؟‬ ‫‪ .71‬ﺟﺪ ﺣﺠﻢ ‪ 42 g‬ﻣﻦ ﻏﺎﺯ ﺃﻭﻝ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﰲ ﺍﻟﻈﺮﻭﻑ‬ ‫ﺍﳌﻌﻴﺎﺭﻳﺔ‪.STP‬‬ ‫‪118‬‬

‫‪ .78‬ﹶﺗﺸﺎﺭﻙ ﻏﺎﺯﺍﻥ ﻗﺒﻞ ﺍﻟﺘﻔﺎﻋﻞ ﰲ ﻭﻋﺎﺀ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ .86‬ﺍﺩﺭﺱ ﺍﻟﺘﻔﺎﻋﻞ ﺍﳌﺒﲔ ﺃﺩﻧﺎﻩ ﺛﻢ ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺘﻲ ﺗﻠﻴﻪ‪:‬‬ ‫)‪2CO(g)+2NO(g) →N2(g)+2CO2(g‬‬ ‫‪ ،200 K‬ﻭﺑﻌﺪ ﺍﻟﺘﻔﺎﻋﻞ ﺑﻘﻲ ﺍﻟﻨﺎﺗﺞ ﰲ ﺍﻟﻮﻋﺎﺀ ﻧﻔﺴﻪ ﻋﻨﺪ‬ ‫ﺩﺭﺟﺔ ‪ ،400 K‬ﻓﺈﺫﺍ ﻛﺎﻥ ﻛﻞ ﻣﻦ ‪ V‬ﻭ‪ P‬ﺛﺎﺑﺘﲔ‪ ،‬ﻓﲈ ﻗﻴﻤﺔ ‪n‬‬‫‪ .a‬ﻣﺎ ﻧﺴﺒﺔ ﺣﺠﻢ ﺃﻭﻝ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺇﱃ ﺣﺠﻢ ﺛﺎﲏ‬ ‫ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ‪.‬‬ ‫ﺍﳊﻘﻴﻘﻴﺔ؟‬‫‪ .b‬ﺇﺫﺍ ﺗﻔﺎﻋﻞ ‪ 42.7 g CO2‬ﲤﺎ ﹰﻣﺎ ﻋﻨﺪ ‪ STP‬ﻓﲈ ﺣﺠﻢ ﻏﺎﺯ‬ ‫‪7-3‬‬ ‫ﺍﻟﻨﻴﱰﻭﺟﲔ ﺍﻟﻨﺎﺗﺞ؟‬ ‫‪‬‬‫‪ .87‬ﻋﻨﺪﻣﺎ ﳛﱰﻕ ‪ 3.00 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ﲤﺎ ﹰﻣﺎ ﻹﻧﺘﺎﺝ ﺑﺨﺎﺭ‬‫ﺍﳌﺎﺀ ﻭﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺗﺴﺎﻭﻱ‬ ‫‪ .79‬ﳌﺎﺫﺍ ﻳﻌﺪ ﻣﻦ ﺍﻟﴬﻭﺭﻱ ﻣﻮﺍﺯﻧﺔ ﺍﳌﻌﺎﺩﻟﺔ ﻗﺒﻞ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﰲ‬‫‪ 350°C‬ﻭﺿﻐﻂ ﺟﻮﻱ‪ 0.990 atm‬ﻓﲈ ﻛﺘﻠﺔ ﺑﺨﺎﺭ ﺍﳌﺎﺀ‬ ‫ﲢﺪﻳﺪ ﺣﺠﻮﻡ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺘﻀﻤﻨﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ؟‬ ‫ﺍﻟﻨﺎﲡﺔ؟‬ ‫‪ .80‬ﻟﻴﺲ ﻣﻦ ﺍﻟﴬﻭﺭﻱ ﺃﺧﺬ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﺑﻌﲔ‬ ‫ﺍﻻﻋﺘﺒﺎﺭ ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﻟﺔ ﺍﳌﻮﺯﻭﻧﺔ ﻟﺘﺤﺪﻳﺪ ﺍﳊﺠﻢ‬‫‪ .88‬ﻋﻨﺪ ﺗﺴﺨﲔ ﻛﻠﻮﺭﺍﺕ ﺍﻟﺒﻮﺗﺎﺳﻴﻮﻡ ﺍﻟﺼﻠﺒﺔ ‪KClO3‬‬‫ﻓﺈﳖﺎ ﺗﺘﺤﻠﻞ ﻟﺘﻨﺘﺞ ﻛﻠﻮﺭﻳﺪ ﺍﻟﺒﻮﺗﺎﺳﻴﻮﻡ ﺍﻟﺼﻠﺐ ﻭﻏﺎﺯ‬ ‫ﺍﻟﻨﺴﺒﻲ ﻟﻠﻐﺎﺯ‪ .‬ﳌﺎﺫﺍ؟‬‫ﺍﻷﻛﺴﺠﲔ‪ .‬ﻓﺈﺫﺍ ﲢﻠﻞ ‪ 20.8 g‬ﻣﻦ ﻛﻠﻮﺭﺍﺕ ﺍﻟﺒﻮﺗﺎﺳﻴﻮﻡ‪،‬‬‫ﻓﲈ ﻋﺪﺩ ﻟﱰﺍﺕ ﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﺍﻟﺘﻲ ﺳﺘﻨﺘﺞ ﰲ ﺍﻟﻈﺮﻭﻑ‬ ‫‪ .81‬ﻓﴪ ﳌﺎﺫﺍ ﻻ ﲤﺜﻞ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ‬ ‫ﺃﻋﺪﺍﺩ ﺍﳌﻮﻻﺕ ﻓﻘﻂ‪ ،‬ﻭﺇﻧﲈ ﺃﻳ ﹰﻀﺎ ﺍﳊﺠﻮﻡ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻐﺎﺯﺍﺕ؟‬ ‫ﺍﳌﻌﻴﺎﺭﻳﺔ ‪STP‬؟‬ ‫‪ .82‬ﻫﻞ ﲤﺜﻞ ﺍﳌﻌﺎﻣﻼﺕ ﰲ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﺍﳊﺠﻮﻡ‬ ‫‪‬‬ ‫ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﺴﻮﺍﺋﻞ ﻭﺍﳌﻮﺍﺩ ﺍﻟﺼﻠﺒﺔ؟ ﻓﴪ ﺇﺟﺎﺑﺘﻚ‪.‬‬‫‪  .89‬ﺍﺣﺴﺐ ﺍﻟﻀﻐﻂ ﺩﺍﺧﻞ ﺃﻧﺒﻮﺏ ﺍﻟﺼﻮﺭﺓ ﰲ ﺍﻟﺘﻠﻔﺎﺯ‪،‬‬ ‫‪‬‬‫ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻤﻪ ‪ ،3.50L‬ﻭﳛﺘﻮﻱ ﻋﲆ ‪ 2.00X10-5 g‬ﻣﻦ‬ ‫‪  .83‬ﺗﺘﻜﻮﻥ ﺍﻷﻣﻮﻧﻴﺎ ﻣﻦ ﺗﻔﺎﻋﻞ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ‬ ‫ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺗﺴﺎﻭﻱ )‪.(22.0°C‬‬ ‫ﻣﻊ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ‪ .‬ﻣﺎ ﻋﺪﺩ ﻟﱰﺍﺕ ﻏﺎﺯ ﺍﻷﻣﻮﻧﻴﺎ ﺍﻟﺘﻲ‬‫‪  .90‬ﻋﺪﺩ ﺍﻟﻠﱰﺍﺕ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺃﻥ ﺗﺸﻐﻠﻬﺎ ﻛﺘﻠﺔ ﻣﻘﺪﺍﺭﻫﺎ‬ ‫ﻳﻤﻜﻦ ﺇﻧﺘﺎﺟﻬﺎ ﻣﻦ ‪ 13.7 L‬ﻣﻦ ﻏﺎﺯ ﺍﳍﻴﺪﺭﻭﺟﲔ ﻋﻨﺪ‬ ‫‪ 8.80 g‬ﻣﻦ ﻏﺎﺯ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﺍﳌﻮﺟﻮﺩﺓ ﻋﻨﺪ‪:‬‬ ‫‪ 93.0°C‬ﻭﺿﻐﻂ ﻣﻘﺪﺍﺭﻩ ‪ 40.0 kPa‬؟‬ ‫‪STP .a‬‬ ‫‪ .84‬ﻋﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﻛﱪﻳﺘﻴﺪ ﺍﳍﻴﺪﺭﻭﺟﲔ ﺣﺠﻤﻬﺎ ‪ ،6.5 L‬ﲤﺖ‬ ‫ﻣﻌﺎﳉﺘﻬﺎ ﻣﻊ ﳏﻔﺰ ﻟﺘﴪﻳﻊ ﺍﻟﺘﻔﺎﻋﻞ ﺍﻵﰐ‪:‬‬ ‫‪ 3.00 atm .b‬ﻭ‪160°C‬‬ ‫)‪2H2S(g)+O2(g) → 2H2O(g)+2S(s‬‬ ‫‪ 288 K .c‬ﻭ ‪118 Kpa‬‬ ‫ﻓﺈﺫﺍ ﺗﻔﺎﻋﻞ ‪ H2S‬ﲤﺎ ﹰﻣﺎ ﻋﻨﺪ ﺿﻐﻂ ‪ 2.0 atm‬ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬‫‪ .91‬ﺇﺫﺍ ﺍﺣﱰﻕ ‪ 2.33 L‬ﻣﻦ ﻏﺎﺯ ﺍﻟﱪﻭﺑﺎﻥ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫ﻣﻘﺪﺍﺭﻫﺎ ‪ 290 K‬ﻓﲈ ﻛﺘﻠﺔ)‪ (g‬ﺑﺨﺎﺭ ﺍﳌﺎﺀ ﺍﻟﻨﺎﺗﺞ‪.‬‬‫‪ 24°C‬ﻭﺿﻐﻂ ﺟﻮﻱ ‪ 67.2 Kpa‬ﺍﺣﱰﺍ ﹰﻗﺎ ﺗﺎ ﹰﹼﻣﺎ ﰲ ﻛﻤﻴﺔ‬‫ﻓﺎﺋﻀﺔ ﻣﻦ ﺍﻷﻛﺴﺠﲔ‪ ،‬ﻓﲈ ﻋﺪﺩ ﻣﻮﻻﺕ ﺛﺎﲏ ﺃﻛﺴﻴﺪ‬ ‫‪ .85‬ﻣﺎ ﻋﺪﺩ ﻟﱰﺍﺕ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻭﻏﺎﺯ ﺍﻷﻛﺴﺠﲔ ﺍﻟﻼﺯﻣﺔ‬ ‫ﻹﻧﺘﺎﺝ ‪ 15.4 L‬ﻣﻦ ﺃﻛﺴﻴﺪ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫ﺍﻟﻜﺮﺑﻮﻥ ﺍﻟﺘﻲ ﺗﻨﺘﺞ؟‬ ‫‪ 310 K‬ﻭﺿﻐﻂ ﺟﻮﻱ ‪2.0 atm‬؟‬‫‪119‬‬

‫‪ .92‬ﻳﺘﻨﻔﺲ ﺍﻹﻧﺴﺎﻥ ‪ 0.50 L‬ﻣﻦ ﺍﳍﻮﺍﺀ ﺗﻘﺮﻳ ﹰﺒﺎ ﺧﻼﻝ ‪   .97‬ﻋـﻨﺪﻣـﺎ ﻳﺘﻔﻜﻚ ﺍﻟﻨﻴﱰﻭﺟﻠـﴪﻳﻦ ‪ C3H5N3O9‬ﻓﺈﻧﻪ‬‫ﺍﻟﺘﻨﻔﺲ ﺍﻟﻄﺒﻴﻌﻲ‪ .‬ﺍﻓﱰﺽ ﺃﻥ ﺫﻟﻚ ﻳﺘﻢ ﰲ ﺍﻟﻈﺮﻭﻑ ﻳﺘﺤﻠﻞ ﺇﱃ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻵﺗﻴﺔ‪ .CO2 ،N2، NO، H2O :‬ﻣﺎ‬‫ﺣﺠﻢ ﻣﺰﻳﺞ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﻨﺎﲡﺔ ﻋﻨﺪ ﺿﻐﻂ ‪ 1.00 atm‬ﻭﺩﺭﺟﺔ‬ ‫ﺍﻟﻄﺒﻴﻌﻴﺔ ‪.STP‬‬‫ﺣﺮﺍﺭﺓ ‪ 2678 °C‬ﺇﺫﺍ ﺗﻔﻜﻚ ‪ 239 g‬ﻣﻦ ﺍﻟﻨﻴﱰﻭﺟﻠﴪﻳﻦ ؟‬ ‫‪.a‬ﻣﺎﺣﺠﻢﺍﻟﻨﻔﺲﺍﻟﻮﺍﺣﺪﰲﻳﻮﻡﺑﺎﺭﺩﻋﲆﻗﻤﺔﺟﺒﻞﺇﻓﺮﺳﺖﺇﺫﺍ‬ ‫ﻛﺎﻧﺖﺩﺭﺟﺔﺍﳊﺮﺍﺭﺓ‪،-60°C‬ﻭﺍﻟﻀﻐﻂ‪253mmHg‬؟‬‫‪ .98‬ﻣـﺎ ﺍﻟﻘﻴﻤـﺔ ﺍﻟﺮﻗﻤﻴـﺔ ﻟﺜﺎﺑـﺖ ﺍﻟﻐـﺎﺯ ﺍﳌﺜـﺎﱄ )‪ (R‬ﰲ‬ ‫‪_cm3·Pa‬‬ ‫‪.b‬ﳛﺘﻮﻱ ﺍﳍﻮﺍﺀ ﺍﻟﻄﺒﻴﻌﻲ ﻋﲆ ‪ 21%‬ﺃﻛﺴﺠﲔ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻥ‬ ‫؟‬ ‫ﺍﳌﻌﺎﺩﻟﺔ‬ ‫ﳛﺘﻮﻱ ﻋﲆ ‪ 14%‬ﻣﻦ ﺍﻷﻛﺴﺠﲔ ﻓﻮﻕ ﻗﻤﺔ ﺇﻓﺮﺳﺖ‪،‬‬ ‫‪K·mol‬‬‫‪  .99‬ﻫﻞ ﻳﻜﻮﻥ ﺍﻟﻀﻐﻂ ﺍﳌﺤﺴﻮﺏ ﻣﻦ ﺧﻼﻝ ﻗﺎﻧﻮﻥ‬‫ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ ﺃﻋﲆ ﺃﻡ ﺃﻗﻞ ﻣﻦ ﻗﻴﻤﺔ ﺍﻟﻀﻐﻂ ﺍﳊﻘﻴﻘﻲ‬ ‫ﻓﲈ ﺣﺠﻢ ﺍﳍﻮﺍﺀ ﺍﻟﺬﻱ ﳛﺘﺎﺝ ﺇﻟﻴﻪ ﺍﻹﻧﺴﺎﻥ ﻟﺘﺰﻭﻳﺪ ﺍﳉﺴﻢ‬‫ﺍﻟﺬﻱ ﲢﺪﺛﻪ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﻐﺎﺯ؟ ﻭﻛﻴﻒ ﻳﻜﻮﻥ ﺿﻐﻂ ﺍﻟﻐﺎﺯ‬ ‫ﺑﺎﳌﻘﺪﺍﺭ ﻧﻔﺴﻪ ﻣﻦ ﺍﻷﻛﺴﺠﲔ؟‬‫ﺍﳌﺤﺴﻮﺏ ﺑﺎﳌﻘﺎﺭﻧﺔ ﺑﺎﻟﻀﻐﻂ ﺍﳊﻘﻴﻘﻲ ﻋﻨﺪ ﺩﺭﺟﺎﺕ‬ ‫‪ .93‬ﳛﱰﻕ ﻏﺎﺯ ﺍﳌﻴﺜﺎﻥ ‪ CH4‬ﻛﺎﻣ ﹰﻼ ﻋﻨﺪ ﺗﻔﺎﻋﻠﻪ ﻣﻊ ﻏﺎﺯ‬ ‫ﺣﺮﺍﺭﺓ ﻣﻨﺨﻔﻀﺔ؟ ﻓﴪ ﺇﺟﺎﺑﺘﻚ‪.‬‬ ‫ﺍﻷﻛﺴﺠﲔ ﻟﻴﻜﻮﻥ ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻭﺑﺨﺎﺭ ﺍﳌﺎﺀ‪.‬‬ ‫‪  ‬‬ ‫‪ .a‬ﺍﻛﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﺍﳌﻮﺯﻭﻧﺔ ﳍﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬‫‪   .100‬ﻳﺴـﺘﺨﺪﻡ ﺃﺣـﺪ ﺍﳋﺒﺎﺯﻳـﻦ ﺻـﻮﺩﺍ ﺍﳋﺒـﺰ ﻟﻨﻔـﺦ‬ ‫‪ .b‬ﺍﻛﺘﺐ ﺍﻟﻨﺴﺒﺔ ﺍﳊﺠﻤﻴﺔ ﺑﲔ ﺍﳌﻴﺜﺎﻥ ﻭﺍﳌﺎﺀ ﰲ ﻫﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬‫ﺍﻟﻜﻌـﻚ‪ ،‬ﻭﺗﺘﺤﻠـﻞ ﺻـﻮﺩﺍ ﺍﳋﺒـﺰ ﰲ ﺃﺛﻨـﺎﺀ ﺫﻟـﻚ ﻭﻓ ﹰﻘـﺎ‬ ‫ﻟﻠﺘﻔﺎﻋﻠﲔ ﺍﻵﺗﻴﲔ‪:‬‬ ‫‪ ‬‬ ‫‪   .94‬ﳚﺐ ﺃﻥ ﻳﻜﻮﻥ ﺣﺠﻢ ﺑﺎﻟﻮﻥ ﻣﻦ ﺍﳍﻴﻠﻴﻮﻡ ‪3.8L‬‬ ‫)‪2NaHCO3(s) → Na2CO3(s) + H O2 (l) + CO2(g‬‬‫)‪NaHCO3(s‬‬ ‫‪+‬‬ ‫‪H+‬‬ ‫→‬ ‫)‪H O2 (l‬‬ ‫‪+‬‬ ‫)‪CO2(g‬‬ ‫‪+‬‬ ‫‪Na‬‬ ‫‪+‬‬ ‫ﻋﲆ ﺍﻷﻗﻞ ﻟﲑﺗﻔﻊ ﰲ ﺍﳍﻮﺍﺀ‪ ،‬ﻭﻋﻨﺪ ﺇﺿﺎﻓﺔ ‪ 0.1mol‬ﻣﻦ‬ ‫)‪(aq‬‬ ‫)‪(aq‬‬‫ﺍﺣﺴﺐ ﺣﺠﻢ ‪ CO2‬ﺍﳌﺘﻜﻮﻥ ﻟﻜﻞ ﺟﺮﺍﻡ ﻣﻦ ‪NaHCO3‬‬ ‫ﺍﳍﻴﻠﻴﻮﻡ ﺇﱃ ﺍﻟﺒﺎﻟﻮﻥ ﺍﻟﻔﺎﺭﻍ ﺃﺻﺒﺢ ﺣﺠﻤﻪ )‪ .(2.8L‬ﻣﺎ ﻋﺪﺩ‬‫ﺟﺮﺍﻣﺎﺕ ‪ He‬ﺍﻟﺘﻲ ﳚﺐ ﺇﺿﺎﻓﺘﻬﺎ ﺇﱃ ﺍﻟﺒﺎﻟﻮﻥ ﺣﺘﻰ ﻳﺮﺗﻔﻊ؟ ﰲ ﻛﻼ ﺍﻟﺘﻔﺎﻋﻠﲔ‪ .‬ﺍﻓﱰﺽ ﺃﻥ ﺍﻟﺘﻔﺎﻋﻞ ﳛﺪﺙ ﻋﻨﺪ ‪210°C‬‬ ‫ﺍﻓﱰﺽ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ‪ T، P‬ﺛﺎﺑﺘﺎﻥ‪.‬‬ ‫ﻭﺿﻐﻂ ﺟﻮﻱ ﻣﻘﺪﺍﺭﻩ ‪0.985 atm‬‬ ‫‪‬‬ ‫‪  .95‬ﻳﺴﺘﺨﺪﻡ ﻣﺼﻨﻊ ﻟﻸﻟﻌﺎﺏ ﺗﱰﺍﻓﻠﻮﺭﻭ ﺇﻳﺜﺎﻥ ‪‬‬‫‪ C2H2F4‬ﻋﻨﺪ ﺩﺭﺟ ـﺔ ﺣــﺮﺍﺭﺓ ﻋﺎﻟﻴﺔ ﳌـﻞﺀ ﺍﻟﻘﻮﺍﻟﺐ ‪ .101‬ﺣﻮﻝ ﻛﻞ ﻛﺘﻠﺔ ﳑﺎ ﻳﺄﰐ ﺇﱃ ﻣﺎ ﻳﻜﺎﻓﺌﻬﺎ ﺑـ ‪: Kg‬‬ ‫‪7.23 mg .c‬‬ ‫‪247 g .a‬‬ ‫ﺍﻟﺒﻼﺳﺘﻴﻜﻴﺔ‪.‬‬ ‫‪ .a‬ﻣﺎ ﻛﺜﺎﻓﺔ ‪ C2H2F4‬ﺑﻮﺣﺪﺓ ‪ g\L‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‬ ‫‪975 mg .d‬‬ ‫‪53 mg .b‬‬ ‫‪STP‬؟‬‫‪ .102‬ﺃﻱ ﺟﺴﻴﲈﺕ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻵﺗﻴﺔ ﳍﺎ ﺃﻋﲆ ﻣﺘﻮﺳﻂ ﴎﻋﺔ‪،‬‬ ‫‪ .b‬ﺃﻭﺟﺪ ﻋﺪﺩ ﺍﳉﺰﺋﻴﺎﺕ ﰲ ﻟﱰ ﻣﻦ ‪ C2H2F4‬ﻋﻨﺪ ﺩﺭﺟﺔ‬ ‫ﻭﺃﳞﺎ ﳍﺎ ﺃﻗﻞ ﻣﺘﻮﺳﻂ ﴎﻋﺔ؟‬ ‫ﺣﺮﺍﺭﺓ ‪ 220°C‬ﻭ‪ 1atm‬ﺿﻐﻂ ﺟﻮﻱ‪.‬‬ ‫‪ .a‬ﺃﻭﻝ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻋﻨﺪ ‪90°C‬‬ ‫‪   .96‬ﻳـﺰﻥ ﻣﻜﻌﺐ ﺻﻠـﺐ ﻣـﻦ ﺍﳉﻠﻴﺪ ﺍﳉـﺎﻑ ‪0.75 Kg‬‬ ‫‪ .b‬ﺛﺎﻟﺚ ﻓﻠﻮﺭﻳﺪ ﺍﻟﻨﻴﱰﻭﺟﲔ ﻋﻨﺪ ‪30°C‬‬ ‫)‪ (CO2‬ﺗﻘﺮﻳ ﹰﺒـﺎ‪ ،‬ﻓﲈ ﺣﺠﻢ ﻏـﺎﺯ ‪ CO2‬ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﺎﺭﻳﺔ‬ ‫‪ .c‬ﺍﳌﻴﺜﺎﻥ ﻋﻨﺪ ‪90°C‬‬ ‫ﻋﻨﺪﻣﺎ ﻳﺘﺴﺎﻣﻲ ﺍﳌﻜﻌﺐ ﻛﻠ ﹼﹰﻴﺎ؟‬ ‫‪ .d‬ﺃﻭﻝ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ ﻋﻨﺪ ‪30°C‬‬ ‫‪120‬‬

