["B\u00e0i 3: S\u1ed1? Th\u1eeba s\u1ed1 5 4 3 4 5 4 5 2 5 Th\u1eeba s\u1ed1 4 4 10 9 8 8 25 T\u00edch 20 16 30 36 40 B\u00e0i 4: \u0110\u1eb7t t\u00ean r\u1ed3i t\u00ednh \u0111\u1ed9 d\u00e0i m\u1ed7i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac sau: HS t\u1ef1 \u0111\u1eb7t t\u00ean cho \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac. V\u00ed d\u1ee5 a) \u0110\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ l\u00e0: 2 \u00d7 4= 8 (cm) \u0110\u00e1p s\u1ed1: 8cm b) \u0110\u01b0\u1eddng g\u1ea5p kh\u00fac ABC: \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABC l\u00e0: 7 + 3 + 4 = 14 (dm) \u0110\u00e1p s\u1ed1: 14 dm B\u00e0i 5: \u00a0S\u1ed1? a. 7, 10, 13, 16, 19, 22 b. 3, 9, 15, 18, 21, 24 c. 24, 27, 30, 33, 36, 39 B\u00e0i 6: B\u00e0i gi\u1ea3i 7 con g\u00e0 c\u00f3 s\u1ed1 ch\u00e2n l\u00e0: 2 \u00d7 7 = 14 ( ch\u00e2n) \u0110\u00e1p s\u1ed1: 14 ch\u00e2n B\u00e0i 7: B\u00e0i gi\u1ea3i L\u1edbp 2A c\u00f3 s\u1ed1 h\u1ecdc sinh l\u00e0: 4 \u00d7 8 = 32 ( h\u1ecdc sinh) \u0110\u00e1p s\u1ed1: 32 h\u1ecdc sinh B\u00e0i 8: H\u00ecnh v\u1ebd g\u1ed3m 3 \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac: MNP, NPQ, MNPQ \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ l\u00e0: 13 + 12 + 27 = 52 (cm) \u0110\u00e1p s\u1ed1: 52cm B\u00e0i 9: B\u00e0i gi\u1ea3i \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD l\u00e0: 25 + 10 + 29 = 64 (cm) \u0110\u00e1p s\u1ed1: 64cm B\u00e0i 10\u00a0: B\u00e0i gi\u1ea3i \u0110\u1ed9 d\u00e0i b\u1ed1n c\u1ea1nh h\u00ecnh vu\u00f4ng \u0111\u00f3 l\u00e0: To\u00e1n 2-1 Page 251","4 \u00d7 4 = 16 (cm) \u0110\u00e1p s\u1ed1: 16 cm H\u1ecd v\u00e0 t\u00ean:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026...................L\u1edbp A. T\u00d3M T\u1eaeT L\u00cd THUY\u1ebeT TRONG TU\u1ea6N .1. B\u1ea3ng chia 2 2: 2 = 1 12 : 2 = 6 4:2=2 14 : 2 = 7 6:2=3 16 : 2 = 8 8:2=4 18 : 2 = 9 10 : 2 = 5 20 : 2 = 10 3. M\u1ed9t ph\u1ea7n hai Chia h\u00ecnh vu\u00f4ng th\u00e0nh 2 ph\u1ea7n b\u1eb1ng nhau. L\u1ea5y m\u1ed9t ph\u1ea7n \u0111\u01b0\u1ee3c m\u1ed9t ph\u1ea7n hai h\u00ecnh vu\u00f4ng. M\u1ed9t ph\u1ea7n hai vi\u1ebft l\u00e0: B. B\u00c0I T\u1eacP Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: a. Ph\u00e9p t\u00ednh 12 : 2 c\u00f3 k\u1ebft qu\u1ea3 b\u1eb1ng bao nhi\u00eau? A. 14 B. 10 C. 6 b. H\u00ecnh n\u00e0o d\u01b0\u1edbi \u0111\u00e2y c\u00f3 s\u1ed1 \u00f4 vu\u00f4ng \u0111\u01b0\u1ee3c t\u00f4 m\u00e0u? AB To\u00e1n 2-1 Page 252","CD c. \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c \u0111o\u1ea1n th\u1eb3ng l\u00e0 1 dm ; 2 dm ; 3cm: A. 6 dm B. 33dm C. 33ccm d. Khoanh v\u00e0o ch\u1eef \u0111\u1eb7t tr\u01b0\u1edbc c\u00e2u tr\u1ea3 l\u1eddi \u0111\u00fang : A. \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNP l\u1edbn h\u01a1n \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MDEGP. B. \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNP b\u00e9 h\u01a1n \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MDEGP. C. \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNP b\u1eb1ng \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MDEGP. e. C\u00f3 