‫‪‬‬ ‫‪ .103‬ﺍﻛﺘﺐ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻹﻟﻜﱰﻭﲏ ﻟﻜﻞ ﺫﺭﺓ ﻓﻴﲈ ﻳﺄﰐ ‪:‬‬‫‪ ‬ﺗﺴـﺘﺨﺪﻡ ﺍﻷﻣﻮﻧﻴﺎ ‪ NH٣‬ﻓـﻲ ﻋﻤﻠﻴﺔ ﺻﻨﺎﻋﺔ‬ ‫‪ .d‬ﺍﻟﻜﺮﺑﺘﻮﻥ‬ ‫‪ .a‬ﺍﻟﻴﻮﺩ‬‫ﺍﻷﺳـﻤﺪﺓ ﻭﺍﻟﻤﺒـﺮﺩﺍﺕ ﻭﺍﻷﺻﺒـﺎﻍ ﻭﺍﻟﺒﻼﺳـﺘﻴﻚ‪ .‬ﻭﻋﻤﻠﻴـﺔ‬‫ﻫﺎﺑـﺮ ﻃﺮﻳﻘﺔ ﻹﻧﺘـﺎﺝ ﺍﻷﻣﻮﻧﻴﺎ ﻣﻦ ﺧﻼﻝ ﺗﻔﺎﻋـﻞ ﺍﻟﻨﻴﺘﺮﻭﺟﻴﻦ‬ ‫‪ .e‬ﺍﻟﻜﺎﻟﺴﻴﻮﻡ‬ ‫‪ .b‬ﺍﻟﺒﻮﺭﻭﻥ‬‫ﻭﺍﻟﻬﻴﺪﺭﻭﺟﻴـﻦ‪ .‬ﻭﺗﻤﺜـﻞ ﺍﻟﻤﻌﺎﺩﻟـﺔ ﺍﻵﺗﻴـﺔ ﻣﻌﺎﺩﻟـﺔ ﺍﻟﺘﻔﺎﻋﻞ‬ ‫‪ .f‬ﺍﻟﻜﺎﺩﻣﻴﻮﻡ‬ ‫‪ .c‬ﺍﻟﻜﺮﻭﻡ‬ ‫ﺍﻟﻤﻨﻌﻜﺲ‪:‬‬ ‫‪ .104‬ﺍﺫﻛﺮ ﻋﺪﺩ ﺍﻹﻟﻜﱰﻭﻧﺎﺕ ﰲ ﻛﻞ ﻣﺴﺘﻮ￯ ﻣﻦ ﻣﺴﺘﻮﻳﺎﺕ‬ ‫‪N2(g) + 3H2(g) 2NH3(g) + 92 kJ‬‬ ‫ﺍﻟﻄﺎﻗﺔ‪ ،‬ﺛﻢ ﺍﻛﺘﺐ ﺍﻟﺒﻨﺎﺀ ﺍﻹﻟﻜﱰﻭﲏ ﺍﻟﻨﻘﻄﻲ ﻟﻜﻞ ﻋﻨﴫ‬‫ﻳﻮ ﹼﺿﺢ ﺍﻟﺸﻜﻞ ‪ 7-17‬ﺃﺛﺮ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﰲ ﻣﻘﺪﺍﺭ‬ ‫ﻣﻦ ﺍﻟﻌﻨﺎﴏ ﺍﻵﺗﻴﺔ‪:‬‬ ‫ﺍﻷﻣﻮﻧﻴﺎ ﺍﻟﻨﺎﲡﺔ ﺧﻼﻝ ﻋﻤﻠﻴﺔ ﻫﺎﺑﺮ‪.‬‬ ‫‪B .d kr .a‬‬ ‫‪Br .e‬‬ ‫‪Sr .b‬‬ ‫‪‬‬ ‫‪Se .f P .c‬‬‫‪‬‬ ‫‪70 350°C‬‬ ‫‪ .105‬ﺇﺫﺍ ﺃﻋﻄﻴﺖ ﳏﻠﻮﻟﲔ ﺷﻔﺎﻓﲔ ﻋﺪﻳﻤﻲ ﺍﻟﻠﻮﻥ‪ ،‬ﻭﻛﺎﻥ‬ ‫‪60 400°C‬‬ ‫‪50‬‬ ‫ﺃﺣﺪﳘﺎ ﳛﺘﻮﻱ ﻣﺮﻛ ﹰﺒﺎ ﺃﻳﻮﻧ ﹰﹼﻴﺎ‪ ،‬ﻭﺍﻵﺧﺮ ﻣﺮﻛ ﹰﺒﺎ ﺗﺴﺎﳘ ﹰﹼﻴﺎ‪،‬‬ ‫‪40 450°C‬‬ ‫ﻓﻜﻴﻒ ﻳﻤﻜﻨﻚ ﲢﺪﻳﺪ ﺃﻱ ﺍﳌﺤﻠﻮﻟﲔ ﺃﻳـﻮﲏ‪ ،‬ﻭﺃﳞﲈ‬ ‫‪30 500°C‬‬ ‫‪20 550°C‬‬ ‫ﺗﺴﺎﳘﻲ؟‬ ‫‪10‬‬ ‫‪ .106‬ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻛﻴﻤﻴﺎﺋﻴﺔ ﻣﻮﺯﻭﻧﺔ ﻟﻜﻞ ﺗﻔﺎﻋﻞ ﻣﻦ‬ ‫ﺍﻟﺘﻔﺎﻋﻼﺕ ﺍﻵﺗﻴﺔ‪:‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪100 atm200  300‬‬ ‫‪400‬‬ ‫‪ .a‬ﺇﺣﻼﻝ ﺍﻟﺰﻧﻚ ﻣﻜﺎﻥ ﺍﻟﻔﻀﺔ ﰲ ﳏﻠﻮﻝ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻔﻀﺔ‪.‬‬ ‫ﺍﻟﺸﻜﻞ ‪7-17‬‬ ‫‪ .b‬ﺗﻔﺎﻋﻞ ﻫﻴﺪﺭﻭﻛﺴﻴﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ﻭﲪﺾ ﺍﻟﻜﱪﻳﺘﻴﻚ‬‫‪ .109‬ﻓﴪ ﻛﻴﻒ ﻧﺴﺒﺔ ﺍﳌﺮﺩﻭﺩ ﺍﳌﺌﻮﻳﺔ ﻟﻸﻣﻮﻧﻴﺎ ﺑﺎﻟﻀﻐﻂ‬ ‫ﻟﺘﻜﻮﻳﻦ ﻛﱪﻳﺘﺎﺕ ﺍﻟﺼﻮﺩﻳﻮﻡ ﻭﺍﳌﺎﺀ‪.‬‬ ‫ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭ‪7‬ﺓ؟‪C13-11A-87463‬‬‫‪ .110‬ﺗﺘﻢ ﻋﻤﻠﻴﺔ ﻫﺎﺑﺮ ﻋﻨﺪ ﺿﻐﻂ ﻣﻘﺪﺍﺭﻩ ‪،200 atm‬‬ ‫‪‬‬‫ﻭﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪ ،450˚C‬ﺣﻴﺚ ﺃﺛﺒﺘﺖ ﻫﺬﻩ ﺍﻟﻈﺮﻭﻑ‬‫ﺇﻣﻜﺎﻧﻴﺔ ﺇﻧﺘﺎﺝ ﻛﻤﻴﺔ ﻛﺒﲑﺓ ﻣﻦ ﺍﻷﻣﻮﻧﻴﺎ ﺧﻼﻝ ﺯﻣﻦ‬ ‫‪‬‬ ‫ﻗﺼﲑ‪.‬‬ ‫‪    .107‬ﺣﻠﻢ ﻛﺜﲑﻭﻥ ﻓﻴﲈ ﻣﴣ‬‫‪ .a‬ﻣﺎﺃﺛﺮﺇﺟﺮﺍﺀﺍﻟﺘﻔﺎﻋﻞﻋﻨﺪﺿﻐﻂﺃﻋﲆﻣﻦ‪،200atm‬‬ ‫ﺑﺎﻟﻘﻴﺎﻡ ﺑﺮﺣﻠﺔ ﺣﻮﻝ ﺍﻟﻌﺎﱂ ﺑﺒﺎﻟﻮﻥ ﻫﻮﺍﺀ ﺳﺎﺧﻦ‪ ،‬ﻭﻫﻮ‬ ‫ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻮﻋﺎﺀ ﺍﻟﺬﻱ ﻳﺘﻢ ﻓﻴﻪ ﺍﻟﺘﻔﺎﻋﻞ؟‬ ‫ﺣﻠﻢ ﱂ ﻳﺘﺤﻘﻖ ﺣﺘﻰ ﻋﺎﻡ ‪1999‬ﻡ‪ .‬ﺍﻛﺘﺐ ﺗﺼﻮﺭﺍﺗﻚ‬‫‪ .b‬ﺗﺮ￯‪ ،‬ﻛﻴﻒ ﻳﺆﺛﺮ ﺗﻘﻠﻴﻞ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﺘﻔﺎﻋﻞ ﺇﱃ‬ ‫‪ 450˚C‬ﻋﲆ ﺍﻟﺰﻣﻦ ﺍﻟﻼﺯﻡ ﻹﻧﺘﺎﺝ ﺍﻷﻣﻮﻧﻴﺎ؟‬ ‫ﻋﻦ ﺍﻟﺮﺣﻠﺔ‪ ،‬ﻭﺻﻒ ﻛﻴﻒ ﻳﺘﺤﻜﻢ ﺗﻐﲑ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫ﺍﻟﺒﺎﻟﻮﻥ ﰲ ﺍﺭﺗﻔﺎﻉ ﺍﻟﺒﺎﻟﻮﻥ؟‬ ‫‪     .108‬ﺍﺑﺤﺚ ﰲ ﺃﺛﺮ ﻣﻨﻈﲈﺕ‬ ‫ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩﺓ ﻋﲆ ﺃﺳﻄﻮﺍﻧﺎﺕ ﺍﳍﻮﺍﺀ ﺍﻟﺘﻲ ﻳﺴﺘﺨﺪﻣﻬﺎ‬ ‫ﺍﻟﻐﻮﺍﺻﻮﻥ‪ ،‬ﻭﺍﴍﺣﻪ‪.‬‬‫‪121‬‬

‫‪ .4‬ﻳﻌﺪ ﻫﻴﺪﺭﻭﻛﺴﻴﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ‪ NaOH‬ﻗﺎﻋﺪﺓ ﻗﻮﻳﺔ‪،‬‬ ‫‪‬‬‫ﺗﺴﺘﺨﺪﻡ ﰲ ﻓﺘﺢ ﻣﺼﺎﺭﻑ ﺍﻟﴫﻑ ﺍﻟﺼﺤﻲ‪ .‬ﻣﺎ ﻧﺴﺐ‬ ‫‪‬‬ ‫ﻣﻜﻮﻧﺎﺕ ﻫﻴﺪﺭﻭﻛﺴﻴﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ؟‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﺍﻵﰐ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻟﺴﺆﺍﻟﲔ ‪:2 ، 1‬‬‫‪57.48% Na, 60.00% O, 2.52% H‬‬ ‫‪.a‬‬ ‫‪‬‬‫‪2.52% Na, 40.00% O, 57.48% H‬‬ ‫‪.b‬‬‫‪57.48% Na, 40.00% O, 2.52% H‬‬ ‫‪.c‬‬ ‫‪Kpa‬‬‫‪1200‬‬ ‫‪A ‬‬‫‪40.00% Na, 2.52% O, 57.48% H‬‬ ‫‪.d‬‬ ‫‪1000‬‬ ‫‪B ‬‬ ‫‪800‬‬‫‪ .5‬ﻣﻠﺊ ﻣﻨﻄﺎﺩ ﺻﻐﲑ ﻭﻫــﻮ ﻋـﲆ ﺳﻄﺢ ﺍﻷﺭﺽ ﺑـ‬ ‫‪600 C ‬‬‫‪ 5.66×106 L‬ﻣﻦ ﻏـﺎﺯ ﺍﳍـﻴﻠـﻴﻮﻡ ‪ ، He‬ﻭﻛﺎﻥ ﺍﻟﻀﻐـﻂ‬‫ﺩﺍﺧـﻞ ﺍﳌﻨـﻄﺎﺩ ‪ ،1.10 atm‬ﻋﻨﺪ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ‪،25˚C‬‬ ‫‪400 D ‬‬‫ﻓﺈﺫﺍ ﺑﻘﻲ ﺍﻟﻀﻐﻂ ﺩﺍﺧﻞ ﺍﳌﻨﻄﺎﺩ ﺛﺎﺑ ﹰﺘﺎ‪ ،‬ﻓﻜﻢ ﻳﻜﻮﻥ ﺣﺠﻤﻪ‬ ‫‪200‬‬ ‫ﻋﻨﺪ ﺍﺭﺗﻔﺎﻉ ‪ 2300 m‬ﺣﻴﺚ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪12˚C‬؟‬ ‫‪0‬‬ ‫‪200 250 300 350 400 450‬‬ ‫‪K‬‬ ‫‪2.72 × 106 L‬‬ ‫‪.a‬‬ ‫‪ .1‬ﺃﻱ ﳑﺎ ﻳﺄﰐ ﻳﻮﺿﺤﻪ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﺃﻋﻼﻩ‪:‬‬ ‫‪5.40 × 610 L‬‬ ‫‪.b‬‬ ‫‪5.66 × 610 L‬‬ ‫‪.c‬‬ ‫‪ .a‬ﻋﻨﺪﻣﺎ ﺗﺰﺩﺍﺩ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻳﻘﻞ ﺍﻟﻀﻐﻂ‪.‬‬ ‫‪.d‬‬ ‫‪5.92 × 610 L‬‬ ‫‪ .b‬ﻋﻨﺪﻣﺎ ﻳﺰﻳﺪ ﺍﻟﻀﻐﻂ ﻳﻘﻞ ﺍﳊﺠﻢ‪.‬‬‫‪ . 3 .6‬ﻳﻮﺿﺢ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﲏ ﻧﺘﺎﺋﺞ ﲡﺮﺑﺔ ﺗﻢ ﻓﻴﻬﺎ ﲢﻠﻴﻞ‬ ‫ﻋﻋﻨﻨﺪﺪﻣﻣﺎﺎ‪ 8‬ﻳﺗ‪0‬ﻘﺰ‪-‬ﻳ‪8‬ﻞﺪﺍ‪7‬ﻟﺩ‪3‬ﺭﻀ‪n8‬ﺟﻐ‪e2‬ﺔ‪b8‬ﺍﻂ‪-‬ﺗﳊ‪C‬ﻘﺮ‪6‬ﺍﻞﺭ‪1‬ﺩﺓ‪-‬ﺭﻳ‪4‬ﻘ‪1‬ﺟﺔﻞ‪C‬ﺍﻋﳊﺪﺮﺩﺍ ﺍﺭﳌﺓ‪.‬ﻮﻻﺕ‪.‬‬ ‫‪.c‬‬ ‫‪.d‬‬‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺩﺭﺟﺔ ﺍﳊـﺮﺍﺭﺓ ﻭﻛﺜﺎﻓﺔ ﺍﳍـﻮﺍﺀ‪ .‬ﻣﺎ ﺍﳌﺘﻐﲑ‬ ‫‪ .2‬ﺃﻱ ﺍﻟﻐﺎﺯﺍﺕ ﺍﻵﺗﻴﺔ ﻳﺴﻠﻚ ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟‬ ‫ﺍﳌﺴﺘﻘﻞ ﰲ ﻫﺬﻩ ﺍﻟﺘﺠﺮﺑﺔ؟‬ ‫‪ .a‬ﺍﻟﻐﺎﺯ ‪A‬‬ ‫‪ .b‬ﺍﻟﻐﺎﺯ ‪B‬‬ ‫‪‬‬ ‫‪ .c‬ﺍﻟﻐﺎﺯ ‪C‬‬ ‫‪ .d‬ﺍﻟﻐﺎﺯ ‪D‬‬‫‪°C‬‬ ‫‪200‬‬ ‫‪160‬‬ ‫‪ .3‬ﻳﺴﺘﺨﺪﻡ ﲪﺾ ﺍﳍﻴﺪﺭﻭﻓﻠﻮﺭﻳﻚ ‪ HF‬ﰲ ﺻﻨﺎﻋﺔ ﺍﻷﺩﻭﺍﺕ‬ ‫‪120‬‬ ‫‪1.00 1.20‬‬ ‫‪1.40‬‬ ‫ﺍﻹﻟﻜﱰﻭﻧﻴﺔ‪ ،‬ﻭﻫﻮ ﻳﺘﻔﺎﻋﻞ ﻣﻊ ﺳﻠﻴﻜﺎﺕ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ‬ ‫‪80‬‬ ‫‪ ،CaSiO3‬ﺍﻟﺬﻱ ﻳﻌ ﹼﺪ ﺃﺣﺪ ﻣﻜﻮﻧﺎﺕ ﺍﻟﺰﺟﺎﺝ‪ .‬ﻣﺎ ﺍﳋﺎﺻﻴﺔ‬ ‫‪40‬‬ ‫)‪(kg/m3‬‬ ‫ﺍﻟﺘﻲ ﲢﻮﻝ ﺩﻭﻥ ﻧﻘﻞ ﲪﺾ ﺍﳍﻴﺪﺭﻭﻓﻠﻮﺭﻳﻚ ﺃﻭ ﲣﺰﻳﻨﻪ ﰲ‬ ‫‪0‬‬ ‫ﺃﻭﻋﻴﺔ ﺯﺟﺎﺟﻴﺔ؟‬ ‫‪0.80‬‬ ‫‪ .a‬ﺧﺎﺻﻴﺔ ﻛﻴﻤﻴﺎﺋﻴﺔ‬ ‫‪ .a‬ﺍﻟﻜﺜﺎﻓﺔ‬ ‫‪ .b‬ﺧﺎﺻﻴﺔ ﻓﻴﺰﻳﺎﺋﻴﺔ ﻛﻤﻴﺔ‬ ‫‪ .b‬ﺍﻟﻜﺘﻠﺔ‬ ‫‪ .c‬ﺧﺎﺻﻴﺔ ﻓﻴﺰﻳﺎﺋﻴﺔ ﻧﻮﻋﻴﺔ‬ ‫‪ .c‬ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬ ‫‪ .d‬ﺍﻟﺰﻣﻦ‬ ‫‪ .d‬ﺧﺎﺻﻴﺔ ﻛﻤﻴﺔ‬ ‫‪122‬‬

‫‪‬‬ ‫‪ .7‬ﺃﻱ ﺍﻟﺮﺳﻮﻡ ﺍﻟﺒﻴﺎﻧﻴﺔ ﺗﻮﺿﺢ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺣﺠﻢ ﺍﻟﻐﺎﺯ‬ ‫ﻭﺿﻐﻄﻪ ﻋﻨﺪ ﺛﺒﺎﺕ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪.‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﳉﺪﻭﻝ ﺍﻵﰐ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻟﺴﺆﺍﻝ ‪: 12‬‬‫‪20052004‬‬‫‪‬‬ ‫‪‬‬ ‫‪mJm3‬‬ ‫‪‬‬ ‫‪mJm3‬‬ ‫‪‬‬ ‫‪VV‬‬ ‫‪0.05 2/05 0.15 8/04‬‬ ‫‪P .D‬‬ ‫‪P‬‬ ‫‪.A‬‬ ‫‪0.05 3/05 0.03 9/04‬‬ ‫‪0.06 4/05 0.05 10/04‬‬ ‫‪V‬‬ ‫‪V‬‬ ‫‪P‬‬ ‫‪0.13 5/05 0.03 11/04‬‬ ‫‪P .E‬‬ ‫‪.B‬‬ ‫‪0.05 6/05 0.04 12/04‬‬ ‫‪0.09 7/05 0.02 1/05‬‬‫‪ .12‬ﻳﻌﺪ ﻏﺎﺯ ﺍﻟﺮﺍﺩﻭﻥ ﻣﻦ ﺍﻟﻐﺎﺯﺍﺕ ﺍﳌﺸﻌﺔ‪ ،‬ﻭﻳﻨﺘﺞ ﻋﻨﺪﻣﺎ‬ ‫‪V‬‬‫ﻳﺘﺤﻠﻞ ﺍﻟﺮﺍﺩﻳﻮﻡ ﰲ ﺍﻟﺼﺨﻮﺭ ﻭﺍﻟﱰﺑﺔ‪ ،‬ﻭﻫﻮ ﻣﺎﺩﺓ ﻣﴪﻃﻨﺔ‪.‬‬‫ﺗﻮﺿﺢ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺃﻋﻼﻩ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﺮﺍﺩﻭﻥ ﺍﻟﺘﻲ ﺗﻢ ﻗﻴﺎﺳﻬﺎ‬ ‫‪P .C‬‬‫ﰲ ﻣﻨﻄﻘﺔ ﻣﻌﻴﻨﺔ‪ .‬ﺍﺧﱰ ﻃﺮﻳﻘﺔ ﻟﺘﻤﺜﻴﻞ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﻴﺎﻧ ﹰﻴﺎ‪.‬‬ ‫ﻓﴪ ﺳﺒﺐ ﺍﺧﺘﻴﺎﺭﻙ ﳍﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﻭﻣﺜﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﻴﺎﻧ ﹰﻴﺎ‪.‬‬ ‫‪ .8‬ﻣﺎ ﻣﻘﺪﺍﺭ ﺍﻟﻀﻐﻂ ﺍﻟﺬﻱ ﳛﺪﺛﻪ ‪ 0.0468 g‬ﻣﻦ ﺍﻷﻣﻮﻧﻴﺎ‬ ‫‪ NH3‬ﻋﲆ ﺟﺪﺭﺍﻥ ﻭﻋﺎﺀ ﺣﺠﻤﻪ ‪ 4.00 L‬ﻋﻨﺪ ﺩﺭﺟﺔ‬ ‫‪ ،35.0 °C‬ﻋﲆ ﺍﻓﱰﺍﺽ ﺃﻧﻪ ﻳﺴﻠﻚ ﺳﻠﻮﻙ ﺍﻟﻐﺎﺯ ﺍﳌﺜﺎﱄ؟‬ ‫‪0.278 atm .d‬‬ ‫‪0.0174‬‬ ‫‪aattmmS6-0..4baA-868204-08‬‬ ‫‪0.0٫126 atm .e‬‬ ‫‪0.00198‬‬ ‫‪0.296 atm .c‬‬ ‫‪‬‬ ‫‪ .9‬ﺻﻒ ﺍﳌﻼﺣﻈﺎﺕ ﺍﻟﺘﻲ ﺗﻘﺪﻡ ﺩﻟﻴ ﹰﻼ ﻋﲆ ﺣﺪﻭﺙ ﺍﻟﺘﻔﺎﻋﻞ‬ ‫ﺍﻟﻜﻴﻤﻴﺎﺋﻲ‪.‬‬ ‫‪ .10‬ﺣ ﹼﺪﺩ ﺳﺒﻌﺔ ﺟﺰﻳﺌﺎﺕ ﺛﻨﺎﺋﻴﺔ ﺍﻟﺬﺭﺓ ﻣﻮﺟﻮﺩﺓ ﰲ ﺍﻟﻄﺒﻴﻌﺔ‪،‬‬ ‫ﻭﻓﴪ ﳌﺎﺫﺍ ﺗﺘﺸﺎﺭﻙ ﺫﺭﺍﺕ ﻫﺬﻩ ﺍﳉﺰﻳﺌﺎﺕ ﰲ ﺯﻭﺝ ﻣﻦ‬ ‫ﺍﻹﻟﻜﱰﻭﻧﺎﺕ؟‬ ‫‪ .11‬ﻳﻮﺿﺢ ﺍﻟﺮﺳﻢ ﺃﺩﻧﺎﻩ ﺑﻨﺎﺀ ﻟﻮﻳﺲ ﻷﻳﻮﻥ ﺍﻟﻨﱰﺍﺕ ﺍﳌﺘﻌﺪﺩ‬ ‫ﺍﻟﺬﺭﺍﺕ )‪.(NO3-‬‬ ‫ﻋﺮﻑ ﻣﻔﻬﻮﻡ ﻣﺘﻌﺪﺩ ﺍﻟﺬﺭﺍﺕ‪ ،‬ﻭﺃﻋ ﹺﻂ ﺃﻣﺜﻠﺔ ﻋﲆ ﺃﻳﻮﻧﺎﺕ‬ ‫ﺃﺧﺮ￯ ﻣﻦ ﻫﺬﺍ ﺍﻟﻨﻮﻉ‪O .‬‬ ‫‪ONO‬‬‫‪123‬‬

‫اﻟﻤﺨﺎﻟﻴﻂ واﻟﻤﺤﺎﻟﻴﻞ ‪Mixtures and Solutions‬‬‫‪‬‬ ‫اﻟﻔﻜﺮة اﻟﻌﺎﻣﺔ ﻳﻮﺟﺪ ﺍﳌﺤﻠﻮﻝ ﰲ ﺻﻮﺭﺓ ﻏﺎﺯ ﺃﻭ‬‫‪‬‬ ‫ﺳﺎﺋﻞﺃﻭﺻﻠﺐﺍﻋﺘﲈ ﹰﺩﺍﻋﲆﺍﳊﺎﻟﺔﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔﻟﻠﻤﺬﻳﺐ‪.‬‬ ‫‪ 1-1‬أﻧﻮاع اﻟﻤﺨﺎﻟﻴﻂ‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﺍﳌﺨﺎﻟﻴﻂ ﺇﻣﺎ ﻣﺘﺠﺎﻧﺴﺔ ﺃﻭ ﻏﲑ‬ ‫ﻣﺘﺠﺎﻧﺴﺔ‪.‬‬ ‫‪ 1-2‬ﺗﺮﻛﻴﺰ اﻟﻤﺤﺎﻟﻴﻞ‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻳﻤﻜـﻦ ﺍﻟﺘﻌﺒـﲑ ﻋـﻦ ﺍﻟﱰﻛﻴـﺰ‬ ‫ﺑﺎﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺃﻭ ﺑﺎﳌﻮﻻﺕ‪.‬‬ ‫‪ 1-3‬اﻟﻌﻮاﻣﻞ اﻟﻤﺆﺛﺮة ﻓﻲ اﻟﺬوﺑﺎن‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻳﺘﺄﺛﺮ ﺗﻜـ ﹼﻮﻥ ﺍﳌﺤﻠﻮﻝ ﺑﻌﻮﺍﻣﻞ‪،‬‬ ‫ﻣﻨﻬﺎ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﻀﻐﻂ ﻭﺍﻟﻘﻄﺒﻴﺔ‪.‬‬ ‫‪ 1-4‬اﻟﺨﻮاص اﻟﺠﺎﻣﻌﺔ ﻟﻠﻤﺤﺎﻟﻴﻞ‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﺗﻌﺘﻤـﺪ ﺍﳋـﻮﺍﺹ ﺍﳉﺎﻣﻌﺔ ﻋﲆ‬ ‫ﻋﺪﺩ ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ ﰲ ﺍﳌﺤﻠﻮﻝ‪.‬‬ ‫ﺣﻘﺎﺋﻖ ﻛﻴﻤﻴﺎﺋﻴﺔ‬ ‫ﺣﻮﺍﱄ ‪ 42.3%‬ﻣﻦ ﺍﻟﻔﻮﻻﺫ ﺍﳌﻨﺘﺞ ﺳـﻨﻮ ﹰﹼﻳﺎ ﻳﺄﰐ‬ ‫•‬ ‫ﻣﻦ ﺇﻋﺎﺩﺓ ﺍﻟﺘﺪﻭﻳﺮ‪.‬‬ ‫•‬ ‫ﺍﳊﺪﻳﺪ ﻫﻮ ﺍﳌﻜﻮﻥ ﺍﻷﺳـﺎﳼ ﻟﻠﻔﻮﻻﺫ‪ ،‬ﻟﻜﻦ ﻳﻤﻜﻦ‬ ‫•‬ ‫ﺇﺿﺎﻓـﺔ ﻋﻨﺎﴏ ﻣﺜـﻞ ﺍﻟﻨﻴـﻜﻞ ﻭﺍﳌﻨﺠﻨﻴـﺰ ﻭﺍﻟﻜﺮﻭﻡ‬ ‫•‬ ‫ﻭﺍﻟﻔﻨﺎﺩﻳـﻮﻡ ﻭﺍﻟﺘﻨﺠﺴـﺘﻮﻥ ﺣﺴـﺐ ﺍﳌﻮﺍﺻﻔـﺎﺕ‬ ‫ﺍﳌﻄﻠﻮﺑﺔ‪.‬‬ ‫ﻳﺴـﺘﻌﻤﻞ ﺍﻷﺳـﻤـﻨـﺖ ﰲ ﺻـﻨﺎﻋـﺔ ﺍﳋـﻠﻄـﺎﺕ‬ ‫ﺍﻷﺳـﻤﻨﺘﻴﺔ ﻭﻣﻮﺍﺩ ﺍﻟﺒﻨﺎﺀ ﻟﺘﻘﻮﻳﺘﻬﺎ‪ ،‬ﻭﺟﻌﻠﻬﺎ ﺗﺘﺤﻤﻞ‬ ‫ﺍﻟﻌﻮﺍﻣﻞ ﺍﻟﺒﻴﺌﻴﺔ ﺍﻟﻌﺎﺩﻳﺔ‪.‬‬ ‫ﻳﻨﺘـﺞ ﻧﺤـﻮ ‪ 6‬ﺑﻼﻳـﲔ ﻣﱰ ﻣﻜﻌـﺐ ﻣـﻦ ﺍﳋﻠﻄﺎﺕ‬ ‫ﺍﻷﺳـﻤﻨﺘﻴﺔ ﺳـﻨﻮ ﹼﹰﻳﺎ‪ .‬ﺃﻱ ﻣﺎ ﻳﻌـﺎﺩﻝ ‪ 1‬ﻣﱰ ﻣﻜﻌﺐ‬ ‫)‪ (1m3‬ﻟﻜﻞ ﺷﺨﺺ ﺳﻨﻮ ﹼﹰﻳﺎ‪.‬‬ ‫‪6‬‬

‫‪‬‬‫‪ ‬ﺍﻋﻤـﻞ ﺍﳌﻄﻮﻳـﺔ‬ ‫‪‬‬ ‫‪‬‬‫ﺍﻵﺗﻴﺔ ﻟﺘﺴـﺎﻋﺪﻙ ﻋﲆ ﺗﻨﻈﻴﻢ‬ ‫‪‬‬‫ﺍﳌﻌﻠﻮﻣـﺎﺕ ﺣـﻮﻝ ﺗﺮﻛﻴـﺰ‬ ‫ﺗﺘﻐﲑ ﺍﻟﻄﺎﻗﺔ ﻋﻨﺪ ﺗﻜﻮﻳﻦ ﺍﳌﺤﻠﻮﻝ ﻧﺘﻴﺠﺔ ﺗﺄﺛﲑ ﻗﻮﺗﲔ‪ :‬ﻗﻮﺓ ﺍﳉﺬﺏ‬ ‫ﺑﲔ ﺍﳉﺰﻳﺌﻴﺔ ﺑﲔ ﺟﺴﻴﲈﺕ ﻛﻞ ﻣﺎﺩﺓ ﰲ ﺍﳌﺤﻠﻮﻝ‪ ،‬ﻭﻗﻮﺓ ﺍﻟﺘﺠﺎﺫﺏ ﺑﲔ‬ ‫ﺍﳌﺤﺎﻟﻴﻞ‪.‬‬ ‫‪‬‬ ‫‪ 1‬ﺍﻃﻮ ﻭﺭﻗﺘﲔ‬ ‫ﺟﺴﻴﲈﺕﺍﳌﺬﺍﺏﻭﺍﳌﺬﻳﺐﻣ ﹰﻌﺎ‪.‬ﻓﻜﻴﻒﻳﻤﻜﻦﻣﻼﺣﻈﺔﻫﺬﺍﺍﻟﺘﻐﲑ؟‬ ‫ﻣﻦ ﺍﳌﻨﺘﺼﻒ ﺃﻓﻘ ﹰﹼﻴﺎ‪.‬‬ ‫‪ ‬‬ ‫‪ 2‬ﺍﻗﻄﻊ ‪3 cm‬‬ ‫ﻋـﲆ ﻃـﻮﻝ ﺧـﻂ ﺍﻟﺜﻨﻲ‬ ‫ﻹﺣـﺪ￯ ﺍﻟﻮﺭﻗﺘـﲔ ﻣﻦ‬ ‫ﻛﻼ ﺍﳉﺎﻧﺒـﲔ‪ .‬ﻭﻗـﺺ‬‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪D‬‬ ‫ﺍﻟﻮﺭﻗﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻋﲆ ﻃﻮﻝ‬ ‫‪B‬‬ ‫‪I‬‬ ‫‪BDC‬‬ ‫‪JCEADKDFBE‬‬ ‫‪L‬‬ ‫‪EGCFM‬‬ ‫‪FHDGN‬‬ ‫‪GIEHO‬‬ ‫‪J‬ﰲ‪KG‬ﺍ‪I‬ﳌﺨ‪PI‬ﺘ‪JF‬ﱪ‪H.‬‬ ‫‪‬‬ ‫‪OL‬‬ ‫‪O MP‬‬ ‫‪PN‬‬ ‫‪AC‬ﺧـ‪H‬ﻂ‪ A‬ﺍ‪B‬ﻟﺜﻨ‪G‬ـﻲ‪A‬ﺃﻳ‪F‬ﹰﻀـﺎ ‪E‬‬ ‫‪ KN.1NP‬ﺍ‪O‬ﻗ‪M‬ﺮﺃ ﺗ‪JM‬ﻌ‪LN‬ﻠﻴﲈ‪IL‬ﺕ‪KM‬ﺍﻟﺴ‪LHK‬ﻼ‪J‬ﻣﺔ‬ ‫ﻣـﻦ ﻭﺳـﻄﻬﺎ ﻣـﻊ‬ ‫ﺗﺮﻙ ‪ 3cm‬ﻣﻦ ﻛﻼ‬ ‫‪ .2‬ﺯﻥ ‪ 10 g‬ﻣـﻦ ﻛﻠﻮﺭﻳـﺪ ﺍﻷﻣﻮﻧﻴـﻮﻡ ‪ ،NH4Cl‬ﺛـﻢ ﺿﻌﻬـﺎ ﰲ‬ ‫ﺍﳉﺎﻧﺒﲔ ﺩﻭﻥ ﻗﺺ‪.‬‬ ‫ﻛﺄﺱ ﺳﻌﺘﻬﺎ ‪.100 ml‬‬ ‫‪ 3‬ﺃﺩﺧـﻞ‬ ‫‪ .3‬ﻗـﺲ ‪ 30 ml‬ﻣـﻦ ﺍﳌـﺎﺀ ﺑﻤﺨﺒـﺎﺭ ﻣـﺪﺭﺝ ﺳـﻌﺘﻪ ‪ ،50 ml‬ﺛﻢ‬ ‫ﺍﻟﻮﺭﻗﺘـﲔ ﺇﺣﺪﺍﳘـﺎ‬ ‫ﺃﺿـﻒ ﺍﳌﺎﺀ ﺇﱃ ‪ NH4Cl‬ﰲ ﺍﻟﻜﺄﺱ‪ ،‬ﻭﺣﺮﻙ ﺍﳌﺤﻠﻮﻝ ﺑﺴـﺎﻕ‬ ‫ﰲ ﺍﻷﺧـﺮ￯ ﻟﻌﻤـﻞ‬ ‫ﺍﻟﺘﺤﺮﻳﻚ‪.‬‬ ‫ﻛﺘﺎﺏ ﻣﻦ ﺃﺭﺑﻊ ﺻﻔﺤﺎﺕ‪.‬‬ ‫‪ .4‬ﲢﺴﺲ ﺃﺳﻔﻞ ﺍﻟﻜﺄﺱ ﻣﻦ ﺍﳋﺎﺭﺝ‪ ،‬ﻭﺳﺠﻞ ﻣﻼﺣﻈﺎﺗﻚ‪.‬‬‫اﻟﻤﻄﻮﻳﺎت ‪1-2‬‬ ‫‪ .5‬ﻛﺮﺭ ﺍﳋﻄﻮﺍﺕ ﻣﻦ ‪ 2-4‬ﻣﺴﺘﻌﻤ ﹰﻼ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ‪CaCl2‬‬ ‫ﺑﺪ ﹰﻻ ﻣﻦ ‪.NH4Cl‬‬‫ﰲ ﺃﺛﻨﺎﺀ ﻗﺮﺍﺀﺗﻚ ﳍﺬﺍ ﺍﻟﻘﺴﻢ‪ .‬ﺍﺳﺘﻌﻤﻞ ﺍﳌﻄﻮﻳﺔ ﻟﺘﺴﺠﻴﻞ‬ ‫‪ .6‬ﲣﻠﺺ ﻣﻦ ﺍﳌﺤﺎﻟﻴﻞ ﺑﺴﻜﺒﻬﺎ ﰲ ﺍﳌﻐﺴﻠﺔ‪.‬‬‫ﺍﻟﺘﻌﺒﲑ‪7‬ﻋ‪3‬ـ‪67‬ﻦ‪43‬ﺗ‪76‬ﺮ‪84‬ﻛﻴ‪7‬ـ‪8-‬ﺰ‪A‬ﺍ‪1-‬ﳌ‪0A‬ﺤﺎ‪1‬ﻟ‪-‬ﻴ‪40‬ﻞ‪C1C4،-1‬‬ ‫ﻣـﺎ ﺗﻌﻠﻤﺘﻪ ﻋـﻦ ﻃﺮﺍﺋـﻖ‬ ‫ﻣﺴﺘﻌﻴ ﹰﻨﺎ ﺑﺄﻣﺜﻠﺔ ﺣﺴﺎﺑﻴﺔ‪.‬‬ ‫‪‬‬ ‫‪  .1‬ﺃﻱ ﺍﻟﻌﻤﻠﻴﺘﲔ ﺍﻟﺴـﺎﺑﻘﺘﲔ ﻛﺎﻧﺖ ﻃـﺎﺭﺩﺓ ﻟﻠﻄﺎﻗﺔ‪ ،‬ﻭﺃﳞﲈ‬ ‫ﳌﺮﺍﺟﻌﺔ ﳏﺘﻮ￯ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻭﻧﺸـﺎﻃﺎﺗﻪ ﺍﺭﺟﻊ ﺇﱃ‬ ‫ﻛﺎﻧﺖ ﻣﺎﺻﺔ ﳍﺎ؟‬ ‫ﺍﳌﻮﻗﻊ‪:‬‬ ‫‪  .2‬ﺍﻛﺘﺐ ﺃﻣﺜﻠﺔ ﻣﻦ ﻭﺍﻗـﻊ ﺣﻴﺎﺗﻚ ﻋﲆ ﻋﻤﻠﻴﺎﺕ ﺫﻭﺑﺎﻥ‬ ‫‪www.obeikaneducation.com‬‬ ‫ﻃﺎﺭﺩﺓ ﻟﻠﻄﺎﻗﺔ‪ ،‬ﻭﺃﺧﺮ￯ ﻣﺎﺻﺔ ﳍﺎ؟‬ ‫‪ ‬ﺇﺫﺍ ﺃﺭﺩﺕ ﺯﻳﺎﺩﺓ ﺍﻟﺘﻐـﲑ ﰲ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻓﺄﳞﲈ ﳚﺐ‬‫ﺇﺿﺎﻓﺘﻪ ﺑﻜﻤﻴﺔ ﺃﻛﱪ‪ :‬ﺍﳌﺬﺍﺏ ﺃﻡ ﺍﳌﺬﻳﺐ ؟ ﻓﴪ ﺇﺟﺎﺑﺘﻚ‪7 .‬‬