20 qu\u1ea3 cam, s\u1ed1 cam l\u00e0 : A. 4 vi\u00ean bi B. 10 vi\u00ean bi C. 6 vi\u00ean bi B\u00e0i 2: H\u00ecnh n\u00e0o l\u00e0 \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac th\u00ec ghi \u0110 v\u00e0o \u00f4 tr\u1ed1ng : B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 \u00f4 vu\u00f4ng \u1edf m\u1ed7i h\u00ecnh : Ph\u1ea7n 2 - T\u1ef1 lu\u1eadn : Page 253 B\u00e0i 1: T\u00ednh nh\u1ea9m To\u00e1n 2-1","2 \u00d7 3 = ............. 2 \u00d7 5 = ............ 4 \u00d7 2 = ............. 2 \u00d7 6 = ........... 6 : 2 = ............. 10 : 2 = ........... 8 : 2 = ............. 12 : 2 = .......... B\u00e0i 2: T\u00ednh 2cm \u00d7 2 = .................. 12cm : 2 =................... 2cm \u00d7 6 =................... 2cm \u00d7 5 + 4cm = ................... 2dm \u00d7 7 = ................... 20kg : 2 =................... 2kg \u00d7 9 =................... 2kg \u00d710 - 5kg = ................... B\u00e0i 3: T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQR. B\u00e0i gi\u1ea3i B\u00e0i 4: T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c \u0111o\u1ea1n th\u1eb3ng l\u00e0 1dm ; 5 cm ; 9 cm. B\u00e0i gi\u1ea3i B\u00e0i 5: \u00a0S\u1ed1? Page 254 To\u00e1n 2-1","Vi\u1ebft s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng : 2\u00d7 = 20 \u00d73=6 2\u00d7 =4 \u00d7 5 = 10 \u00d7\u00d7+ \u00d7\u00d7 - \u00d75= 5\u00d7 = 10 === === 4+ = -= B\u00e0i 6: C\u00f3 8 h\u1ecdc sinh x\u1ebfp th\u00e0nh c\u00e1c h\u00e0ng, m\u1ed7i h\u00e0ng c\u00f3 2 b\u1ea1n. H\u1ecfi c\u00f3 t\u1ea5t c\u1ea3 bao nhi\u00eau h\u00e0ng? B\u00e0i gi\u1ea3i B\u00e0i 7: M\u1eb9 mua m\u1ed9t ch\u1ee5c qu\u1ea3 cam, m\u1eb9 b\u1ea3o Lan x\u1ebfp v\u00e0o hai \u0111\u0129a cho \u0111\u1ec1u nhau. H\u1ecfi m\u1ed7i \u0111\u0129a c\u00f3 m\u1ea5y qu\u1ea3 cam? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 255","B\u00e0i 8: M\u1ed9t ng\u01b0\u1eddi nu\u00f4i th\u1ecf c\u00f3 8 chu\u1ed3ng th\u1ecf, m\u1ed7i chu\u1ed3ng nh\u1ed1t 2 con th\u1ecf. H\u1ecfi ng\u01b0\u1eddi \u0111\u00f3 nu\u00f4i bao nhi\u00eau con th\u1ecf? B\u00e0i gi\u1ea3i B\u00e0i 9: C\u00f3 12 b\u00fat ch\u00ec chia \u0111\u1ec1u v\u00e0o 2 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 m\u1ea5y b\u00fat ch\u00ec ? B\u00e0i gi\u1ea3i B\u00e0i 10\u00a0:Nh\u1eefng s\u1ed1 chia \u0111\u01b0\u1ee3c cho 2 \u0111\u01b0\u1ee3c g\u1ecdi l\u00e0 s\u1ed1 ch\u1eb5n. S\u1ed1 kh\u00f4ng ph\u1ea3i s\u1ed1 ch\u1eb5n \u0111\u01b0\u1ee3c g\u1ecdi l\u00e0 s\u1ed1 l\u1ebb? a. Vi\u1ebft t\u1ea5t c\u1ea3 c\u00e1c s\u1ed1 ch\u1eb5n nh\u1ecf h\u01a1n 10? b. Vi\u1ebft t\u1ea5t c\u1ea3 c\u00e1c s\u1ed1 l\u1ebb nh\u1ecf h\u01a1n 10? c. T\u00ecm t\u1ed5ng c\u1ee7a s\u1ed1 ch\u1eb5n l\u1edbn nh\u1ea5t b\u00e9 h\u01a1n 10 v\u00e0 s\u1ed1 l\u1ebb l\u1edbn nh\u1ea5t b\u00e9 h\u01a1n 10. B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 256","B\u00e0i 11*: \u0110i\u1ec1n d\u1ea5u x, +, - v\u00e0o ch\u1ed7 ch\u1ea5m (\u2026.) 3 \u2026.. 3 \u2026.. 4 = 5 7 \u2026.. 2 \u2026.. 9 = 18 3 \u2026. 9 \u2026.. 8 = 11 3 \u2026. 6 \u2026.. 