‫‪1-1‬‬‫‪Types of Mixtures‬أﻧﻮاع اﻟﻤﺨﺎﻟﻴﻂ‬ ‫ا ﻫﺪاف‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ‪ ‬‬ ‫‪‬ﺑﲔ ﺧﺼﺎﺋﺺ ﺍﳌﺨﺎﻟﻴﻂ‬‫‪ ‬ﺇﺫﺍ ﻣﻸﺕ ﺩﻟ ﹰﻮﺍ ﺑﲈﺀ ﺍﻟﺒﺤﺮ ﻓﺴﻮﻑ ﺗﻼﺣﻆ ﺃﻥ ﺑﻌﺾ ﺍﳌﻮﺍﺩ ﺗﱰﺳﺐ ﰲ ﻗﺎﻉ‬ ‫ﺍﳌﻌﻠﻘﺔ ﻭﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ ﻭﺍﳌﺤﺎﻟﻴﻞ‪.‬‬ ‫ﺍﻟﺪﻟﻮ‪ ،‬ﻭﻳﻈﻞ ﺍﳌﺎﺀ ﻣﺎ ﹰﳊﺎ ﹶﻣ ﹾﻬﲈ ﻣﺮ ﻣﻦ ﺍﻟﻮﻗﺖ‪ .‬ﳌﺎﺫﺍ ﺗﱰﺳﺐ ﺑﻌﺾ ﺍﳌﻮﺍﺩ ﺩﻭﻥ ﻏﲑﻫﺎ؟‬ ‫‪‬ﺃﻧﻮﺍﻉ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ‬ ‫ﻭﺃﻧﻮﺍﻉ ﺍﳌﺤﺎﻟﻴﻞ‪.‬‬‫‪ ‬ﺍﻟﻘﻮ￯ ﺍﻟﻜﻬﺮﺳﻜﻮﻧﻴﺔ اﻟﻤﺨﺎﻟﻴﻂ ﻏﻴﺮ اﻟﻤﺘﺠﺎﻧﺴﺔ ‪Heterogeneous Mixtures‬‬‫ﻻ ﺑﺪ ﺃﻧﻚ ﺗﺘﺬﻛﺮ ﺃﻥ ﺍﳌﺨﻠﻮﻁ ﻣﺰﻳﺞ ﻣﻦ ﻣﺎﺩﺗﲔ ﻧﻘﻴﺘﲔ ﺃﻭ ﺃﻛﺜﺮ‪ ،‬ﲢﺘﻔﻆ ﻓﻴﻪ ﻛﻞ ﻣﺎﺩﺓ ﺑﺨﺼﺎﺋﺼﻬﺎ‬ ‫ﰲ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ‪.‬‬‫ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ‪ ،‬ﻭﺃﻥ ﺍﳌﺨﺎﻟﻴﻂ ﻏﲑ ﺍﳌﺘﺠﺎﻧﺴﺔ ﻻ ﲤﺘﺰﺝ ﻣﻜﻮﻧﺎﲥﺎ ﲤﺎﻣ ﹰﺎ ﻣ ﹰﻌﺎ؛ ﺃﻱ ﻳﻤﻜﻦ ﲤﻴﻴﺰ ﻛﻞ ﻣﻨﻬﺎ‪.‬‬ ‫ﻣﺮاﺟﻌﺔ اﻟﻤﻔﺮدات‬‫‪ ‬ﻣﺎﺩﺓ ﺗﺬﻭﺏ ﰲ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻭﻫﻨﺎﻙ ﻧﻮﻋﺎﻥ ﻣﻦ ﺍﳌﺨﺎﻟﻴﻂ ﻏﲑ ﺍﳌﺘﺠﺎﻧﺴﺔ‪ ،‬ﳘﺎ ﺍﳌﻌﻠﻖ ﻭﺍﻟﻐﺮﻭﻱ‪.‬‬‫‪ ‬ﳐﻠﻮﻁ ﳛـﺘﻮﻱ ﻋﲆ ﺟـﺴـﻴﲈﺕ ﻳﻤﻜﻦ ﺃﻥ ﺗﱰﺳـﺐ ‪ -‬ﺑﺎﻟﱰﻭﻳـﻖ ‪ -‬ﺇﺫﺍ ﹸﺗﺮﻙ ﻓﱰﺓ ﺩﻭﻥ‬ ‫اﻟﻤﻔﺮدات اﻟﺠﺪﻳﺪة‬ ‫ﺍﳌﺨﻠﻮﻁ ﺍﳌﻌﻠﻖ‬‫ﲢﺮﻳـﻚ‪ .‬ﺍﻧﻈــﺮ ﺍﻟﺸـﻜﻞ ‪1-1‬؛ ﻓﺎﻟﻮﺣﻞ ﺍﻟﺬﻱ ﺗﺸـﺎﻫﺪﻩ ﳐﻠﻮﻁ ﻣﻌﻠﻖ‪ .‬ﻭﻋﻨـﺪ ﲤﺮﻳﺮ ﺍﳌﺨﻠﻮﻁ‬‫ﺍﳌﻌﻠﻖ ﺍﻟﺴـﺎﺋﻞ ﺧﻼﻝ ﻭﺭﻗﺔ ﺗﺮﺷـﻴﺢ ﹸﺗﻔﺼﻞ ﺍﳉﺴـﻴﲈﺕ ﺍﳌﻌﻠﻘﺔ‪ .‬ﻭﻗﺪ ﺗﻨﻔﺼﻞ ﺑﻌﺾ ﺍﳌﺨﺎﻟﻴﻂ‬ ‫ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‬‫ﺍﳌﻌﻠﻘـﺔ ﺇﱃ ﻃﺒﻘﺘـﲔ ﻭﺍﺿﺤﺘـﲔ ﺇﺫﺍ ﺗﺮﻛﺖ ﻓﱰﺓ ﺩﻭﻥ ﲢﺮﻳﻚ؛ ﺍﳌﺎﺩﺓ ﺍﻟﺼﻠﺒﺔ ﰲ ﺍﻟﻘﺎﻉ ﻭﺍﻟﺴـﺎﺋﻞ‬ ‫ﺍﳊﺮﻛﺔ ﺍﻟﱪﺍﻭﻧﻴﺔ‬‫ﻓﻮﻗﻬﺎ‪ ،‬ﻭﻟﻜﻦ ﻋﻨﺪ ﲢﺮﻳﻚ ﺍﳌﺨﻠﻮﻁ ﺍﳌﻌﻠﻖ ﴎﻋﺎﻥ ﻣﺎ ﺗﺒﺪﺃ ﺍﳌﺎﺩﺓ ﺍﻟﺼﻠﺒﺔ ﰲ ﺍﻻﻧﺴـﻴﺎﺏ‪ ،‬ﻭﻛﺄﳖﺎ‬‫ﺳـﺎﺋﻞ‪ .‬ﻭﺗﺴـﻤﻰ ﺍﳌﺎﺩﺓ ﺍﻟﺘﻲ ﺗﺴﻠﻚ ﻫﺬﺍ ﺍﻟﺴـﻠﻮﻙ ﺍﳌﺎﺩ ﹶﺓ ﺍﻟﺘﻲ ﺗﺘﻤﻴﻊ ﺑﺎﳍﺰ ﺃﻭ ﺍﻟﺘﺤﺮﻳﻚ‪ .‬ﻭﻫﻨﺎﻙ‬ ‫ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ‬‫ﺃﻧـﻮﺍﻉ ﻣـﻦ ﺍﻟﻄـﲔ ﺗﺘﻤﻴﻊ ﺟﺴـﻴﲈﲥﺎ ﺑﴪﻋﺔ؛ ﺍﺳـﺘﺠﺎﺑﺔ ﻟﻠﻬـﺰ ﺃﻭ ﺍﳊﺮﻛﺔ؛ ﺗﺴـﺘﺨﺪﻡ ﰲ ﻣﻨﺎﻃﻖ‬ ‫ﺍﳌﺎﺩﺓ ﻏﲑ ﺍﻟﺬﺍﺋﺒﺔ‬‫ﺍﻟﺰﻻﺯﻝ ﺍﻷﺭﺿﻴﺔ‪ ،‬ﻓﺘﺸ ﱠﻴﺪ ﺍﳌﺒﺎﲏ ﻓﻮﻗﻬﺎ‪.‬‬ ‫ﺍﳌﺎﺩﺓ ﺍﻟﺬﺍﺋﺒﺔ‬‫‪ 1-1‬‬ ‫‪8‬‬

‫‪‬‬ ‫‪11‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﺻﻠﺐ‬ ‫ﺻﻠﺐ‬ ‫ﺍﻷﺣﺠﺎﺭ ﺍﻟﻜﺮﻳﻤﺔ ﺍﳌﻠﻮﻧﺔ‬ ‫‪‬‬ ‫ﺳﺎﺋﻞ‬ ‫ﺻﻠﺐ‬ ‫ﺻﻠﺐ‬ ‫ﺳﺎﺋﻞ‬ ‫ﺍﻟﺪﻡ‪ ،‬ﺍﳉﻴﻼﺗﲔ‬ ‫‪‬‬ ‫ﺳﺎﺋﻞ‬ ‫ﺳﺎﺋﻞ‬ ‫ﺍﻟﺰﺑﺪ‪ ،‬ﺍﳉﺒﻦ‬ ‫‪‬‬ ‫ﺻﻠﺐ‬ ‫ﻏﺎﺯ‬ ‫ﻏﺎﺯ‬ ‫ﺻﻠﺐ‬ ‫ﺍﳊﻠﻴﺐ‪ ،‬ﺍﳌﺎﻳﻮﻧﻴﺰ‬ ‫‪‬‬ ‫ﺍﻟﺼﺎﺑﻮﻥ ﺍﻟﺬﻱ ﻳﻄﻔﻮ‪ ،‬ﺣﻠﻮ￯ ﺍﳋﻄﻤﻲ‬ ‫‪‬‬ ‫ﻏﺎﺯ‬ ‫‪‬‬ ‫ﺍﻟﺪﺧﺎﻥ‪ ،‬ﺍﻟﻐﺒﺎﺭ ﰲ ﺍﳍﻮﺍﺀ‬ ‫‪‬‬ ‫ﺍﻟﻐﻴﻮﻡ‪ ،‬ﺍﻟﻀﺒﺎﺏ‪ ،‬ﺭﺫﺍﺫ ﻣﺰﻳﻞ ﺍﻟﻌﺮﻕ ﺳﺎﺋﻞ‬‫‪ 1-2‬‬ ‫‪‬ﻷﻥ ﺣﺠﻮﻡ ﺟﺴـﻴﲈﺕ ﺍﳌﺨﻠـﻮﻁ ﺍﳌﻌﻠﻖ ﺃﻛـﱪ ﻣﻦ ﺣﺠﻮﻡ‬‫‪    ‬‬‫‪   ‬‬ ‫ﺍﻟـﺬﺭﺍﺕ ﻓﺈﳖﺎ ﻳﻤﻜﻦ ﺃﻥ ﺗﱰﺳـﺐ ﰲ ﺍﳌﺨﻠﻮﻁ‪ .‬ﻭﻳﺴـﻤﻰ ﺍﳌﺨﻠـﻮﻁ ﻏﲑ ﺍﳌﺘﺠﺎﻧﺲ‬‫‪   ‬‬ ‫ﺍﻟﺬﻱ ﻳﺘﻜﻮﻥ ﻣﻦ ﺟﺴـﻴﲈﺕ ﻣﺘﻮﺳـﻄﺔ ﺍﳊﺠﻢ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐـﺮﻭﻱ‪.‬ﻭ ﺗﱰﺍﻭﺡ ﺃﻗﻄﺎﺭ‬ ‫ﺍﳉﺴـﻴﲈﺕ ﰲ ﺍﳌﺨﻠـﻮﻁ ﺍﻟﻐﺮﻭﻱ ﺑـﲔ ‪ 1 nm‬ﻭ‪ ،1000 nm‬ﻭﻻ ﺗﱰﺳـﺐ‪ .‬ﻓﻌﲆ‬ ‫‪‬‬ ‫ﺳـﺒﻴﻞ ﺍﳌﺜـﺎﻝ‪ ،‬ﻳﻌـﺪ ﺍﳊﻠﻴـﺐ ﳐﻠﻮ ﹰﻃﺎ ﻏﺮﻭ ﹰﹼﻳـﺎ ﻻ ﻳﻤﻜﻦ ﻓﺼـﻞ ﻣﻜﻮﻧﺎﺗﻪ ﺍﳌﺘﺠﺎﻧﺴـﺔ‬ ‫ﺑﺎﻟﱰﻭﻳﻖ ﺃﻭ ﺍﻟﱰﺷﻴﺢ‪.‬‬ ‫ﺗﺴـﻤﻰ ﺍﳌﺎﺩﺓ ﺍﻷﻛﺜﺮ ﺗﻮﺍﻓـﹰﺮﺍ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﳌﺬﻳﺐ‪ .‬ﻭﺗﺼﻨـﻒ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ ﺗﺒ ﹰﻌﺎ‬ ‫ﻟﻠﺤﺎﻟـﺔ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﻟـﻜﻞ ﻣﻦ ﺍﳌﺬﻳﺐ ﻭﺍﳌـﺬﺍﺏ‪ .‬ﻓﺎﳊﻠﻴﺐ ﻣﺴـﺘﺤﻠﺐ ﻏﺮﻭﻱ؛ ﻷﻥ‬ ‫ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ ﺍﻟﺴﺎﺋﻞ ﺗﻨﺘﴩ ﺑﲔ ﺟﺴﻴﲈﺕ ﺍﳌﺬﻳﺐ ﺍﻟﺴﺎﺋﻞ‪ .‬ﻭﻳﻈﻬﺮ ﺍﳉﺪﻭﻝ ‪1-1‬‬ ‫ﻭﺻﻒ ﺃﻧﻮﺍﻉ ﺃﺧﺮ￯ ﻣﻦ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ‪.‬‬ ‫ﹸﲤﻨﻊ ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ ﻣﻦ ﺍﻟﱰﺳﺐ ﰲ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ؛ ﻭﺫﻟﻚ ﻟﻮﺟﻮﺩ ﳎﻤﻮﻋﺎﺕ‬ ‫ﺫﺭﻳﺔ ﺃﻭ ﻗﻄﺒﻴﺔ ﻣﺸـﺤﻮﻧﺔ ﻋﲆ ﺳـﻄﺤﻬﺎ‪ ،‬ﺗﻘﻮﻡ ﺑﺠﺬﺏ ﺍﳌﻨﺎﻃﻖ ﺍﳌﻮﺟﺒﺔ ﺃﻭ ﺍﻟﺴـﺎﻟﺒﺔ‬ ‫ﳉﺴﻴﲈﺕ ﺍﳌﺬﻳﺐ‪ ،‬ﳑﺎ ﻳﻨﺘـﺞ ﻋﻨﻪ ﺗﻜـﻮﻥ ﻃﺒﻘـﺎﺕ ﻛﻬﺮﺳـﻜﻮﻧﻴﺔ ﺣـﻮﻝ ﺍﳉﺴﻴﲈﺕ‪،‬‬ ‫ﻛـﲈ ﻫـﻮ ﻣﻮﺿـﺢ ﰲ ﺍﻟﺸـﻜﻞ ‪ ،1-2‬ﳑﺎ ﳚﻌـﻞ ﺍﻟﻄﺒﻘﺎﺕ ﺗﺘﻨﺎﻓـﺮ ﺑﻌﻀﻬﺎ ﻣﻊ ﺑﻌﺾ‬ ‫ﻋﻨﺪﻣـﺎ ﺗﺼﻄﺪﻡ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﺍﺏ ﻣ ﹰﻌﺎ‪ ،‬ﻟﺬﺍ ﺗﺒﻘﻰ ﺍﳉﺴـﻴﲈﺕ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‬ ‫ﻭﻻ ﺗﱰﺳﺐ‪.‬‬ ‫ﻭﺇﺫﺍ ﺗﺪﺧﻠﻨﺎ ﰲ ﺍﻟﻄﺒﻘﺎﺕ ﺍﻟﻜﻬﺮﺳـﻜﻮﻧﻴﺔ ﻓﺴـﻮﻑ ﺗﱰﺳـﺐ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﺍﺏ ﻣﻦ‬ ‫ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪ .‬ﻓﻌﻨﺪ ﲢﺮﻳﻚ ﻣﺎﺩﺓ ﻛﻬﺮﻟﻴﺔ )ﺇﻟﻜﱰﻭﻟﻴﺖ( ﰲ ﳐﻠﻮﻁ ﻏﺮﻭﻱ ﻣﺜ ﹰﻼ‬ ‫ﺗﺘﺠﻤﻊ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﺍﺏ ﻣ ﹰﻌﺎ‪ ،‬ﻭﺗﺘﻠﻒ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪ .‬ﻛﲈ ﺃﻥ ﺍﻟﺘﺴـﺨﲔ ﺃﻳ ﹰﻀﺎ‬ ‫ﻳﺘﻠـﻒ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐـﺮﻭﻱ؛ ﻷﻥ ﺍﳊﺮﺍﺭﺓ ﺗﻌﻄﻲ ﺍﳉﺴـﻴﲈﺕ ﺍﳌﺘﺼﺎﺩﻣﺔ ﻃﺎﻗﺔ ﺣﺮﻛﻴﺔ‬ ‫ﻛﺎﻓﻴﺔ ﻟﻠﺘﻐﻠﺐ ﻋﲆ ﺍﻟﻘﻮ￯ ﺍﻟﻜﻬﺮﺳﻜﻮﻧﻴﺔ‪ ،‬ﺛﻢ ﺗﺮﺳﺒﻬﺎ ﰲ ﺍﳌﺨﻠﻮﻁ‪.‬‬‫‪9‬‬

‫‪ ‬ﺗﺘﺤـﺮﻙ ﺟﺴـﻴﲈﺕ ﺍﳌـﺬﺍﺏ ﰲ ﺍﳌﺨﺎﻟﻴـﻂ ﺍﻟﻐﺮﻭﻳﺔ ﺍﻟﺴـﺎﺋﻠﺔ‬ ‫‪ 1-3‬‬ ‫‪‬‬‫ﺣﺮﻛﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻭﻋﻨﻴﻔﺔ ﺗﺴﻤﻰ ﺍﳊﺮﻛﺔ ﺍﻟﱪﺍﻭﻧﻴﺔ‪ .‬ﻻﺣﻆ ﻋﺎﱂ ﺍﻟﻨﺒﺎﺕ ﺍﻷﺳﻜﺘﻠﻨﺪﻱ‬ ‫‪  ‬‬‫ﺭﻭﺑـﺮﺕ ﺑـﺮﻭﺍﻥ )‪ (1773 – 1858‬ﻫـﺬﻩ ﺍﳊﺮﻛﺔ ﺃﻭﻝ ﻣﺮﺓ‪ ،‬ﺣﻴـﺚ ﻻﺣﻆ ﺍﳊﺮﻛﺔ‬ ‫‪‬‬ ‫ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﳊﺒﻮﺏ ﺍﻟﻠﻘﺎﺡ ﺍﳌﺘﻨﺎﺛﺮﺓ ﰲ ﺍﳌﺎﺀ‪ ،‬ﻓﺴ ﱢﻤﻴﺖ ﺑﺎﺳﻤﻪ‪.‬‬ ‫‪ ‬‬‫ﺗﻨﺘﺞ ﺍﳊﺮﻛﺔ ﺍﻟﱪﺍﻭﻧﻴﺔ ﻋﻦ ﺗﺼﺎﺩﻡ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﻳﺐ ﻣﻊ ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ؛ ﺑﺤﻴﺚ‬ ‫‪‬‬ ‫ﲤﻨﻊ ﻫﺬﻩ ﺍﻟﺘﺼﺎﺩﻣﺎﺕ ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ ﻣﻦ ﺍﻟﱰﺳﺐ ﰲ ﺍﳌﺨﻠﻮﻁ‪.‬‬ ‫‪ ‬ﺳﺒﺒﲔ ﻟﻌﺪﻡ ﺗﺮﺳﺐ ﺟﺴﻴﲈﺕ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪.‬‬‫‪  ‬ﻳﻈﻬﺮ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ ﺍﳌﺮﻛﺰ ﻋﺎﺩ ﹰﺓ ﻣﻌﺘـﹰﲈ ﺃﻭ ﻣﻌﻜ ﹰﺮﺍ‪ ،‬ﻭﻟﻜﻦ ﺍﳌﺨﻠﻮﻁ‬‫ﺍﻟﻐـﺮﻭﻱ ﺍﳌﺨﻔﻒ ﻳﻈﻬـﺮ ﺃﺣﻴﺎ ﹰﻧﺎ ﺻﺎﻓ ﹰﻴﺎ ﻛﺎﳌﺤﺎﻟﻴـﻞ‪ .‬ﻭﺗﺒﺪﻭ ﺍﳌﺨﺎﻟﻴـﻂ ﺍﻟﻐﺮﻭﻳﺔ ﺍﳌﺨﻔﻔﺔ‬‫ﻛﺎﳌﺤﺎﻟﻴـﻞ ﺍﳌﺘﺠﺎﻧﺴـﺔ؛ ﻷﻥ ﺟﺴـﻴﲈﺕ ﺍﳌـﺬﺍﺏ ﻓﻴﻬﺎ ﺻﻐـﲑﺓ ﺟﺪﹼﹰﺍ‪ ،‬ﺇﻻ ﺃﳖـﺎ ﺗﻌﻤﻞ ﻋﲆ‬ ‫ﺗﺸﺘﻴﺖ ﺍﻟﻀﻮﺀ‪ ،‬ﻭﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻈﺎﻫﺮﺓ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ‪.‬‬‫ﻳﻈﻬﺮ ﺍﻟﺸـﻜﻞ ‪ 1-3‬ﻣﺮﻭﺭ ﺣﺰﻣﺔ ﻣﻦ ﺍﻟﻀﻮﺀ ﻣـﻦ ﺧﻼﻝ ﳐﻠﻮﻃﲔ ﳎﻬﻮﻟﲔ‪ .‬ﻭﻳﻤﻜﻨﻚ‬‫ﻣﻼﺣﻈﺔ ﻛﻴﻒ ﺗﻌﻤﻞ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﺍﺏ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ ﻋﲆ ﺗﺸﺘﻴﺖ ﺍﻟﻀﻮﺀ‪ ،‬ﻋﲆ‬‫ﺧـﻼﻑ ﺟﺴـﻴﲈﺕ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻭ ﹸﺗﻈﻬﺮ ﺍﳌﺨﺎﻟﻴـﻂ ﺍﳌﻌﻠﻘﺔ ﺃﻳ ﹰﻀﺎ ﺗﺄﺛﲑ ﺗﻨـﺪﺍﻝ‪ ،‬ﺃﻣﺎ ﺍﳌﺤﺎﻟﻴﻞ‬‫ﻓـﻼ ﻳﻤﻜـﻦ ﺃﻥ ﺗﻈﻬﺮ ﻫـﺬﻩ ﺍﻟﻈﺎﻫﺮﺓ‪ .‬ﻛﲈ ﻳﻤﻜﻨـﻚ ﻣﻼﺣﻈﺔ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ ﻋﻨﺪﻣﺎ ﺗﺸـﺎﻫﺪ‬‫ﻣﺮﻭﺭ ﺃﺷـﻌﺔ ﺍﻟﺸـﻤﺲ ﺧﻼﻝ ﺍﳍﻮﺍﺀ ﺍﳌﺸـﺒﻊ ﺑﺎﻟﺪﺧﺎﻥ‪ ،‬ﺃﻭ ﻣﺮﻭﺭ ﺿﻮﺀ ﺧﻼﻝ ﺍﻟﻀﺒﺎﺏ‪.‬‬ ‫ﻭﻳﺴﺘﺨﺪﻡ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ ﰲ ﲢﺪﻳﺪ ﻛﻤﻴﺔ ﺍﳌﺬﺍﺏ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﳌﻌﻠﻖ‪.‬‬‫اﻟﻤﺨﺎﻟﻴﻂ اﻟﻤﺘﺠﺎﻧﺴﺔ ‪Homogeneous Mixtures‬‬‫ﺗﻈﻬﺮ ﺑﻌﺾ ﺍﳌﺤﺎﻟﻴﻞ‪ -‬ﻭﻣﻨﻬﺎ ﺍﳍﻮﺍﺀ ﺍﳉﻮﻱ ﻭﻣﺎﺀ ﺍﳌﺤﻴﻂ ﻭﺍﻟﻔﻮﻻﺫ‪ -‬ﻏﲑ ﻣﺘﺸـﺎﲠﺔ‪،‬‬‫ﺇ ﹼﻻ ﺃﳖـﺎ ﲨﻴ ﹰﻌﺎ ﺗﺸـﱰﻙ ﰲ ﺧﺼﺎﺋـﺺ ﻣﻌﻴﻨﺔ‪ .‬ﻟﻘﺪ ﺗﻌﻠﻤﺖ ﺳـﺎﺑ ﹰﻘﺎ ﺃﻥ ﺍﳌﺤﺎﻟﻴﻞ ﳐﺎﻟﻴﻂ‬‫ﻣﺘﺠﺎﻧﺴـﺔ ﲢﺘﻮﻱ ﻋﲆ ﻣﺎﺩﺗﲔ ﺃﻭ ﺃﻛﺜﺮ‪ ،‬ﺗﺴـﻤﻰ ﺍﳌﺬﺍﺏ ﻭﺍﳌﺬﻳﺐ‪ .‬ﻭﺍﳌﺬﺍﺏ ﻫﻮ ﺍﳌﺎﺩﺓ‬‫ﺍﻟﺘﻲ ﺗﺬﻭﺏ‪ .‬ﺃﻣﺎ ﺍﳌﺬﻳﺐ ﻓﻬﻮ ﺍﻟﻮﺳـﻂ ﺍﻟﺬﻱ ﻳﺬﻳﺐ ﺍﳌﺬﺍﺏ‪ .‬ﻭﻻ ﻳﻤﻜﻨﻚ ﺍﻟﺘﻤﻴﻴﺰ ﺑﲔ‬ ‫ﺍﳌﺬﺍﺏ ﻭﺍﳌﺬﻳﺐ ﻋﻨﺪ ﺍﻟﻨﻈﺮ ﺇﱃ ﺍﳌﺤﻠﻮﻝ‪.‬‬‫‪ ‬ﻗﺪ ﻳﻮﺟﺪ ﺍﳌﺤﻠﻮﻝ ﰲ ﺻﻮﺭﺓ ﻏﺎﺯ ﺃﻭ ﺳﺎﺋﻞ ﺃﻭ ﺻﻠﺐ‪ ،‬ﺍﻋﺘﲈ ﹰﺩﺍ ﻋﲆ‬‫ﺍﳊﺎﻟـﺔ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﻟﻠﻤﺬﻳﺐ‪ ،‬ﻛـﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ﺍﳉﺪﻭﻝ ‪ .1-2‬ﺍﳍﻮﺍﺀ ﳏﻠﻮﻝ ﻏﺎﺯﻱ‬‫ﻭﺍﳌﺬﻳﺐ ﻓﻴﻪ ﻫﻮ ﻏﺎﺯ ﺍﻟﻨﻴﱰﻭﺟﲔ‪ .‬ﻭﻗﺪ ﺗﻜﻮﻥ ﺃﺳﻼﻙ ﺗﻘﻮﻳﻢ ﺍﻷﺳﻨﺎﻥ ﺍﻟﺘﻲ ﺗﻀﻌﻬﺎ‬‫ﻋﲆ ﺃﺳـﻨﺎﻧﻚ ﻣﺼﻨﻮﻋﺔ ﻣـﻦ ﺍﻟﻨﻴﺘﻴﻨﻮﻝ‪ ،‬ﻭﻫـﻮ ﳏﻠﻮﻝ ﺻﻠﺐ ﻳﺘﻜﻮﻥ ﻣـﻦ ﺍﻟﺘﻴﺘﺎﻧﻴﻮﻡ‬‫ﺍﳌﺬﺍﺏ ﰲ ﺍﻟﻨﻴﻜﻞ‪ .‬ﺇﻻ ﺃﻥ ﻣﻌﻈﻢ ﺍﳌﺤﺎﻟﻴﻞ ﺗﻜﻮﻥ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺴﺎﺋﻠﺔ‪ .‬ﻟﻘﺪ ﺗﻌﻠﻤﺖ ﺃﻥ‬‫ﺍﻟﺘﻔﺎﻋـﻼﺕ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﺔ ﲢﺪﺙ ﰲ ﺍﳌﺤﺎﻟﻴﻞ ﺍﳌﺎﺋﻴﺔ‪ ،‬ﻭﻫـﻲ ﺍﳌﺤﺎﻟﻴﻞ ﺍﻟﺘﻲ ﻳﻜﻮﻥ ﻓﻴﻬﺎ‬‫ﺍﳌﺎﺀ ﻣﺬﻳ ﹰﺒﺎ‪ .‬ﻓﺎﳌﺎﺀ ﺃﻛﺜﺮ ﺍﳌﺬﻳﺒﺎﺕ ﺷـﻴﻮ ﹰﻋﺎ ﰲ ﺍﳌﺤﺎﻟﻴﻞ ﺍﻟﺴـﺎﺋﻠﺔ‪ .‬ﻭﻗﺪ ﺗﻮﺟﺪ ﺍﳌﺤﺎﻟﻴﻞ‬‫ﰲ ﺃﺷﻜﺎﻝ ﳐﺘﻠﻔﺔ‪ ،‬ﻭﻗﺪ ﺗﻜﻮﻥ ﺍﳌﻮﺍﺩ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ﺍﳌﺤﺎﻟﻴﻞ ﻏﺎﺯﻳﺔ ﺃﻭ ﺳﺎﺋﻠﺔ ﺃﻭ ﺻﻠﺒﺔ‪.‬‬ ‫‪10‬‬

‫‪ ‬‬ ‫ﻣﺨﺘﺒﺮ ﺗﺤﻠﻴﻞ اﻟﺒﻴﺎﻧﺎت‬ ‫‪ .1‬ﺣـ ﹼﺪﺩ ﺍﳌﺘﻐـﲑﺍﺕ ﺍﻟﺘـﻲ ﻳﻤﻜـﻦ ﺃﻥ ﺗﺴـﺘﺨﺪﻡ ﻟﻠﺮﺑـﻂ‬ ‫ﺗﺼﻤﻴﻢ ﺗﺠﺮﺑﺔ‬ ‫ﺑﲔ ﻗـﺪﺭﺓ ﺍﻟﻀـﻮﺀ ﻋﲆ ﺍﳌـﺮﻭﺭ ﺧﻼﻝ ﺍﻟﺴـﺎﺋﻞ ﻭﻋﺪﺩ‬ ‫‪ ‬ﺗﻀﻊ ﺍﻟﻠﻮﺍﺋﺢ ﺍﻟﻮﻃﻨﻴﺔ ﳌﻴﺎﻩ ﺍﻟﴩﺏ‬ ‫ﳎﻤﻮﻋـﺔ ﻣﻦ ﺍﳌﻌﺎﻳﲑ ﻭﺍﳌﻮﺍﺻﻔﺎﺕ ﻟﻀﲈﻥ ﺳـﻼﻣﺘﻬﺎ‪ .‬ﻭﻣﻦ‬ ‫ﺍﳉﺴﻴﲈﺕ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪.‬‬ ‫ﺍﳌﻮﺍﺻﻔﺎﺕ ﺍﻟﺘﻲ ﻳﺘﻢ ﻣﺮﺍﻗﺒﺘﻬﺎ ﺍﻟﺘﻌﻜﺮ ﻭﻫﻮ ﻣﻘﻴﺎﺱ ﻟﺪﺭﺟﺔ‬ ‫ﺍﻟﻀﺒﺎﺑﻴﺔ ﰲ ﺍﳌﺎﺀ‪ ،‬ﻭﺍﻟﻨﺎﲡﺔ ﻋﻦ ﺍﳌﻮﺍﺩ ﺍﻟﺼﻠﺒﺔ ﺍﳌﻌﻠﻘﺔ ﺍﳌﻮﺟﻮﺩﺓ ﰲ‬ ‫‪ .2‬ﺍﺭﺑـﻂ ﺑـﲔ ﺍﳌﺘﻐـﲑﺍﺕ ﺍﻟﺘـﻲ ﺍﺳـﺘﺨﺪﻣﺘﻬﺎ ﰲ ﺍﻟﺘﺠﺮﺑﺔ‬ ‫ﺍﳌﺎﺀ‪ ،‬ﻭﺍﻟﺘﻲ ﻏﺎﻟ ﹰﺒﺎ ﻣﺎ ﺗﻜﻮﻥ ﻣﺮﺗﺒﻄﺔ ﻣﻊ ﺍﻟﺘﻠﻮﺙ ﻭﻣﻊ ﺍﻟﻔﲑﻭﺳﺎﺕ‬ ‫ﻭﺍﻟﻌﺪﺩ ﺍﳊﻘﻴﻘﻲ ﻟﻠﺠﺴﻴﲈﺕ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪.‬‬ ‫ﻭﺍﻟﻄﻔﻴﻠﻴﺎﺕ ﻭﺍﻟﺒﻜﺘﲑﻳﺎ‪ .‬ﺗﺄﰐ ﻣﻌﻈﻢ ﻫﺬﻩ ﺍﳉﺴﻴﲈﺕ ﺍﻟﻐﺮﻭﻳﺔ‬ ‫ﻣﻦ ﺍﻟﺘﻌﺮﻳﺔ‪ ،‬ﻭﺍﻟﻨﺸﺎﻁ ﺍﻟﺼﻨﺎﻋﻲ‪ ،‬ﻭﻓﻀﻼﺕ ﺍﻹﻧﺴﺎﻥ‪ ،‬ﻭﻧﻤﻮ‬ ‫‪ .3‬ﺣﻠﻞ ﻣﺎ ﺍﺣﺘﻴﺎﻃﺎﺕ ﺍﻟﺴﻼﻣﺔ ﺍﻟﺘﻲ ﳚﺐ ﺍﲣﺎﺫﻫﺎ؟‬ ‫ﺍﻟﻄﺤﺎﻟﺐ‪ ،‬ﻭﻣﻦ ﺍﻷﺳﻤﺪﺓ‪ ،‬ﻭﲢﻠﻞ ﺍﳌﻮﺍﺩ ﺍﻟﻌﻀﻮﻳﺔ‪.‬‬ ‫‪ .4‬ﺣ ﹼﺪﺩ ﺍﳌﻮﺍﺩ ﺍﻟﻼﺯﻣﺔ ﻟﻘﻴـﺎﺱ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ‪ .‬ﻭﺍﺧﱰ ﺗﻘﻨﻴﺔ‬ ‫ﳉﻤﻊ ﺃﻭ ﺗﻔﺴﲑ ﺍﻟﺒﻴﺎﻧﺎﺕ‪.‬‬ ‫‪‬‬ ‫ﻳﺴﺘﺨﺪﻡ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ ﰲ ﻗﻴﺎﺱ ﺗﻌﻜﺮ ﺍﳌﺎﺀ‪ .‬ﻭﺍﳍﺪﻑ ﺗﺼﻤﻴﻢ‬ ‫ﲡﺮﺑﺔ ﻭﺗﻄﻮﻳﺮ ﻣﻘﻴﺎﺱ ﻟﺘﻔﺴﲑ ﺍﻟﺒﻴﺎﻧﺎﺕ‪.‬‬ ‫‪ ‬ﺗﺴﻤﻰ ﺍﳌﺎﺩﺓ ﺍﻟﺘﻲ ﺗﺬﻭﺏ ﰲ ﺍﳌﺬﻳﺐ ﺍﳌﺎﺩﺓ ﺍﻟﺬﺍﺋﺒﺔ‪ .‬ﻓﻤﺜ ﹰﻼ ﺫﻭﺑﺎﻥ ﺍﻟﺴﻜﺮ ﰲ ﺍﳌﺎﺀ‬ ‫ﺣﻘﻴﻘﺔ ﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﻗﺪ ﺗﻌﻠﻤﺘﻬﺎ ﻣﻦ ﺧﻼﻝ ﺇﺫﺍﺑﺔ ﺍﻟﺴﻜﺮ ﰲ ﺍﳌﺎﺀ ﻟﻌﻤﻞ ﴍﺍﺏ ﳏ ﹰﹼﲆ ﻛﺎﻟﺸﺎﻱ‬ ‫ﺃﻭ ﻋﺼﲑ ﺍﻟﻠﻴﻤﻮﻥ‪ .‬ﻭﺗﺴـﻤﻰ ﺍﳌﺎﺩﺗﺎﻥ ﺍﻟﺴـﺎﺋﻠﺘﺎﻥ ﺍﻟﻠﺘﺎﻥ ﺗﺬﻭﺏ ﺇﺣﺪﺍﳘﺎ ﰲ ﺍﻷﺧﺮ￯ ﺑﺄﻱ ﻧﺴﺒ ﹴﺔ‬ ‫ﺍﳌﻮﺍ ﱠﺩ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﻣﺘﺰﺍﺝ‪ ،‬ﻭﻣﻨﻬﺎ ﻣﺎﻧﻊ ﺍﻟﺘﺠﻤﺪ ﺍﳌﺬﻛﻮﺭ ﰲ ﺍﳉﺪﻭﻝ ‪ .1-2‬ﻭ ﹸﺗﺴـﻤﻰ ﺍﳌﺎﺩﺓ ﺍﻟﺘﻲ ﻻ‬ ‫ﺗﺬﻭﺏ ﰲ ﺍﳌﺬﻳﺐ ﻣﺎﺩﺓ ﻏﲑ ﺫﺍﺋﺒﺔ‪ ،‬ﻓﺎﻟﺮﻣﻞ ﻣﺜ ﹰﻼ ﻻﻳﺬﻭﺏ ﰲ ﺍﳌﺎﺀ‪ .‬ﻭﺗﺴﻤﻰ ﺍﻟﺴﻮﺍﺋﻞ ﺍﻟﺘﻲ ﲤﺘﺰﺝ‬ ‫ﻣ ﹰﻌﺎ ﻓﱰﺓ ﻗﺼﲑﺓ ﻋﻨﺪ ﺧﻠﻄﻬﺎ‪ ،‬ﻭﺗﻨﻔﺼﻞ ﺑﻌﺪﻫﺎ ﺍﻟﺴﻮﺍﺋ ﹶﻞ ﻏﲑ ﺍﳌﻤﺘﺰﺟﺔ‪ .‬ﻓﺎﻟﺰﻳﺖ ﻣﺜ ﹰﻼ ﻻﻳﻤﺘﺰﺝ‬ ‫ﻣﻊ ﺍﳋﻞ؛ ﺃﻱ ﺃ ﹼﻥ ﺍﻟﺰﻳﺖ ﻻﻳﺬﻭﺏ ﰲ ﺍﳋﻞ‪.‬‬ ‫‪‬‬ ‫‪12‬‬ ‫‪  ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﺍﻷﻛﺴﺠﲔ )ﻏﺎﺯ(‬ ‫ﺍﻟﻨﻴﱰﻭﺟﲔ )ﻏﺎﺯ(‬ ‫ﺍﳍﻮﺍﺀ‬ ‫‪‬‬ ‫‪‬‬ ‫ﺛﺎﲏ ﺃﻛﺴﻴﺪ ﺍﻟﻜﺮﺑﻮﻥ )ﻏﺎﺯ(‬ ‫ﺍﳌﺎﺀ )ﺳﺎﺋﻞ(‬ ‫ﻣﺎﺀ ﻏﺎﺯﻱ‬ ‫‪‬‬ ‫‪‬‬ ‫ﺍﻷﻛﺴﺠﲔ )ﻏﺎﺯ(‬ ‫ﺍﳌﺎﺀ )ﺳﺎﺋﻞ(‬ ‫ﻣﺎﺀ ﺍﻟﺒﺤﺮ‬ ‫‪‬‬ ‫‪‬‬ ‫ﺍﻹﺛﻴﻠﲔ ﺟﻼﻳﻜﻮﻝ )ﺳﺎﺋﻞ(‬ ‫ﻣﺎﺩﺓ ﳐﻔﻀﺔ ﻟﺪﺭﺟﺔ ﺍﻟﺘﺠﻤﺪ ﺍﳌﺎﺀ )ﺳﺎﺋﻞ(‬ ‫‪‬‬ ‫ﲪﺾ ﺍﻹﻳﺜﺎﻧﻮﻳﻚ )ﺳﺎﺋﻞ(‬ ‫ﺍﳌﺎﺀ )ﺳﺎﺋﻞ(‬ ‫ﺍﳋﻞ‬ ‫ﻛﻠﻮﺭﻳﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ )ﺻﻠﺐ(‬ ‫ﺍﳌﺎﺀ )ﺳﺎﺋﻞ(‬ ‫ﻣﺎﺀ ﺍﻟﺒﺤﺮ‬ ‫ﺍﻟﺰﺋﺒﻖ )ﺻﻠﺐ(‬ ‫ﺍﻟﻔﻀﺔ )ﺻﻠﺐ(‬ ‫ﳑﻠﻐﻢ ﺍﻷﺳﻨﺎﻥ‬ ‫ﺍﻟﻜﺮﺑﻮﻥ )ﺻﻠﺐ(‬ ‫ﺍﳊﺪﻳﺪ )ﺻﻠﺐ(‬ ‫ﺍﻟﻔﻮﻻﺫ‬‫‪11‬‬