15 = 33 B\u00e0i 12*: Hai b\u1ea1n Tr\u00ed v\u00e0 D\u0169ng c\u00f3 t\u1ea5t c\u1ea3 14 vi\u00ean bi. N\u1ebfu b\u1ea1n Tr\u00ed cho b\u1ea1n D\u0169ng 1 vi\u00ean bi th\u00ec hai b\u1ea1n c\u00f3 s\u1ed1 bi b\u1eb1ng nhau. H\u1ecfi b\u1ea1n Tr\u00ed c\u00f3 bao nhi\u00eau vi\u00ean bi? To\u00e1n 2-1 Page 257","\u0110\u00c1P \u00c1N e Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: C\u00e2u a b c d \u0110\u00e1p \u00e1n C B A A B\u00e0i 2: H\u00ecnh n\u00e0o l\u00e0 \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac th\u00ec ghi \u0110 v\u00e0o \u00f4 tr\u1ed1ng : B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 \u00f4 vu\u00f4ng \u1edf m\u1ed7i h\u00ecnh : Ph\u1ea7n 2 - T\u1ef1 lu\u1eadn : B\u00e0i 1: T\u00ednh nh\u1ea9m 2\u00d73=6 2 \u00d7 5 = 10 4\u00d72=8 2 \u00d7 6 = 12 6:2=3 10 : 2 = 5 8:2=4 12 : 2 = 6 B\u00e0i 2: T\u00ednh 2cm \u00d7 2 = 4cm 12cm : 2 = 6cm 2cm \u00d7 6 = 12 cm 2cm \u00d7 5 + 4cm = 10cm + 4cm = 14cm 2dm \u00d7 7 = 14cm 20kg : 2 = 10kg 2kg \u00d7 9 = 18kg 2kg \u00d710 - 5kg = 20kg \u2013 5kg = 15kg B\u00e0i 3: T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQR. To\u00e1n 2-1 Page 258","B\u00e0i gi\u1ea3i \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQR l\u00e0: 2 \u00d7 4 = 8(dm) \u0110\u00e1p s\u1ed1: 8dm B\u00e0i 4: T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c \u0111o\u1ea1n th\u1eb3ng l\u00e0 1dm ; 5 cm ; 9 cm. B\u00e0i gi\u1ea3i \u0110\u1ed5i 1dm = 10cm \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac \u0111\u00f3 l\u00e0: 10 + 5 + 9 = 24 (cm) \u0110\u00e1p s\u1ed1: 24cm B\u00e0i 5: \u00a0S\u1ed1? Vi\u1ebft s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng : 2\u00d73=6 2 \u00d7 10 = 20 2\u00d72=4 2 \u00d7 5 = 10 \u00d7\u00d7+ \u00d7\u00d7 - 2 \u00d7 5 = 10 5 \u00d7 2 = 10 === === 4 + 10 = 14 10 - 10 = 0 B\u00e0i 6: C\u00f3 8 h\u1ecdc sinh x\u1ebfp th\u00e0nh c\u00e1c h\u00e0ng, m\u1ed7i h\u00e0ng c\u00f3 2 b\u1ea1n. H\u1ecfi c\u00f3 t\u1ea5t c\u1ea3 bao nhi\u00eau h\u00e0ng? B\u00e0i gi\u1ea3i C\u00f3 s\u1ed1 h\u00e0ng l\u00e0: 8 : 2 = 4 ( h\u00e0ng) \u0110\u00e1p s\u1ed1: 4 h\u00e0ng To\u00e1n 2-1 Page 259","B\u00e0i 7: M\u1eb9 mua m\u1ed9t ch\u1ee5c qu\u1ea3 cam, m\u1eb9 b\u1ea3o Lan x\u1ebfp v\u00e0o hai \u0111\u0129a cho \u0111\u1ec1u nhau. H\u1ecfi m\u1ed7i \u0111\u0129a c\u00f3 m\u1ea5y qu\u1ea3 cam? B\u00e0i gi\u1ea3i M\u1ed7i \u0111\u0129a c\u00f3 s\u1ed1 qu\u1ea3 cam l\u00e0: 10 : 2 = 5( qu\u1ea3 cam) \u0110\u00e1p s\u1ed1: 5 qu\u1ea3 cam B\u00e0i 8: M\u1ed9t ng\u01b0\u1eddi nu\u00f4i th\u1ecf c\u00f3 8 chu\u1ed3ng th\u1ecf, m\u1ed7i chu\u1ed3ng nh\u1ed1t 2 con th\u1ecf. H\u1ecfi ng\u01b0\u1eddi \u0111\u00f3 nu\u00f4i bao nhi\u00eau con th\u1ecf? B\u00e0i gi\u1ea3i Ng\u01b0\u1eddi \u0111\u00f3 nu\u00f4i s\u1ed1 con th\u1ecf l\u00e0: 8 2 = 16( con th\u1ecf) \u0110\u00e1p s\u1ed1: 16 con th\u1ecf B\u00e0i 9: C\u00f3 12 b\u00fat ch\u00ec chia \u0111\u1ec1u v\u00e0o 2 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 m\u1ea5y b\u00fat ch\u00ec ? B\u00e0i gi\u1ea3i M\u1ed7i h\u1ed9p c\u00f3 s\u1ed1 b\u00fat ch\u00ec l\u00e0: 12 : 2= 6 ( b\u00fat ch\u00ec) \u0110\u00e1p s\u1ed1: 6 b\u00fat ch\u00ec B\u00e0i 10\u00a0: a.C\u00e1c s\u1ed1 ch\u1eb5n nh\u1ecf h\u01a1n 10 l\u00e0: 0, 2, 4, 6, 8 b. C\u00e1c s\u1ed1 l\u1ebb nh\u1ecf h\u01a1n 10 l\u00e0: 1, 3, 5, 7,9 c. T\u1ed5ng c\u1ee7a s\u1ed1 ch\u1eb5n l\u1edbn nh\u1ea5t b\u00e9 h\u01a1n 10 v\u00e0 s\u1ed1 l\u1ebb l\u1edbn nh\u1ea5t b\u00e9 h\u01a1n 10 l\u00e0: 8 + 9 = 17 B\u00e0i 11*: \u0110i\u1ec1n d\u1ea5u x, +, - v\u00e0o ch\u1ed7 ch\u1ea5m (\u2026.) 