‫اﻟﺘﻘﻮﻳﻢ ‪1-1‬‬ ‫اﻟﺨﻼﺻﺔ‬‫‪ .1‬اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ﻓﴪ ﺍﺳﺘﻌﲈﻝ ﺧﺼﺎﺋﺺ ﻣﺎﺀ ﺍﻟﺒﺤﺮ ﻟﻮﺻﻒ ﺧﺼﺎﺋﺺ‬ ‫ﻳﻤﻜـﻦ ﲤﻴﻴـﺰ ﻣﻜﻮﻧـﺎﺕ ﺍﳌﺨﻠـﻮﻁ ﻏـﲑ‬ ‫ﺍﳌﺨﺎﻟﻴﻂ‪.‬‬ ‫ﺍﳌﺘﺠﺎﻧﺲ‪.‬‬ ‫‪ .2‬ﻓﺮﻕ ﺑﲔ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ ﻭﺍﳌﺨﻠﻮﻁ ﺍﳌﻌﻠﻖ‪.‬‬ ‫ﻫﻨﺎﻙ ﻧﻮﻋﺎﻥ ﻣﻦ ﺍﳌﺨﺎﻟﻴﻂ ﻏﲑ ﺍﳌﺘﺠﺎﻧﺴﺔ‪،‬‬ ‫ﳘﺎ ﺍﳌﻌﻠﻖ ﻭﺍﻟﻐﺮﻭﻱ‪.‬‬ ‫‪ .3‬ﺣ ﹼﺪﺩ ﺍﻷﻧﻮﺍﻉ ﺍﳌﺨﺘﻠﻔﺔ ﻟﻠﻤﺤﺎﻟﻴﻞ‪ ،‬ﻭﺻﻒ ﺍﳋﺼﺎﺋﺺ ﺍﳌﻤﻴﺰﺓ ﻟﻜﻞ ﻣﻨﻬﺎ‪.‬‬ ‫ﺍﳊﺮﻛـﺔ ﺍﻟﱪﺍﻭﻧﻴـﺔ ﺣﺮﻛـﺔ ﻋﺸـﻮﺍﺋﻴﺔ‬‫‪ .4‬ﻓﴪ ﻣﺴﺘﺨﺪ ﹰﻣﺎ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ‪ ،‬ﳌﺎﺫﺍ ﺗﻜﻮﻥ ﺍﻟﻘﻴﺎﺩﺓ ﺧﻼﻝ ﺃﺟﻮﺍﺀ ﺍﻟﻀﺒﺎﺏ‬ ‫ﳉﺴﻴﲈﺕ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ‪.‬‬‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻷﻧﻮﺍﺭ ﺍﻟﻌﺎﻟﻴﺔ ﺃﻛﺜﺮ ﺻﻌﻮﺑﺔ ﻣﻦ ﺍﻟﻘﻴﺎﺩﺓ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻷﻧﻮﺍﺭ‬ ‫ﹸﺗﻈﻬﺮ ﺍﳌﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ ﺗﺄﺛﲑ ﺗﻨﺪﺍﻝ‪.‬‬ ‫ﺍﳌﻨﺨﻔﻀﺔ؟‬ ‫‪ .5‬ﺻﻒ ﺍﻷﻧﻮﺍﻉ ﺍﳌﺨﺘﻠﻔﺔ ﻟﻠﻤﺨﺎﻟﻴﻂ ﺍﻟﻐﺮﻭﻳﺔ‪.‬‬ ‫ﻗـﺪ ﻳﻮﺟـﺪ ﺍﳌﺤﻠﻮﻝ ﰲ ﺇﺣـﺪ￯ ﺍﳊﺎﻻﺕ‬ ‫ﺍﻟﻔﻴﺰﻳﺎﺋﻴـﺔ ﺍﻟﺜـﻼﺙ‪ :‬ﺍﻟﺴـﺎﺋﻠﺔ ﺃﻭ ﺍﻟﻐﺎﺯﻳـﺔ‬ ‫‪ .6‬ﻓﴪ ﳌﺎﺫﺍ ﺗﺒﻘﻰ ﺟﺴﻴﲈﺕ ﺍﳌﺬﺍﺏ ﰲ ﺍﳌﺨﻠﻮﻁ ﺍﻟﻐﺮﻭﻱ ﻣﻨﺘﴩﺓ؟‬ ‫ﺃﻭ ﺍﻟﺼﻠﺒـﺔ‪ ،‬ﺍﻋﺘـﲈ ﹰﺩﺍ ﻋﲆ ﺍﳊﺎﻟـﺔ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ‬ ‫‪ .7‬ﳋﺺ ﻣﺎ ﺍﻟﺬﻱ ﻳﺴﺒﺐ ﺍﳊﺮﻛﺔ ﺍﻟﱪﺍﻭﻧﻴﺔ؟‬ ‫ﻟﻠﻤﺬﻳﺐ‪.‬‬‫‪ .8‬ﻗﺎﺭﻥ ﻛ ﱢﻮﻥ ﺟﺪﻭ ﹰﻻ ﺗﻠﺨﺺ ﻓﻴﻪ ﺧﺼﺎﺋﺺ ﺍﳌﺨﻠﻮﻁ ﺍﳌﻌﻠﻖ ﻭﺍﳌﺨﻠﻮﻁ‬ ‫ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺍﳌﺬﺍﺏ ﰲ ﺍﳌﺤﻠﻮﻝ ﻏﺎ ﹰﺯﺍ‬ ‫ﺍﻟﻐﺮﻭﻱ ﻭﺍﳌﺤﻠﻮﻝ‪.‬‬ ‫ﺃﻭ ﺳﺎﺋ ﹰﻼ ﺃﻭ ﺻﻠ ﹰﺒﺎ‪.‬‬ ‫‪12‬‬

‫‪1-2‬‬‫ﺗﺮﻛﻴﺰ اﻟﻤﺤﺎﻟﻴﻞ ‪Concentration of Solutions‬‬ ‫ا ﻫﺪاف‬ ‫اﻟﻔﻜﺮة اﻟﺮﺋﻴﺴﺔ ‪‬‬ ‫‪ ‬ﺍﻟﱰﻛﻴـﺰ ﺑﺎﺳـﺘﻌﲈﻝ‬‫‪ ‬ﻫﻞ ﺗﺬﻭﻗﺖ ﻳﻮ ﹰﻣﺎ ﻛﺄﺱ ﺷﺎﻱ ﻓﻮﺟﺪﺗﻪ ﻗﻮﻱ ﺍﳌﺬﺍﻕ ﺃﻭ ﻣﺮ ﺍﻟﻄﻌﻢ؟ ﻟﺘﻌﺪﻳﻞ ﺍﻟﻄﻌﻢ‬ ‫ﻭﺣﺪﺍﺕ ﳐﺘﻠﻔﺔ‪.‬‬‫ﻓﺈﻧـﻚ ﺗﻘﻮﻡ ﺑﺈﺿﺎﻓﺔ ﺍﻟﺴـﻜﺮ ﻟﺘﺤﻠﻴﺘﻪ ﺃﻭ ﺑﺈﺿﺎﻓﺔ ﺍﳌﺎﺀ ﻟﺘﺨﻔﻴﻔﻪ‪ .‬ﻭﻣـﺎ ﺗﻘﻮﻡ ﺑﻪ ﰲ ﻛﻠﺘﺎ ﺍﳊﺎﻟﺘﲔ ﻫﻮ ﺗﻐﻴﲑ‬ ‫‪  ‬ﺗﺮﻛﻴﺰ ﺍﳌﺤﺎﻟﻴﻞ‪.‬‬ ‫‪ ‬ﻣﻮﻻﺭﻳﺔ ﺍﳌﺤﻠﻮﻝ‪ .‬ﺗﺮﻛﻴﺰ ﺍﳉﺴﻴﲈﺕ ﺍﳌﺬﺍﺑﺔ ﰲ ﺍﳌﺎﺀ‪.‬‬ ‫اﻟﺘﻌﺒﻴﺮ ﻋﻦ اﻟﺘﺮﻛﻴﺰ ‪Expressing Concectration‬‬ ‫ﻣﺮاﺟﻌﺔ اﻟﻤﻔﺮدات‬‫‪ ‬ﺍﳌﺎﺩﺓ ﺍﻟﺘﻲ ﺗﺬﻳﺐ ﺍﳌﺬﺍﺏ ﻳﻌﺪ ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ ﻣﻘﻴﺎ ﹰﺳﺎ ﻳﻌﱪ ﻋﻦ ﻛﻤﻴﺔ ﺍﳌﺬﺍﺏ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ﻛﻤﻴﺔ ﳏﺪﺩﺓ ﻣﻦ ﺍﳌﺬﻳﺐ ﺃﻭ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻭﻳﻤﻜـﻦ‬ ‫ﻟﺘﻜﻮﻳﻦ ﳏﻠﻮﻝ‪.‬‬‫ﺍﻟﺘﻌـﺒﲑ ﻋﻦ ﺍﻟﱰﻛﻴﺰ ﻭﺻﻔ ﹰﹼﻴﺎ ﺑﺎﺳﺘﻌﲈﻝ ﻛﻠﻤﺔ \"ﻣﺮ ﹼﻛﺰ\" ﺃﻭ \"ﳐ ﹼﻔﻒ\"‪ .‬ﻻﺣﻆ ﺇﺑﺮﻳﻘﻲ ﺍﻟﺸﺎﻱ ﰲ ﺍﻟﺸﻜﻞ ‪1-4‬؛‬‫ﻓﺄﺣـﺪ ﺍﻹﺑﺮﻳﻘﲔ ﳛﺘﻮﻱ ﺷـﺎ ﹰﻳﺎ ﺃﻛﺜﺮ ﺗﺮﻛﻴﺰ ﹰﺍ ﻣﻦ ﺍﻵﺧﺮ‪ .‬ﻭﻋﻤﻮ ﹰﻣـﺎ ﳛﺘﻮﻱ ﺍﳌﺤﻠﻮﻝ ﺍﳌﺮﻛﺰ ﻋﲆ ﻛﻤﻴﺔ ﻛﺒﲑﺓ‬ ‫اﻟﻤﻔﺮدات اﻟﺠﺪﻳﺪة‬‫ﻣﻦ ﺍﳌﺬﺍﺏ‪ .‬ﻓﺎﻟﺸـﺎﻱ ﺫﻭ ﺍﻟﻠﻮﻥ ﺍﻟﻐﺎﻣﻖ ﳛﺘﻮﻱ ﻋﲆ ﺟﺴـﻴﲈﺕ ﺷﺎﻱ ﺃﻛﺜﺮ ﻣﻦ ﺍﻟﺸﺎﻱ ﺫﻱ ﺍﻟﻠﻮﻥ ﺍﻟﻔﺎﺗﺢ ‪،‬‬ ‫ﺍﻟﱰﻛﻴﺰ‬‫ﻭﺍﻟﻌﻜﺲ ﺻﺤﻴﺢ؛ ﺇﺫ ﳛﺘﻮﻱ ﺍﳌﺤﻠﻮﻝ ﺍﳌﺨ ﹼﻔﻒ ﻋﲆ ﻛﻤﻴﺔ ﺃﻗﻞ ﻣﻦ ﺍﳌﺬﺍﺏ؛ ﻓﺎﻟﺸﺎﻱ ﺫﻭ ﺍﻟﻠﻮﻥ ﺍﻟﻔﺎﺗﺢ ﰲ‬ ‫ﺍﳌﻮﻻﺭﻳﺔ‬ ‫ﺍﻟﺸﻜﻞ ‪ 1-4‬ﳏﻠﻮﻝ ﳐﻔﻒ ﳛﺘﻮﻱ ﻋﲆ ﺟﺴﻴﲈﺕ ﺷﺎﻱ ﺃﻗﻞ ﻣﻦ ﺍﻟﺸﺎﻱ ﺫﻱ ﺍﻟﻠﻮﻥ ﺍﻟﻐﺎﻣﻖ‪.‬‬‫ﻭﻋﲆ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻥ ﺍﻟﺘﻌﺒﲑ ﺍﻟﻮﺻﻔﻲ ﻋﻦ ﺍﻟﱰﻛﻴﺰ ﻣﻔﻴﺪ‪ ،‬ﺇﻻ ﺃﻧﻪ ﻏﺎﻟ ﹰﺒﺎ ﻣﺎ ﻳﺘﻢ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﺍﻟﱰﻛﻴﺰ ﻛ ﹼﻤ ﹰﹼﻴﺎ‪.‬‬ ‫ﺍﳌﻮﻻﻟﻴﺔ‬‫ﻭﻣﻦ ﺃﻛﺜﺮ ﺍﻟﺘﻌﺎﺑﲑ ﺍﻟﻜﻤﻴﺔ ﻋﻦ ﺍﻟﱰﻛﻴﺰ ﺷﻴﻮ ﹰﻋﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﺃﻭ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﺃﻭ ﺍﳌﻮﻻﺭﻳﺔ‬ ‫ﺍﻟﻜﴪ ﺍﳌﻮﱄ‬‫ﺃﻭ ﺍﳌﻮﻻﻟﻴـﺔ‪ .‬ﻭﻛﻞ ﻫـﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﺗﻌﱪ ﻋﻦ ﺍﻟﱰﻛﻴﺰ ﺑﻮﺻﻔﻪ ﻧﺴـﺒﺔ ﺑﲔ ﻛﻤﻴﺔ ﺍﳌـﺬﺍﺏ ﻭﻛﻤﻴﺔ ﺍﳌﺬﻳﺐ ﺃﻭ‬ ‫‪ 1-4‬‬ ‫ﺍﳌﺤﻠﻮﻝ ﻛﻜﻞ‪ .‬ﻭﳛﺘﻮﻱ ﺍﳉﺪﻭﻝ ‪ 1-3‬ﻭﺻ ﹰﻔﺎ ﻟﻜﻞ ﻃﺮﻳﻘﺔ‪.‬‬ ‫‪    ‬‬ ‫‪ ‬‬‫ﺃﻱ ﺍﻟﺘﻌﺎﺑﲑ ﺍﻟﻜﻤﻴﺔ ﳚﺐ ﺍﺳﺘﻌﲈﻟﻪ ﻟﻠﺘﻌﺒﲑ ﻋﻦ ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ؟ ﻳﻌﺘﻤﺪ ﺍﺳﺘﻌﲈﻝ ﺍﻟﺘﻌﺒﲑ ﻋﲆ ﻧﻮﻉ ﺍﳌﺤﻠﻮﻝ‬‫ﺍﻟـﺬﻱ ﻳﺘﻢ ﲢﻠﻴﻠﻪ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺍﻟﻜﻴﻤﻴﺎﺋﻴﲔ ﻣﺜ ﹰﻼ ﻳﻌﻤﻞ ﻋﲆ ﺗﻔﺎﻋﻞ ﰲ ﳏﻠﻮﻝ ﻣﺎﺋﻲ ﻓﺴـﻮﻑ ﻳﺴـﺘﻌﻤﻞ‬ ‫‪‬‬‫ﻏﺎﻟ ﹰﺒﺎ ﺍﳌﻮﻻﺭﻳﺔ ﻟﻠﺘﻌﺒﲑ ﻋﻦ ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ؛ ﻷﻧﻪ ﳛﺘﺎﺝ ﺇﱃ ﻣﻌﺮﻓﺔ ﻋﺪﺩ ﺍﳉﺴﻴﲈﺕ ﺍﳌﺸﺎﺭﻛﺔ ﰲ ﺍﻟﺘﻔﺎﻋﻞ‪.‬‬ ‫‪‬‬ ‫‪13‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪100‬‬ ‫×‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ_‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ‬ ‫ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ‬ ‫‪100‬‬ ‫×‬ ‫ﺣﺠﻢ ﺍﳌﺬﺍﺏ_‬ ‫ﺍﳌﻮﻻﺭﻳﺔ‬ ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ‬ ‫ﺍﳌﻮﻻﻟﻴﺔ‬ ‫ﻋﺪﺩ ﻣﻮﻻ_ﺕ ﺍﳌﺬﺍﺏ_‬ ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ )ﺑﺎﻟﻠﱰ(‬ ‫ﻋﺪﺩ ﻣﻮﻻ_ﺕ ﺍﳌﺬﺍﺏ_‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﻳﺐ ‪kg‬‬ ‫ﻋ_ﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ__‬ ‫ﺍﻟﻜﴪ ﺍﳌﻮﱄ‬ ‫ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ‪ +‬ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﻳﺐ‬‫‪13‬‬

‫‪ ‬ﻫﻲ ﻧﺴـﺒﺔ ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ ﺇﱃ ﻛﺘﻠـﺔ ﺍﳌﺤﻠﻮﻝ‪ ،‬ﻭﻳﻌﱪ ﻋﻨﻬﺎ ﺑﻨﺴـﺒﺔ ﻣﺌﻮﻳﺔ‪.‬‬ ‫اﻟﻤﻄﻮﻳﺎت‬ ‫ﻭﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ ﻫﻲ ﳎﻤﻮﻉ ﻛﺘﻞ ﺍﳌﺬﺍﺏ ﻭﺍﳌﺬﻳﺐ‪.‬‬ ‫ﺃﺩﺧﻞ ﻣﻌﻠﻮﻣﺎﺕ ﻣﻦ ﻫﺬﺍ‬ ‫ﺍﻟﻘﺴﻢ ﰲ ﻣﻄﻮﻳﺘﻚ‪.‬‬ ‫‪‬‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ_‬ ‫‪100‬‬ ‫×‬ ‫ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ =‬‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﺗﺴﺎﻭﻱ ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ ﻣﻘﺴﻮﻣﺔ ﻋﲆ ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻜﻠﻴﺔ ﻭﻣﴬﻭﺑﺔ ﰲ ‪.100‬‬ ‫‪11‬‬‫‪ ‬ﻟﻠﻤﺤﺎﻓﻈﺔ ﻋﲆ ﺗﺮﻛﻴﺰ ﻛﻠﻮﺭﻳﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ‪ NaCl‬ﰲ ﺣﻮﺽ ﺍﻷﺳﲈﻙ‪ ،‬ﻛﲈ ﻫﻮ ﰲ ﻣﺎﺀ ﺍﻟﺒﺤﺮ‪ ،‬ﳚﺐ‬‫ﺃﻥ ﳛﺘﻮﻱ ﺣﻮﺽ ﺍﻷﺳﲈﻙ ﻋﲆ ‪ 3.6 g NaCl‬ﻟﻜﻞ ‪ 100 g‬ﻣﺎﺀ‪ .‬ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﻟﻜﻠﻮﺭﻳﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ‪ NaCl‬ﰲ ﺍﳌﺤﻠﻮﻝ؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﺇﻥ ﻛﺘﻠﺔ ﻛﻠﻮﺭﻳﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ﰲ ‪ 100 g‬ﻣﺎﺀ ﻣﻌﺮﻭﻓﺔ‪ .‬ﻭﺍﻟﻨﺴـﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﻫﻲ ﻧﺴـﺒﺔ ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ ﺇﱃ ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ )ﺍﻟﺘﻲ‬ ‫‪‬‬ ‫ﻫﻲ ﳎﻤﻮﻉ ﻛﺘﻞ ﺍﳌﺬﺍﺏ ﻭﺍﳌﺬﻳﺐ ﻣ ﹰﻌﺎ(‪.‬‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ = ؟‬ ‫‪‬‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ = ‪3.6 g NaCl‬‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﻳﺐ = ‪100 g H2O‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫ﺟﺪ ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ‬ ‫ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ = ﻛﺘﻠﺔ ﺍﳌﺬﻳﺐ ‪ +‬ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ‬‫‪3.6 g + 100.0 g = 103.6g‬‬ ‫‪100.0g3.6g‬‬ ‫ﺍﺣﺴﺐ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ‬‫‪100‬‬ ‫×‬ ‫ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ_‬ ‫=‬ ‫ﺑﺎﻟﻜﺘﻠﺔ‬ ‫ﺍﳌﺌﻮﻳﺔ‬ ‫ﺍﻟﻨﺴﺒﺔ‬ ‫‪‬‬ ‫ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ‬‫=‬ ‫‪_3.6 g‬‬ ‫‪×100 = 3.5%‬‬ ‫‪103.6g3.6g‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬ ‫‪103.6 g‬‬ ‫ﺗﻜﻮﻥ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﻗﻠﻴﻠﺔ؛ ﻷﻥ ﻛﺘﻠﺔ ﻛﻠﻮﺭﻳﺪ ﺍﻟﺼﻮﺩﻳﻮﻡ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ‪ 100 g‬ﻣﺎﺀ ﻗﻠﻴﻠﺔ‪.‬‬ ‫‪‬‬‫‪ .9‬ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﳌﺤﻠﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ‪ 20.0 g‬ﻣﻦ ﻛﺮﺑﻮﻧﺎﺕ ﺍﻟﺼﻮﺩﻳﻮﻡ ﺍﳍﻴﺪﺭﻭﺟﻴﻨﻴﺔ ‪ NaHCO3‬ﻣﺬﺍﺑﺔ ﰲ‬ ‫‪ 600.0 ml‬ﻣﻦ ﺍﳌﺎﺀ ‪H2O‬؟‬‫‪ .10‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﳍﻴﺒﻮﻛﻠﻮﺭﺍﺕ ﺍﻟﺼﻮﺩﻳﻮﻡ ‪ NaOCl‬ﰲ ﳏﻠﻮﻝ ﻣﺒﻴﺾ ﺍﳌﻼﺑﺲ ﻫﻲ ‪ ،3.62%‬ﻭﻛﺎﻥ ﻟﺪﻳﻚ‬ ‫‪ 1500.0 g‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ ﻓﲈ ﻛﺘﻠﺔ ‪ NaOCl‬ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﳌﺤﻠﻮﻝ؟‬ ‫‪ .11‬ﻣﺎ ﻛﺘﻠﺔ ﺍﳌﺬﻳﺐ ﰲ ﺍﳌﺤﻠﻮﻝ ﺍﳌﺬﻛﻮﺭ ﰲ ﺍﻟﺴﺆﺍﻝ ‪10‬؟‬‫‪ .12‬ﲢ ﹼﺪ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﻟﻜﺘﻠﺔ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ﰲ ﳏﻠﻮﻝ ﻫﻲ ‪ ،2.62%‬ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﻛﺘﻠﺔ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ ﺍﳌﺬﺍﺑﺔ ﰲ ﺍﳌﺤﻠﻮﻝ‬ ‫‪ 50.0 g‬ﻓﲈ ﻛﺘﻠﺔ ﺍﳌﺤﻠﻮﻝ ؟‬ ‫‪14‬‬

‫‪ ‬ﺗﺼﻒ ﻋـﺎﺩﺓ ﺍﳌﺤﺎﻟﻴﻞ ﺍﻟﺘـﻲ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﺍﳌﺬﻳـﺐ ﻭﺍﳌﺬﺍﺏ ﰲ‬ ‫ﺍﳊﺎﻟﺔ ﺍﻟﺴـﺎﺋﻠﺔ‪ .‬ﻭﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﻫﻲ ﺍﻟﻨﺴـﺒﺔ ﺑﲔ ﺣﺠﻢ ﺍﳌﺬﺍﺏ ﺇﱃ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ‪،‬‬ ‫ﻭﻳﻌـﱪ ﻋﻨﻬﺎ ﺑﻨﺴـﺒﺔ ﻣﺌﻮﻳﺔ‪ .‬ﻭﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﻫﻮ ﳎﻤﻮﻉ ﺣﺠﻢ ﺍﳌـﺬﺍﺏ ﻭﺣﺠﻢ ﺍﳌﺬﻳﺐ‪ .‬ﺇﻥ‬ ‫ﺣﺴﺎﺑﺎﺕ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﺗﺸﺒﻪ ﺣﺴﺎﺑﺎﺕ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ‪.‬‬ ‫‪‬‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ = ﺣﺣﺠﺠﻢﻢﺍﺍﳌﳌﺤﺬﺍﻠﻮﺏﻝ_× ‪100‬‬ ‫‪Biodiesel‬‬ ‫ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﺗﺴﺎﻭﻱ ﺣﺠﻢ ﺍﳌﺬﺍﺏ ﻣﻘﺴﻮ ﹰﻣﺎ ﻋﲆ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﻣﴬﻭ ﹰﺑﺎ ﰲ ‪.100‬‬ ‫‪ 1-5‬‬ ‫ﻳﻌﺪ ﺍﻟﺪﻳﺰﻝ ﺍﳊﻴﻮﻱ ﺍﳌﻮﺿﺢ ﰲ ﺍﻟﺸـﻜﻞ ‪ 1-5‬ﻭﻗـﻮ ﹰﺩﺍ ﺑﺪﻳ ﹰﻼ ﻧﻈﻴﻒ ﺍﻻﺣﱰﺍﻕ‪ ،‬ﻳﻨﺘﺞ ﻋﻦ ﻣﻮﺍﺭﺩ‬ ‫‪    ‬‬ ‫ﻣﺘﺠﺪﺩﺓ‪ ،‬ﻭﻳﺴﺘﻌﻤﻞ ﰲ ﳏﺮﻛﺎﺕ ﺍﻟﺪﻳﺰﻝ ﻣﻊ ﺍﻟﻘﻠﻴﻞ ﻣﻦ ﺍﻟﺘﺤﺴﻴﻨﺎﺕ ﺃﻭ ﺩﻭﳖﺎ‪ .‬ﻭﺍﻟﺪﻳﺰﻝ ﺍﳊﻴﻮﻱ‬ ‫ﺳـﻬﻞ ﺍﻻﺳـﺘﻌﲈﻝ ﻭﻗﺎﺑﻞ ﻟﻠﺘﺤﻠﻞ ﺍﳊﻴﻮﻱ‪ ،‬ﻭﻏﲑ ﺳـﺎﻡ‪ ،‬ﻭﻻ ﳛﺘﻮﻱ ﻋﲆ ﺍﻟﻜﱪﻳﺖ ﺃﻭ ﺍﳌﺮﻛﺒﺎﺕ‬ ‫‪‬‬ ‫ﺍﻷﺭﻭﻣﺎﺗﻴـﺔ )ﺍﻟﻌﻄﺮﻳـﺔ(‪ ،‬ﻛـﲈ ﺃﻧﻪ ﻻ ﳛﺘﻮﻱ ﻋﲆ ﺍﻟﻨﻔـﻂ‪ ،‬ﻭﻟﻜﻦ ﻳﻤﻜﻦ ﻣﺰﺟﻪ ﻣـﻊ ﺩﻳﺰﻝ \"ﺍﻟﻨﻔﻂ\"‬ ‫ﻟﺘﻜﻮﻳـﻦ ﺍﻟﺪﻳـﺰﻝ ﺍﳊﻴﻮﻱ ﺍﳌﻤـﺰﻭﺝ؛ ﺍﻟﺬﻱ ﻳﺘﻜﻮﻥ ﻣـﻦ ‪ 20 %‬ﺑﺎﳊﺠﻢ ﺩﻳـﺰﻝ ﺣﻴﻮﻱ ﻭ‪80 %‬‬‫‪15‬‬ ‫ﺑﺎﳊﺠﻢ ﺩﻳﺰﻝ ﻣﻦ ﺍﻟﻨﻔﻂ‪.‬‬ ‫‪ ‬ﺑﲔ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﻭﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ‪.‬‬ ‫‪‬‬ ‫‪ .13‬ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﻟﻺﻳﺜﺎﻧﻮﻝ ﰲ ﳏﻠﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ‪ 35 ml‬ﺇﻳﺜﺎﻧﻮﻝ ﻣﺬﺍﺏ‬ ‫ﰲ ‪ 155 ml‬ﻣﺎﺀ؟‬ ‫‪ .14‬ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﻟﻜﺤﻮﻝ ﺃﻳﺰﻭﺑﺮﻭﺑﻴﻞ‪ ،‬ﰲ ﳏﻠﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ‪ 24 ml‬ﻣﻦ‬ ‫ﻛﺤﻮﻝ ﺍﻷﻳﺰﻭﺑﺮﻭﺑﻴﻞ ﻣﺬﺍﺏ ﰲ ‪ 1.1 L‬ﻣﻦ ﺍﳌﺎﺀ؟‬ ‫‪ .15‬ﲢ ﱟﺪ ﺇﺫﺍ ﺍﺳﺘﻌﻤﻞ ‪ 18 ml‬ﻣﻦ ﺍﳌﻴﺜﺎﻧﻮﻝ ﻟﻌﻤﻞ ﳏﻠﻮﻝ ﻣﺎﺋﻲ ﻣﻨﻪ ﺗﺮﻛﻴﺰﻩ ‪ 15%‬ﺑﺎﳊﺠﻢ‪،‬‬ ‫ﻓﲈ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻨﺎﺗﺞ ﺑﺎﳌﻠﻠﱰ؟‬ ‫‪ ‬ﺇﻥ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﻟﻜﺘﻠﺔ ﻭﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﺑﺎﳊﺠﻢ ﻃﺮﻳﻘﺘﺎﻥ ﻣﻦ‬ ‫ﻃﺮﺍﺋﻖ ﺍﻟﺘﻌﺒﲑ ﺍﻟﻜﻤﻲ ﻋﻦ ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻭﻣﻦ ﺃﻛﺜﺮ ﺍﻟﻮﺣﺪﺍﺕ ﺷﻴﻮ ﹰﻋﺎ ﺍﳌﻮﻻﺭﻳﺔ ‪.Molarity‬‬ ‫ﻭﺍﳌﻮﻻﺭﻳﺔ )‪ (M‬ﻫﻲ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ﻟﱰ ﻣﻦ ﺍﳌﺤﻠﻮﻝ‪ ،‬ﻭﺗﻌﺮﻑ ﺃﻳ ﹰﻀﺎ ﺑﺎﻟﱰﻛﻴﺰ‬ ‫ﺍﳌﻮﻻﺭﻱ‪ .‬ﻓﱰﻛﻴﺰ ﻟﱰ ﻣﻦ ﳏﻠﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ﻣﻮﻝ ﻣﻦ ﺍﳌﺬﺍﺏ ﻫﻮ ‪ ،1.0 M‬ﻛﲈ ﺃﻥ ﺗﺮﻛﻴﺰ ﻟﱰ‬ ‫ﻣـﻦ ﺍﳌﺤﻠـﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ‪ 0.1 mol‬ﻣﻦ ﺍﳌﺬﺍﺏ ﻫﻮ ‪ .0.1 M‬ﻭﳊﺴـﺎﺏ ﻣﻮﻻﺭﻳﺔ ﺍﳌﺤﻠﻮﻝ‬ ‫ﳚﺐ ﻣﻌﺮﻓﺔ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺑﺎﻟﻠﱰ ﻭﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ‪.‬‬ ‫ﻋﺪﺩ ﻣﻮﻻﺕ_ﺍﳌﺬﺍﺏ )‪_(mol‬‬ ‫‪‬‬ ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ )‪(L‬‬ ‫=‬ ‫‪M‬‬ ‫ﺍﳌﻮﻻﺭﻳﺔ‬ ‫ﺍﳌﻮﻻﺭﻳﺔ ﻫﻲ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ﻣﻘﺴﻮﻣﺔ ﻋﲆ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺑﺎﻟﻠﱰ‪.‬‬ ‫‪‬ﺍﻟﱰﻛﻴﺰ ﺍﳌـﻮﻻﺭﻱ ﳌﺤﻠـﻮﻝ ﺣﺠﻤـﻪ ‪ ،1.0 L‬ﳛﺘـﻮﻱ ﻋﲆ‬ ‫‪ 0.5 mol‬ﻣﻦ ﺍﳌﺬﺍﺏ؟‬

12 ‫ﻣﻬﻦ ﻓﻲ اﻟﻜﻴﻤﻴﺎء‬    ‫ ﻣﻦ ﺳـﻜﺮ‬5.10 g ‫ ﻣﻦ ﳏﻠﻮﻝ ﺣﻘـﻦ ﺍﻟﻮﺭﻳﺪ ﻋﲆ‬100.5 ml ‫ ﳛﺘـﻮﻱ‬     ‫ ﻣﺎ ﻣﻮﻻﺭﻳﺔ ﻫﺬﺍ ﺍﳌﺤﻠﻮﻝ ﺇﺫ ﻋﻠﻤﺖ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﺠﻠﻮﻛﻮﺯ ﻫﻲ‬.C6H12O6 ‫ﺍﳉﻠﻮﻛﻮﺯ‬    ‫؟‬180.16g/mol          ‫ ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬1     ‫ ﻭﻣﻮﻻﺭﻳﺔ ﺍﳌﺤﻠﻮﻝ ﻫﻲ ﺍﻟﻨﺴـﺒﺔ ﺑﲔ‬،‫ﻟﻘـﺪ ﺃﻋﻄﻴﺖ ﻛﺘﻠﺔ ﺍﳉﻠﻮﻛﻮﺯ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ﺣﺠﻢ ﻣﻦ ﺍﳌﺎﺀ‬  .‫ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ﺇﱃ ﻛﻞ ﻟﱰ ﻣﻦ ﺍﳌﺤﻠﻮﻝ‬ 16 M ‫ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ = ؟‬ 5.10 g C6H12O6 = ‫ﻛﺘﻠﺔ ﺍﳌﺬﺍﺏ‬ 180.16 g/mol = C6H12O6 ‫ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻟﻠﺠﻠﻮﻛﻮﺯ‬ 100.5 ml = ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ‬ ‫ ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬2=5.10 g C6H12O6 (_1810m.1o6lgC_C6H6H121O2O6 6 ) C6H12O6 ‫ﺍﺣﺴﺐ ﻋﺪﺩ ﻣﻮﻻﺕ‬ C6H12O6= 0.0283 mol C6H12O6  =100.5 ml (_1_0_01_0L_m__l) = ‫ ﺇﱃ ﻭﺣﺪﺓ ﻟﱰ‬H2O ‫ﻭﺣﻮﻝ ﺣﺠﻢ‬ 0.1005 L _‫ﻋﺪﺩ ﻣﻮﻻ_ﺕ ﺍﳌﺬﺍﺏ‬ 0.0282 mol = (L) ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ‬ =M 0.1005 LM = _0.0282 mo_l C6H12O6 = 0.282 M 1L ‫ ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬3.‫ﺳﺘﻜﻮﻥ ﻗﻴﻤﺔ ﺍﳌﻮﻻﺭﻳﺔ ﻗﻠﻴﻠﺔ؛ ﻷﻥ ﻛﺘﻠﺔ ﺍﳉﻠﻮﻛﻮﺯ ﺍﻟﺬﺍﺋﺒﺔ ﰲ ﺍﳌﺤﻠﻮﻝ ﻗﻠﻴﻠﺔ‬ ‫ ﻣﻦ‬1.5 L ‫ ﰲ‬C6H12O6 ‫ ﻣﻦ ﺍﳉﻠﻮﻛﻮﺯ‬40.0 g ‫ ﻣﺎ ﻣﻮﻻﺭﻳﺔ ﳏﻠﻮﻝ ﻣﺎﺋﻲ ﳛﺘﻮﻱ ﻋﲆ‬.16 ‫ﺍﳌﺤﻠﻮﻝ؟‬ . 1.5 g KBr ‫ ﻭﻣﺬﺍﺏ ﻓﻴﻪ‬1.60 L ‫ ﺍﺣﺴﺐ ﻣﻮﻻﺭﻳﺔ ﳏﻠﻮﻝ ﺣﺠﻤﻪ‬.17‫ ﻟﻜﻞ ﻟﱰ ﻣﻦ ﺍﳌﺤﻠﻮﻝ؟‬9.5 g NaOCl ‫ ﻣﺎ ﻣﻮﻻﺭﻳﺔ ﳏﻠﻮﻝ ﻣﺒﻴﺾ ﻣﻼﺑﺲ ﳛﺘﻮﻱ ﻋﲆ‬.18‫ ﺍﻟﺘﻲ ﺗﻠﺰﻡ ﻟﺘﺤﻀﲑ‬g ‫ ﺑﻮﺣﺪﺓ‬Ca(OH)2 ‫ ﻣﺎ ﻛﺘﻠﺔ ﻫﻴﺪﺭﻭﻛﺴﻴﺪ ﺍﻟﻜﺎﻟﺴﻴﻮﻡ‬  .19 ‫؟‬0.25 M ‫ ﻭﺗﺮﻛﻴﺰﻩ‬1.5 L ‫ﳏﻠﻮﻝ ﻣﺎﺋﻲ ﻣﻨﻬﺎ ﺣﺠﻤﻪ‬