3\u00d73-4=5 7 + 2 + 9 = 18 3 \u00d7 9 - 8 = 11 3 \u00d7 6 + 15 = 33 B\u00e0i 12*: Hai b\u1ea1n Tr\u00ed v\u00e0 D\u0169ng c\u00f3 t\u1ea5t c\u1ea3 14 vi\u00ean bi. N\u1ebfu b\u1ea1n Tr\u00ed cho b\u1ea1n D\u0169ng 1 vi\u00ean bi th\u00ec hai b\u1ea1n c\u00f3 s\u1ed1 bi b\u1eb1ng nhau. H\u1ecfi b\u1ea1n Tr\u00ed c\u00f3 bao nhi\u00eau vi\u00ean bi? N\u1ebfu b\u1ea1n Tr\u00ed cho b\u1ea1n D\u0169ng 1 vi\u00ean bi th\u00ec m\u1ed7i b\u1ea1n c\u00f3 s\u1ed1 vi\u00ean bi l\u00e0: 14 : 2 = 7 (vi\u00ean bi) V\u1eady n\u1ebfu b\u1ea1n Tr\u00ed cho b\u1ea1n D\u0169ng 1 vi\u00ean bi th\u00ec hai b\u1ea1n c\u00f3 s\u1ed1 bi b\u1eb1ng nhau v\u00e0 b\u1eb1ng 7 vi\u00ean. V\u1eady ban \u0111\u1ea7u Tr\u00ed c\u00f3: 7 + 1 = 8( vi\u00ean bi) \u0110\u00e1p s\u1ed1: 8 vi\u00ean bi B\u00e0i 5: 2 \u00d7 2 \u00d7 x = 12 : 3 T\u1ee9c l\u00e0 4 \u00d7 x = 4 x=4:4 x=1 To\u00e1n 2-1 Page 260","H\u1ecd v\u00e0 t\u00ean:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026...................L\u1edbp A. T\u00d3M T\u1eaeT L\u00cd THUY\u1ebeT TRONG TU\u1ea6N .1. S\u1ed1 b\u1ecb chia \u2013 s\u1ed1 chia \u2013 th\u01b0\u01a1ng V\u00ed d\u1ee5: 6 : 2 = 3 2. B\u1ea3ng chia 3 3: 3 = 1 18 : 3 = 6 6:3=2 21 : 3 = 7 9:3=3 24 : 3 = 8 12 : 3 = 4 27 : 3 = 9 15 : 3 = 5 30 : 3 = 10 3. M\u1ed9t ph\u1ea7n ba Chia h\u00ecnh vu\u00f4ng th\u00e0nh 3 ph\u1ea7n b\u1eb1ng nhau. L\u1ea5y m\u1ed9t ph\u1ea7n \u0111\u01b0\u1ee3c m\u1ed9t ph\u1ea7n ba h\u00ecnh vu\u00f4ng. M\u1ed9t ph\u1ea7n ba vi\u1ebft l\u00e0: 4. T\u00ecm m\u1ed9t th\u1eeba s\u1ed1 c\u1ee7a ph\u00e9p nh\u00e2n Cho a \u00d7 b = c n\u00ean b = c : a v\u00e0 a = c : b Mu\u1ed1n t\u00ecm m\u1ed9t th\u1eeba s\u1ed1 ta l\u1ea5y t\u00edch chia cho th\u1eeba s\u1ed1 kia. To\u00e1n 2-1 Page 261","B. B\u00c0I T\u1eacP Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: a. Ph\u00e9p t\u00ednh 12 : 3 c\u00f3 k\u1ebft qu\u1ea3 b\u1eb1ng bao nhi\u00eau? A. 3 B. 9 C. 4 b. H\u00ecnh n\u00e0o d\u01b0\u1edbi \u0111\u00e2y c\u00f3 s\u1ed1 \u00f4 vu\u00f4ng \u0111\u01b0\u1ee3c t\u00f4 m\u00e0u? AB C c. M\u1ed9t \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m hai \u0111o\u1ea1n th\u1eb3ng c\u00f3 \u0111\u1ed9 d\u00e0i l\u1ea7n l\u01b0\u1ee3t l\u00e0 2 dm v\u00e0 15cm. \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac \u0111\u00f3 l\u00e0: A. 17 cm B. 17dm C. 35cm d. 2 \u00d7 5 = ......\u00d7 2. S\u1ed1 th\u00edch h\u1ee3p \u0111\u1ec3 \u0111i\u1ec1n v\u00e0o ch\u1ed7 ch\u1ea5m l\u00e0: A. 5 B. 10 C. 2 e. C\u00f3 12 vi\u00ean bi, s\u1ed1 bi l\u00e0 : A. 4 vi\u00ean bi B. 6 vi\u00ean bi C. 24 vi\u00ean bi B\u00e0i 2: \u0110\u00fang ghi \u0110 ,sai ghi S : C\u00f3 8 qu\u1ea3 cam x\u1ebfp \u0111\u1ec1u v\u00e0o 2 \u0111\u0129a . H\u1ecfi m\u1ed7i \u0111\u0129a c\u00f3 m\u1ea5y qu\u1ea3 cam ? a) 2 qu\u1ea3 cam \u2026 b) 4 qu\u1ea3 cam \u2026 C\u00f3 8 qu\u1ea3 cam x\u1ebfp v\u00e0o c\u00e1c \u0111\u0129a , m\u1ed7i \u0111\u0129a 4 qu\u1ea3 . H\u1ecfi c\u00f3 m\u1ea5y \u0111\u0129a cam ? a) 4 \u0111\u0129a cam \u2026 b) 2 \u0111\u0129a cam \u2026 B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 h\u00ecnh tam gi\u00e1c c\u00f3 trong m\u1ed7i h\u00ecnh sau? To\u00e1n 2-1 Page 262","B\u00e0i 4: N\u1ed1i ph\u00e9p nh\u00e2n v\u1edbi hai ph\u00e9p chia th\u00edch h\u1ee3p ( theo m\u1eabu ) : 2\u00d73=6 12 : 3 = 4 3 12 : 4 = 2\u00d74=8 6 : 2=3 6 : 3=2 3 \u00d7 4 = 12 15 : 3=5 15 : 5=3 3 \u00d7 5 = 15 8 : 2=4 Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : 8 : 4=2 B\u00e0i 1: T\u00ednh nh\u1ea9m 10 : 2 = ............. 27 : 3= ............. 12 : 3 = ............. 8 : 2 = ............. 15 : 3 = ............. 20 : 2 = ............. 30 : 3= ............. 9 : 3 = ............. 18 : 3 = ............. 24 : 3 = ............. 18 : 2 = ............. 21 : 3 = ............. B\u00e0i 2: T\u00ednh 24 : 3 + =......................... 18 : 3 + =......................... 73 - 30 : =......................... 36 =......................... 26 52 - 12 : =......................... 21 : 3 + =......................... 3 =......................... 3 =......................... 54 B\u00e0i 3: T\u00ecm x: =......................... 27 : 3 + =......................... =......................... 38 =......................... x\u00d72=6 x \u00d7 3 = 18 3 \u00d7 x = 24 x \u00d7 2 = 20 3 \u00d7 x = 24 To\u00e1n 2-1 Page 263","To\u00e1n 2-1 Page 264","B\u00e0i 4: T\u00ecm th\u01b0\u01a1ng bi\u1ebft s\u1ed1 b\u1ecb chia v\u00e0 s\u1ed1 chia l\u1ea7n l\u01b0\u1ee3t l\u00e0: 12 v\u00e0 2 14 v\u00e0 2 18 v\u00e0 2 ............ .......... ........... B\u00e0i 5: T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD. B 4cm C 5 cm 3 cm D A B\u00e0i 6: \u00a0S\u1ed1? 5 \u00d7 Vi\u1ebft s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng : 10 : 2 = 4 = \u00d7 8 : 2= = B\u00e0i 7: C\u00f3 27 h\u1ecdc sinh chia v\u00e0o c\u00e1c nh\u00f3m, m\u1ed7i nh\u00f3m 3 b\u1ea1n. H\u1ecfi c\u00f3 m\u1ea5y nh\u00f3m? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 265","B\u00e0i 8: C\u00f3 15 l\u00edt d\u1ea7u chia \u0111\u1ec1u v\u00e0o 3 can. H\u1ecfi m\u1ed7i can c\u00f3 bao nhi\u00eau l\u00edt d\u1ea7u? B\u00e0i gi\u1ea3i B\u00e0i 9: C\u00f3 30 quy\u1ec3n v\u1edf th\u01b0\u1edfng cho h\u1ecdc sinh, m\u1ed7i h\u1ecdc sinh \u0111\u01b0\u1ee3c th\u01b0\u1edfng 3 quy\u1ec3n. H\u1ecfi c\u00f3 t\u1ea5t c\u1ea3 bao nhi\u00eau h\u1ecdc sinh? B\u00e0i gi\u1ea3i B\u00e0i 10: C\u00f3 12 b\u00fat ch\u00ec chia \u0111\u1ec1u v\u00e0o 3 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 m\u1ea5y b\u00fat ch\u00ec ? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 266","B\u00e0i 11\u00a0:C\u00f3 18 c\u00e1i k\u1eb9o chia \u0111\u1ec1u cho c\u00e1c b\u1ea1n, m\u1ed7i b\u1ea1n \u0111\u01b0\u1ee3c 2 c\u00e1i k\u1eb9o. H\u1ecfi t\u1ea5t c\u1ea3 c\u00f3 bao nhi\u00eau b\u1ea1n? B\u00e0i gi\u1ea3i B\u00e0i 12*: T\u00ecm hai s\u1ed1 c\u00f3 t\u1ed5ng b\u1eb1ng 10 v\u00e0 t\u00edch b\u1eb1ng 21? To\u00e1n 2-1 Page 267","\u0110\u00c1P \u00c1N e Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : A B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: C\u00e2u a b c d \u0110\u00e1p \u00e1n C C B A B\u00e0i 2: \u0110\u00fang ghi \u0110 ,sai ghi S : C\u00f3 8 qu\u1ea3 cam x\u1ebfp \u0111\u1ec1u v\u00e0o 2 \u0111\u0129a . H\u1ecfi m\u1ed7i \u0111\u0129a c\u00f3 m\u1ea5y qu\u1ea3 cam ? a) 2 qu\u1ea3 cam S b) 4 qu\u1ea3 cam \u0110 C\u00f3 8 qu\u1ea3 cam x\u1ebfp v\u00e0o c\u00e1c \u0111\u0129a , m\u1ed7i \u0111\u0129a 4 qu\u1ea3 . H\u1ecfi c\u00f3 m\u1ea5y \u0111\u0129a cam ? a) 4 \u0111\u0129a cam S b) 2 \u0111\u0129a cam \u0110 B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 h\u00ecnh tam gi\u00e1c c\u00f3 trong m\u1ed7i h\u00ecnh sau? H\u00ecnh 1: T\u00f4 m\u00e0u v\u00e0o 2 trong s\u1ed1 6 h\u00ecnh tam gi\u00e1c H\u00ecnh 2: T\u00f4 m\u00e0u v\u00e0o 4 trong s\u1ed1 12 h\u00ecnh tam gi\u00e1c H\u00ecnh 3: T\u00f4 m\u00e0u v\u00e0o 2 trong s\u1ed1 6 h\u00ecnh tam gi\u00e1c B\u00e0i 4: N\u1ed1i ph\u00e9p nh\u00e2n v\u1edbi hai ph\u00e9p chia th\u00edch h\u1ee3p ( theo m\u1eabu ) : 2\u00d73=6 12 : 3 = 4 12 : 4 = 3 2\u00d74=8 6 : 2=3 To\u00e1n 2-1 Page 268","3 \u00d7 4 = 12 6 : 3=2 15 : 3 = 5 15 : 5 = 3 3 \u00d7 5 = 15 8 : 2=4 Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : 8 : 4=2 B\u00e0i 1: T\u00ednh nh\u1ea9m 10 : 2 = 5 27 : 3= 9 12 : 3 = 4 8:2=4 9:3=3 15 : 3 = 5 20 : 2 = 10 30 : 3= 10 21 : 3 = 9 18 : 3 = 6 24 : 3 = 8 18 : 2 = 9 B\u00e0i 2: T\u00ednh 24 : 3 + 36 = 8 + 36 18 : 3 + 26 = 9 + 26 73 - 30 : 3 = 73 \u2013 10 27 : 3 + 38 = 63 = 44 = 35 = 9 + 38 = 47 52 - 12 : 3 = 52 \u2013 4 21 : 3 + 54 = 9 + 54 = 48 = 63 B\u00e0i 3: T\u00ecm x: x\u00d72 =6 x \u00d7 3 = 18 3 \u00d7 x = 24 x = 24 : 3 x =6:2 x=18:6 x =8 x =3 x=6 x \u00d7 2 = 20 3 \u00d7 x =24 x = 20 : 2 x = 24 : 3 x = 10 x =8 B\u00e0i 4: T\u00ecm th\u01b0\u01a1ng bi\u1ebft s\u1ed1 b\u1ecb chia v\u00e0 s\u1ed1 chia l\u1ea7n l\u01b0\u1ee3t l\u00e0: 12 v\u00e0 2 14 v\u00e0 2 18 v\u00e0 2 To\u00e1n 2-1 Page 269","12 : 2 = 6 14 : 2 = 7 18 : 2 =9 B\u00e0i 5: B\u00e0i gi\u1ea3i B\u00e0i 6: \u00a0S\u1ed1? \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD l\u00e0: 3 + 4 + 5 = 12 (cm) \u0110\u00e1p s\u1ed1: 12cm Vi\u1ebft s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng : 5 = 5 4 \u00d7 \u00d7 10 : 2 = 8 : 2 =4 10 = 8 B\u00e0i 7: C\u00f3 27 h\u1ecdc sinh chia v\u00e0o c\u00e1c nh\u00f3m, m\u1ed7i nh\u00f3m 3 b\u1ea1n. H\u1ecfi c\u00f3 m\u1ea5y nh\u00f3m? B\u00e0i gi\u1ea3i C\u00f3 s\u1ed1 nh\u00f3m l\u00e0: 27: 3 = 9( nh\u00f3m) \u0110\u00e1p s\u1ed1: 9 nh\u00f3m h\u1ecdc sinh B\u00e0i 8: C\u00f3 15 l\u00edt d\u1ea7u chia \u0111\u1ec1u v\u00e0o 3 can. H\u1ecfi m\u1ed7i can c\u00f3 bao nhi\u00eau l\u00edt d\u1ea7u? B\u00e0i gi\u1ea3i M\u1ed7i can c\u00f3 s\u1ed1 l\u00edt d\u1ea7u l\u00e0: 15 : 3 = 5 (l) \u0110\u00e1p s\u1ed1: 5l d\u1ea7u B\u00e0i 9: C\u00f3 30 quy\u1ec3n v\u1edf th\u01b0\u1edfng cho h\u1ecdc sinh, m\u1ed7i h\u1ecdc sinh \u0111\u01b0\u1ee3c th\u01b0\u1edfng 3 quy\u1ec3n. H\u1ecfi c\u00f3 t\u1ea5t c\u1ea3 bao nhi\u00eau h\u1ecdc sinh? B\u00e0i gi\u1ea3i C\u00f3 s\u1ed1 h\u1ecdc sinh l\u00e0: To\u00e1n 2-1 Page 270","30 : 3 = 10 ( h\u1ecdc sinh) \u0110\u00e1p s\u1ed1: 10 h\u1ecdc sinh B\u00e0i 10: C\u00f3 12 b\u00fat ch\u00ec chia \u0111\u1ec1u v\u00e0o 2 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 m\u1ea5y b\u00fat ch\u00ec ? B\u00e0i gi\u1ea3i M\u1ed7i h\u1ed9p c\u00f3 s\u1ed1 b\u00fat ch\u00ec l\u00e0: 12 : 3 = 4 ( b\u00fat ch\u00ec) \u0110\u00e1p s\u1ed1: 4 b\u00fat ch\u00ec B\u00e0i 11\u00a0: C\u00f3 18 c\u00e1i k\u1eb9o chia \u0111\u1ec1u cho c\u00e1c b\u1ea1n, m\u1ed7i b\u1ea1n \u0111\u01b0\u1ee3c 2 c\u00e1i k\u1eb9o. H\u1ecfi t\u1ea5t c\u1ea3 c\u00f3 bao nhi\u00eau b\u1ea1n? B\u00e0i gi\u1ea3i C\u00f3 t\u1ea5t c\u1ea3 s\u1ed1 b\u1ea1n l\u00e0: 18 : 2 = 9 ( b\u1ea1n) \u0110\u00e1p s\u1ed1: 9 b\u1ea1n B\u00e0i 12*: T\u00ecm hai s\u1ed1 c\u00f3 t\u1ed5ng b\u1eb1ng 10 v\u00e0 t\u00edch b\u1eb1ng 21? Hai s\u1ed1 \u0111\u00f3 l\u00e0 7 v\u00e0 3 v\u00ec 7 + 3 = 10 v\u00e0 7 \u00d7 3 = 21 H\u1ecd v\u00e0 t\u00ean:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026...................L\u1edbp A. T\u00d3M T\u1eaeT L\u00cd THUY\u1ebeT TRONG TU\u1ea6N .1. B\u1ea3ng chia 4 4: 4 = 1 24 : 4 = 6 8:4=2 28 : 4 = 7 12 : 4 = 3 32 : 4 = 8 16 : 4 = 4 36 : 4 = 9 20 : 4 = 5 40 : 4 = 10 L\u01b0u \u00fd: Trong b\u1ea3ng chia 4, k\u1ec3 t\u1eeb ph\u00e9p chia th\u1ee9 nh\u1ea5t, s\u1ed1 b\u1ecb chia t\u0103ng d\u1ea7n 4 \u0111\u01a1n v\u1ecb, s\u1ed1 chia l\u00e0 4, th\u01b0\u01a1ng t\u0103ng d\u1ea7n 1 \u0111\u01a1n v\u1ecb. To\u00e1n 2-1 Page 271","S\u1ed1 b\u1ecb chia trong m\u1ed7i ph\u00e9p t\u00ednh c\u1ee7a b\u1ea3ng chia 4 ch\u00ednh l\u00e0 t\u00edch c\u1ee7a ph\u00e9p nh\u00e2n trong b\u1ea3ng nh\u00e2n 4, th\u01b0\u01a1ng ch\u00ednh l\u00e0 th\u1eeba s\u1ed1 th\u1ee9 hai trong ph\u00e9p t\u00ednh \u0111\u00f3. 2. M\u1ed9t ph\u1ea7n t\u01b0 Chia h\u00ecnh vu\u00f4ng th\u00e0nh 4 ph\u1ea7n b\u1eb1ng nhau. L\u1ea5y m\u1ed9t ph\u1ea7n \u0111\u01b0\u1ee3c m\u1ed9t ph\u1ea7n ba h\u00ecnh vu\u00f4ng. M\u1ed9t ph\u1ea7n ba vi\u1ebft l\u00e0: 3. 1. B\u1ea3ng chia 5 5: 5 = 1 30 : 5 = 6 10 : 5 = 2 35 : 5 = 7 15 : 5 = 3 40 : 5 = 8 20 : 5 = 4 45 : 5 = 9 25 : 4 = 5 50 : 5 = 10 L\u01b0u \u00fd: Trong b\u1ea3ng chia 5, k\u1ec3 t\u1eeb ph\u00e9p chia th\u1ee9 nh\u1ea5t, s\u1ed1 b\u1ecb chia t\u0103ng d\u1ea7n 5 \u0111\u01a1n v\u1ecb, s\u1ed1 chia l\u00e0 5, th\u01b0\u01a1ng t\u0103ng d\u1ea7n 1 \u0111\u01a1n v\u1ecb. S\u1ed1 b\u1ecb chia trong m\u1ed7i ph\u00e9p t\u00ednh c\u1ee7a b\u1ea3ng chia 5 ch\u00ednh l\u00e0 t\u00edch c\u1ee7a ph\u00e9p nh\u00e2n trong b\u1ea3ng nh\u00e2n 5, th\u01b0\u01a1ng ch\u00ednh l\u00e0 th\u1eeba s\u1ed1 th\u1ee9 hai trong ph\u00e9p t\u00ednh \u0111\u00f3. Trong b\u1ea3ng chia 5, t\u1ea5t c\u1ea3 c\u00e1c s\u1ed1 b\u1ecb chia \u0111\u1ec1u c\u00f3 t\u1eadn c\u00f9ng l\u00e0 ch\u1eef s\u1ed1 0 ho\u1eb7c 5 To\u00e1n 2-1 Page 272","B. B\u00c0I T\u1eacP Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: a. Ph\u00e9p t\u00ednh 20 : 5 c\u00f3 k\u1ebft qu\u1ea3 b\u1eb1ng bao nhi\u00eau? A. 3 B. 4 C. 5 b. H\u00ecnh n\u00e0o d\u01b0\u1edbi \u0111\u00e2y c\u00f3 s\u1ed1 \u00f4 vu\u00f4ng \u0111\u01b0\u1ee3c t\u00f4 m\u00e0u? AB C c. S\u1ed1 n\u00e0o chia cho 4 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 8: A. 2 B. 8 C. 32 d. C\u00f3 20 vi\u00ean bi, s\u1ed1 bi l\u00e0 : A. 5 vi\u00ean bi B. 4 vi\u00ean bi C. 16 vi\u00ean bi e*. C\u00f3 38 h\u1ecdc sinh, m\u1ed7i b\u00e0n ng\u1ed3i \u0111\u01b0\u1ee3c 4 h\u1ecdc sinh. H\u1ecfi c\u1ea7n \u00edt nh\u1ea5t bao nhi\u00eau b\u00e0n \u0111\u1ec3 ng\u1ed3i h\u1ebft s\u1ed1 h\u1ecdc sinh \u0111\u00f3? A. 9 b\u00e0n B. 10 b\u00e0n C. 11 b\u00e0n B\u00e0i 2: : S\u1ed1? a) : 4 :3 \u00d72 :4 b) \u00d7 8 :4 :4 \u00d73 B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 \u00f4 vu\u00f4ng \u1edf m\u1ed7i h\u00ecnh : To\u00e1n 2-1 Page 273","Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : B\u00e0i 1: T\u00ednh 4 \u00d7 5 : 2 25 : 5 \u00d7 3 3 \u00d7 6 : 2 3\u00d73\u00d71 5\u00d76:3 9:3\u00d72 ................... .................... .................... .................... .................... .................... . . . . .................... .................... ................... . . .................... .................... .................... . . . . .................... .................... ................... . . .................... .................... .................... . . . . B\u00e0i 2: S\u1ed1? S\u1ed1 b\u1ecb chia 10 8 25 16 35 28 32 50 40 S\u1ed1 chia 5 4 5 4 5 4 4 5 4 Th\u01b0\u01a1ng b. Vi\u1ebft c\u00e1c s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng? Th\u1eeba s\u1ed1 3 3 3 3 3 3 5 5 3 2 4 5 Th\u1eeba s\u1ed1 92 8 7 6 T\u00edch 18 3 15 25 21 28 45 B\u00e0i 3: T\u00ecm x: c) x \u00d7 4 = 16 e) x \u00d7 3 = 12 a) x \u00d7 5 = 20 b) x + 5 = 20 d) x - 4 = 16 g) x + 3 = 12 B\u00e0i 4: : \u0110i\u1ec1n d\u1ea5u > , <, = v\u00e0o ch\u1ed7 ch\u1ea5m (\u2026.) To\u00e1n 2-1 Page 274","3 cm \u00d7 5 \u2013 7 cm \u2026\u2026 2 cm \u00d7 9 \u2013 8 cm 9 kg \u00d7 3 + 34 kg \u2026\u2026. 6 kg \u00d7 3 + 5 kg 4l \u00d7 5 \u2013 8l \u2026\u2026. 8l \u00d7 5 \u2013 28 l 7 dm \u00d7 3 - 8 dm \u2026\u2026.. 9 dm \u00d7 4 \u2013 17 dm B\u00e0i 5: \u00a0T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD nh\u01b0 h\u00ecnh sau: 4cm 7 cm B\u00e0i 6: C\u00f3 20 b\u00f4ng hoa \u0111\u01b0\u1ee3c c\u1eafm \u0111\u1ec1u v\u00e0o 4 b\u00ecnh hoa. H\u1ecfi m\u1ed7i b\u00ecnh hoa c\u00f3 m\u1ea5y b\u00f4ng hoa? B\u00e0i gi\u1ea3i B\u00e0i 7: Gi\u1ea3i b\u00e0i to\u00e1n theo t\u00f3m t\u1eaft sau? 1 b\u00ecnh: 5 b\u00f4ng hoa 15 b\u00f4ng hoa: ? b\u00ecnh B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 275","B\u00e0i 8: C\u00f3 36 vi\u00ean bi chia \u0111\u1ec1u cho c\u00e1c b\u1ea1n, m\u1ed7i b\u1ea1n \u0111\u01b0\u1ee3c 4 vi\u00ean. H\u1ecfi c\u00f3 m\u1ea5y b\u1ea1n \u0111\u01b0\u1ee3c nh\u1eadn bi? B\u00e0i gi\u1ea3i B\u00e0i 9: L\u1edbp 2B c\u00f3 35 h\u1ecdc sinh x\u1ebfp \u0111\u1ec1u th\u00e0nh 5 h\u00e0ng . H\u1ecfi m\u1ed7i h\u00e0ng c\u00f3 bao nhi\u00eau h\u1ecdc sinh ? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 276","B\u00e0i 10\u00a0:L\u1edbp 2C c\u00f3 35 h\u1ecdc sinh x\u1ebfp th\u00e0nh c\u00e1c h\u00e0ng , m\u1ed7i h\u00e0ng c\u00f3 5 h\u1ecdc sinh . H\u1ecfi