‫‪ 3  2‬‬ ‫‪ 1‬‬ ‫‪ 1-6‬‬‫‪ ‬‬ ‫‪‬‬ ‫‪‬‬‫‪‬‬ ‫‪375g‬‬ ‫‪1.0L‬‬ ‫‪‬‬ ‫‪1.5M‬‬ ‫‪ ‬ﻭﺑﻌﺪ ﺃﻥ ﻋﺮﻓﺖ ﻛﻴﻔﻴﺔ ﺣﺴﺎﺏ ﻣﻮﻻﺭﻳﺔ ﺍﳌﺤﻠﻮﻝ ﻛﻴﻒ ﻳﻤﻜﻨﻚ ﲢﻀﲑ ﳏﻠﻮﻝ ﻣﺎﺋﻲ‬ ‫ﺣﺠﻤﻪ ‪ 1 L‬ﻭﺗﺮﻛﻴﺰﻩ ‪ 1.50 M‬ﻣﻦ ﻛﱪﻳﺘﺎﺕ ﺍﻟﻨﺤﺎﺱ ﺍﳌﺎﺋﻴـﺔ ‪CuSO4. 5H2O II‬؟ ﳛﺘﻮﻱ ﳏﻠﻮﻝ ‪CuSO4.5H2O‬‬ ‫ﺍﻟـﺬﻱ ﺗﺮﻛﻴـﺰﻩ ‪ 1.5 M‬ﻋﲆ ‪ 1.5 mol CuSO4.5H2O‬ﻣﺬﺍﺑﺔ ﰲ ‪ 1 L‬ﻣﻦ ﺍﳌﺤﻠـﻮﻝ‪ .‬ﻓﺈﺫﺍ ﻋﺮﻓﺖ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ‬ ‫ﻟﻠﻤﺮﻛﺐ ‪ CuSO4.5H2O‬ﻫﻲ ‪ ،249.70 g‬ﻭﺃﻥ ﺍﳌﺤﻠﻮﻝ ﳛﺘﻮﻱ ﻋﲆ ‪ ،1.50 mol CuSO4.5H2O‬ﺃﻱ ‪،375 g‬‬ ‫ﻭﻫﻲ ﻛﺘﻠﺔ ﻳﻤﻜﻦ ﻗﻴﺎﺳﻬﺎ ﺑﺎﳌﻴﺰﺍﻥ‪.‬‬ ‫‪_1.50 mol Cu_SO4·5H2O‬‬ ‫×‬ ‫‪_249.7 g Cu_SO4·5H2O‬‬ ‫=‬ ‫‪_375 g CuS_O4·5H2O‬‬ ‫‪ L‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ‬ ‫‪1L‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ‬ ‫‪1 mol CuSO4·5H2O‬‬ ‫ﻭﻟﻜﻦ ﻻ ﻳﻤﻜﻨﻚ ﺇﺿﺎﻓﺔ ‪ 375 g CuSO4.5H2O‬ﺇﱃ ‪ 1.0 L‬ﻣﻦ ﺍﳌﺎﺀ ﻟﻠﺤﺼﻮﻝ ﻋﲆ ﳏﻠﻮﻝ ﺗﺮﻛﻴﺰﻩ ‪ 1.5 M‬ﲠﺬﻩ‬ ‫ﺍﻟﺒﺴﺎﻃﺔ ‪ .‬ﻷﻧﻪ ﻣﺜﻞ ﺍﳌﻮﺍﺩ ﺍﻷﺧﺮ￯‪ ،‬ﺗﻌﻤﻞ ‪ CuSO4.5H2O‬ﻋﲆ ﺯﻳﺎﺩﺓ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﻋﻦ ﺍﳊﺠﻢ ﺍﳌﻄﻠﻮﺏ‪ .‬ﻟﺬﻟﻚ‬ ‫ﳚﺐ ﺍﺳﺘﻌﲈﻝ ﻛﻤﻴﺔ ﻣﻦ ﺍﳌﺎﺀ ﺗﻘﻞ ﻋﻦ ‪ 1.0 L‬ﻟﻠﺤﺼﻮﻝ ﻋﲆ ‪ 1.0 L‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ‪ ،‬ﻛﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ﺍﻟﺸﻜﻞ ‪.1-6‬‬ ‫ﺃﺣﻴﺎ ﹰﻧـﺎ ﻧﺠـﺮﻱ ﲡﺎﺭﺏ ﺗﺘﻄﻠﺐ ﺍﺳـﺘﻌﲈﻝ ﻛﻤﻴﺎﺕ ﺻﻐﲑﺓ ﻣﻦ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻓﻌﲆ ﺳـﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﻗـﺪ ﲢﺘﺎﺝ ﺇﱃ ‪100 ml‬‬ ‫ﻣﻦ ‪ 1.50 M CuSO4.5H2O‬ﻹﺟﺮﺍﺀ ﺇﺣﺪ￯ ﺍﻟﺘﺠﺎﺭﺏ‪ .‬ﺑﺎﻟﺮﺟﻮﻉ ﺇﱃ ﺗﻌﺮﻳﻒ ﺍﳌﻮﻻﺭﻳﺔ‪ ،‬ﻭﻣﻦ ﺧﻼﻝ ﺍﳊﺴﺎﺑﺎﺕ‬ ‫ﺍﻟﺴﺎﺑﻘﺔ ﻧﺠﺪ ﺃ ﱠﻥ ﳏﻠﻮﻝ ‪ CuSO4.5H2O‬ﺍﻟﺬﻱ ﺗﺮﻛﻴﺰﻩ ‪ 1.50 M‬ﳛﺘﻮﻱ ﻋﲆ ‪ 1.5 mol CuSO4.5H2O‬ﻟﻜﻞ ﻟﱰ‬ ‫ﻣﻦ ﺍﳌﺤﻠﻮﻝ‪ .‬ﻟﺬﻟﻚ ﳛﺘﻮﻱ ‪ 1 L‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ ﻋﲆ ‪ 375 g‬ﻣﻦ ﻛﱪﻳﺘﺎﺕ ﺍﻟﻨﺤﺎﺱ ﺍﳌﺎﺋﻴﺔ ‪. CuSO4.5H2O‬‬ ‫ﻳﻤﻜﻦ ﺍﺳﺘﻌﲈﻝ ﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ ﺑﻮﺻﻔﻬﺎ ﻣﻌﺎﻣﻞ ﲢﻮﻳﻞ ﳊﺴﺎﺏ ﻛﻤﻴﺔ ﺍﳌﺬﺍﺏ ﺍﻟﻼﺯﻣﺔ ﻟﺘﺠﺮﺑﺘﻚ‪.‬‬ ‫‪100‬‬ ‫‪ml‬‬ ‫×‬ ‫‪_1 L‬‬ ‫×‬ ‫‪_375 g CuS_O4·5H2O‬‬ ‫=‬ ‫‪37.5‬‬ ‫‪g‬‬ ‫‪CuSO4‬‬ ‫·‬ ‫‪5H2O‬‬ ‫‪1000 ml‬‬ ‫‪1L‬‬ ‫ﻟﺬﻟﻚ ﲢﺘﺎﺝ ﺇﱃ ﻗﻴﺎﺱ ‪ 37.5 g CuSO4.5H2O‬ﻟﻌﻤﻞ ‪ 100 ml‬ﻣﻦ ﳏﻠﻮﻝ ﺗﺮﻛﻴﺰﻩ ‪.1.5 M‬‬ ‫‪‬‬ ‫‪ .20‬ﻣﺎ ﻛﺘﻠﺔ ‪ CaCl2‬ﺍﻟﺬﺍﺋﺒﺔ ﰲ ‪ 1 L‬ﻣﻦ ﳏﻠﻮﻝ ﺗﺮﻛﻴﺰﻩ ‪0.10 M‬؟‬ ‫‪ .21‬ﻣﺎ ﻛﺘﻠﺔ ‪ CaCl2‬ﺍﻟﻼﺯﻣﺔ ﻟﺘﺤﻀﲑ ‪ 500.0 ml‬ﻣﻦ ﳏﻠﻮﻝ ﺗﺮﻛﻴﺰﻩ ‪0.20 M‬؟‬ ‫‪ .22‬ﻣﺎ ﻛﺘﻠﺔ ‪ NaOH‬ﰲ ﳏﻠﻮﻝ ﻣﺎﺋﻲ ﺣﺠﻤﻪ ‪ 250 ml‬ﻭﺗﺮﻛﻴﺰﻩ ‪3.0 M‬؟‬ ‫‪  .23‬ﻣﺎ ﺣﺠﻢ ﺍﻹﻳﺜﺎﻧﻮﻝ ﰲ ‪ 100.0 ml‬ﻣﻦ ﳏﻠﻮﻝ ﺗﺮﻛﻴﺰﻩ ‪ ،0.15 M‬ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﻛﺜﺎﻓﺔ ﺍﻹﻳﺜﺎﻧﻮﻝ ﻫﻲ‬ ‫‪0.7893 g/ml‬؟‬‫‪17‬‬

‫‪ ‬‬‫‪‬‬ ‫‪‬‬‫‪   1-7‬‬‫‪C15-09C-828378-08‬‬‫‪ C15-08C-828378-08‬ﺗﺴـﺘﻌﻤﻞ ﰲ ﺍﳌﺨﺘﱪ ﳏﺎﻟﻴﻞ ﳍـﺎ ﺗﺮﺍﻛﻴﺰ ﳏﺪﺩﺓ ﺗﺴـﻤﻰ ﺍﳌﺤﺎﻟﻴﻞ‬ ‫‪‬‬‫ﺍﻟﻘﻴﺎﺳـﻴﺔ‪ ،‬ﻭﻣﻨﻬـﺎ ﳏﻠﻮﻝ ﲪﺾ ﺍﳍﻴﺪﺭﻭﻛﻠﻮﺭﻳﻚ ‪ HCl‬ﺍﻟﺬﻱ ﺗﺮﻛﻴـﺰﻩ ‪ .12 M‬ﺗﺬﻛﺮ ﺃﻥ ﺍﳌﺤﺎﻟﻴﻞ‬‫ﺍﳌﺮﻛـﺰﺓ ﲢﺘـﻮﻱ ﻋﲆ ﻛﻤﻴـﺔ ﻛﺒﲑﺓ ﻣﻦ ﺍﳌـﺬﺍﺏ‪ .‬ﻭﻳﻤﻜﻨﻚ ﲢﻀﲑ ﳏﻠـﻮﻝ ﺃﻗﻞ ﺗﺮﻛﻴـﹰﺰﺍ ﻋﻦ ﻃﺮﻳﻖ‬ ‫‪ ‬‬‫ﲣﻔﻴﻒ ﻛﻤﻴﺔ ﻣﻦ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ﺑﺈﺿﺎﻓﺔ ﺍﳌﺰﻳﺪ ﻣﻦ ﺍﳌﺬﻳﺐ‪ .‬ﻭﻋﻨﺪﻣﺎ ﺗﻀﻴﻒ ﺍﳌﺬﻳﺐ ﺗﺰﻳﺪ ﻋﺪﺩ‬ ‫ﻣﺮ ﹼﻛﺰ ‪Concentrated‬‬‫ﺟﺴـﻴﲈﺗﻪ ﺍﻟﺘﻲ ﺗﺘﺤﺮﻙ ﺧﻼﳍﺎ ﺟﺴـﻴﲈﺕ ﺍﳌﺬﺍﺏ‪ ،‬ﻛﲈ ﻫﻮ ﻣﻮﺿﺢ ﰲ ﺍﻟﺸﻜﻞ ‪ ،1-7‬ﻭﻣﻦ ﺛﻢ ﻳﻘﻞ‬ ‫ﺃﺿﻔﻨﺎ ﻣـﺎﺀ ﺃﻛﺜﺮ ﺇﱃ ﻋﺼﲑ‬ ‫ﺍﻟﻠﻴﻤﻮﻥ؛ ﻷﻧﻪ ﻣﺮﻛﺰ ﺟ ﹼﹰﺪﺍ‪.‬‬ ‫ﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ‪.‬‬‫ﻛﻴﻒ ﻳﻤﻜﻨﻚ ﲢﺪﻳﺪ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ﺍﻟﻼﺯﻡ ﲣﻔﻴﻔﻪ؟‬‫‪M‬‬ ‫=‬ ‫‪_mol‬‬ ‫‪،‬‬ ‫ﻋﺪﺩ ﻣﻮﻻ_ﺕ ﺍﳌﺬﺍﺏ_‬ ‫ﺍﳌﻮﻻﺭﻳﺔ ‪= M‬‬ ‫ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ )ﺑﺎﻟﻠﱰ(‬ ‫‪L‬‬‫ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ = ﺍﳌﻮﻻﺭﻳﺔ × ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺑﺎﻟﻠﱰ‪.‬‬‫ﻭﻷﻥ ﻋـﺪﺩ ﻣـﻮﻻﺕ ﺍﳌـﺬﺍﺏ ﻻ ﺗﺘﻐـﲑ ﺑﺎﻟﺘﺨﻔﻴـﻒ ﻓﺈﻥ ﻋـﺪﺩ ﻣﻮﻻﺕ ﺍﳌـﺬﺍﺏ ﰲ ﺍﳌﺤﻠـﻮﻝ ﻗﺒﻞ‬ ‫ﺍﻟﺘﺨﻔﻴﻒ ﺗﺴﺎﻭﻱ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ﺑﻌﺪ ﺍﻟﺘﺨﻔﻴﻒ‪.‬‬‫ﻭﺑﺎﻟﺘﻌﻮﻳﺾ ﻋﻦ ﻋﺪﺩ ﻣﻮﻻﺕ ﺍﳌﺬﺍﺏ ﺑﺎﳌﻮﻻﺭﻳﺔ ﻣﴬﻭﺑﺔ ﰲ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺑﺎﻟﻠﱰ ﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﲑ‬ ‫ﻋﻦ ﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ ﰲ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺘﺨﻔﻴﻒ ﺍﻵﺗﻴﺔ‪:‬‬ ‫ﻣﻌﺎﺩﻟﺔ ﺍﻟﺘﺨﻔﻴﻒ‬‫‪M1V1 = M2V2‬‬ ‫‪M‬‬ ‫‪V‬‬‫ﺇﻥ ﺣﺎﺻﻞ ﴐﺏ ﺍﳌﻮﻻﺭﻳﺔ ﳌﺤﻠﻮﻝ ﻗﻴﺎﳼ ﰲ ﺣﺠﻢ ﻣﻌﲔ ﻣﻨﻪ ﻗﺒﻞ ﺍﻟﺘﺨﻔﻴﻒ ﻳﺴﺎﻭﻱ ﺣﺎﺻﻞ‬ ‫ﴐﺏ ﺍﳌﻮﻻﺭﻳﺔ ﻟﻠﻤﺤﻠﻮﻝ ﰲ ﺣﺠﻢ ﻣﻌﲔ ﻣﻨﻪ ﺑﻌﺪ ﺍﻟﺘﺨﻔﻴﻒ‪.‬‬‫ﲤﺜـﻞ ﻛﻞ ﻣـﻦ ‪ M1‬ﻭ ‪ V1‬ﺍﳌﻮﻻﺭﻳﺔ ﻭﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ‪ .‬ﻭﲤﺜـﻞ ﻛﻞ ﻣﻦ ‪ M2‬ﻭ ‪ V2‬ﺍﳌﻮﻻﺭﻳﺔ‬‫ﻭﺍﳊﺠﻢ ﻟﻠﻤﺤﻠﻮﻝ ﺍﳌﺨﻔﻒ‪ .‬ﳛﺘﻮﻱ ﺍﳌﺤﻠﻮﻝ ﺍﳌﺮﻛﺰ ﻗﺒﻞ ﺍﻟﺘﺨﻔﻴﻒ ﻋﲆ ﻧﺴﺒﺔ ﻋﺎﻟﻴﺔ ﻣﻦ ﺟﺴﻴﲈﺕ‬‫ﺍﳌﺬﺍﺏ ﺑﺎﻟﻨﺴﺒﺔ ﳉﺴﻴﲈﺕ ﺍﳌﺬﻳﺐ‪ ،‬ﻻﺣﻆ ﺃﻥ ﻫﺬﻩ ﺍﻟﻨﺴﺒﺔ ﺗﻘﻞ ﺑﻌﺪ ﺇﺿﺎﻓﺔ ﻛﻤﻴﺔ ﺃﺧﺮ￯ ﻣﻦ ﺍﳌﺬﻳﺐ‪.‬‬ ‫‪18‬‬

‫‪13‬‬‫‪ ‬ﺇﺫﺍ ﻛﻨﺖ ﺗﻌﺮﻑ ﺣﺠﻢ ﻭﺗﺮﻛﻴﺰ ﺍﳌﺤﻠﻮﻝ ﺍﳌﻄﻠﻮﺏ ﲢﻀﲑﻩ ﻳﻤﻜﻨﻚ ﺣﺴﺎﺏ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ‬‫ﺍﻟـﺬﻱ ﲢﺘـﺎﺝ ﺇﻟﻴﻪ‪ .‬ﻣﺎ ﺍﳊﺠﻢ ﺍﻟﻼﺯﻡ ﺑﺎﳌﻠﻠـﱰﺍﺕ ﻟﺘﺤﻀﲑ ﳏﻠﻮﻝ ﻣﻦ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻜﺎﻟﺴـﻴﻮﻡ ‪ CaCl2‬ﺗﺮﻛﻴﺰﻩ ‪ 0.300 M‬ﻭﺣﺠﻤﻪ‬ ‫‪ 0.5 L‬ﺇﺫﺍ ﻛﺎﻥ ﺗﺮﻛﻴﺰ ﳏﻠﻮﻟﻪ ﺍﻟﻘﻴﺎﳼ ‪2.00 M‬؟‬ ‫‪ 1‬ﺗﺤﻠﻴﻞ اﻟﻤﺴﺄﻟﺔ‬‫ﻟﻘﺪ ﺃﻋﻄﻴﺖ ﻣﻮﻻﺭﻳﺔ ﳏﻠﻮﻝ ﻗﻴﺎﳼ ﻣﻦ ﻛﻠﻮﺭﻳﺪ ﺍﻟﻜﺎﻟﺴـﻴﻮﻡ ‪ CaCl2‬ﻭﺍﳌﻮﻻﺭﻳﺔ ﻭﺍﳊﺠﻢ ﻟﻠﻤﺤﻠﻮﻝ ﺑﻌﺪ ﺍﻟﺘﺨﻔﻴﻒ‪ ،‬ﻭﺑﺎﺳﺘﻌﲈﻝ‬ ‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﳌﻮﻻﺭﻳﺔ ﻭﺍﳊﺠﻢ ﻳﻤﻜﻦ ﺇﳚﺎﺩ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ﺍﻟﻼﺯﻡ ﺑﺎﻟﻠﱰ ﺛﻢ ﲢﻮﻳﻠﻪ ﺇﱃ ﻣﻠﻠﱰ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪V1 = ? ml‬‬ ‫‪M1 = 2.00 M CaCl2‬‬ ‫‪M2 = 0.300 M‬‬ ‫‪V2 = 0.50 L‬‬ ‫‪ 2‬ﺣﺴﺎب اﻟﻤﻄﻠﻮب‬ ‫‪M1V1 = M2V2‬‬ ‫ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﻹﳚﺎﺩ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ‪V1‬‬ ‫‪‬‬ ‫‪( )V1 = V2‬‬‫‪_M2‬‬ ‫‪V1‬‬ ‫‪M1‬‬ ‫‪V20.50LM20.300MM12.00M‬‬ ‫‪( )V1‬‬ ‫=‬ ‫‪(0.50‬‬ ‫)‪L‬‬ ‫‪_0.300M‬‬ ‫‪ ‬‬ ‫‪2.00M‬‬ ‫‪1000ml1L‬‬ ‫‪( )V1‬‬ ‫=‬ ‫‪(0.50‬‬ ‫)‪L‬‬ ‫‪_0.300M‬‬ ‫‪= 0.075 L‬‬ ‫‪2.00M‬‬ ‫‪( )V‬‬ ‫‪1‬‬ ‫=‬ ‫‪(0.075‬‬ ‫)‪L‬‬ ‫‪_1000 ml‬‬ ‫‪= 75 ml‬‬ ‫‪1L‬‬ ‫ﻗﺲ ‪ 75 ml‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ‪ ،‬ﺛﻢ ﺧﻔﻔﻪ ﺑﻜﻤﻴﺔ ﺍﳌﺎﺀ ﺍﻟﻼﺯﻣﺔ ﻟﻠﺤﺼﻮﻝ ﻋﲆ ﺍﳊﺠﻢ ﺍﻟﻨﻬﺎﺋﻲ ‪. 0 .5 L‬‬ ‫‪ 3‬ﺗﻘﻮﻳﻢ ا ﺟﺎﺑﺔ‬‫ﺗـﻢ ﺣﺴـﺎﺏ ﺍﳊﺠﻢ ‪ .V1‬ﻭﺗـﻢ ﲢﻮﻳﻠﻪ ﺇﱃ ﻣﻠﻠﱰﺍﺕ‪ .‬ﻭﳚﺐ ﺃﻥ ﻳﻜﻮﻥ ﺃﻗﻞ ﻣﻦ ﺍﳊﺠﻢ ﺍﻟﻨﻬﺎﺋـﻲ ﻟﻠﻤﺤﻠﻮﻝ ﺍﳌﺨﻔﻒ ‪ ،V2‬ﻭﻫﻮ ﻣﻦ‬ ‫ﻣﻌﻄﻴﺎﺕ ﺍﳌﺴﺄﻟﺔ‪.‬‬ ‫‪‬‬ ‫‪ .24‬ﻣﺎﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ‪ 3.00 M KI‬ﺍﻟﻼﺯﻡ ﻟﺘﺤﻀﲑ ﳏﻠﻮﻝ ﳐﻔﻒ ﻣﻨﻪ ﺗﺮﻛﻴﺰﻩ ‪ 1.25 M‬ﻭﺣﺠﻤﻪ ‪0.300 L‬؟‬‫‪ .25‬ﻣﺎ ﺣﺠﻢ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ‪ 0.50 M H2SO4‬ﺑﺎﳌﻠﻠﱰﺍﺕ ﺍﻟﻼﺯﻡ ﻟﺘﺤﻀﲑ ﳏﻠﻮﻝ ﳐﻔﻒ ﻣﻨﻪ ﺣﺠﻤﻪ ‪ 100 ml‬ﻭﺗﺮﻛﻴﺰﻩ‬ ‫‪0.25 M‬؟‬ ‫‪ .26‬ﲢ ﱟﺪ ﺇﺫﺍ ﺧﻔﻒ ‪ 0.5 L‬ﻣﻦ ﺍﳌﺤﻠﻮﻝ ﺍﻟﻘﻴﺎﳼ ‪ 5 M HCl‬ﻟﻴﺼﺒﺢ ‪ 2 L‬ﻓﲈ ﻛﺘﻠﺔ ‪ HCl‬ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﳌﺤﻠﻮﻝ؟‬‫‪19‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook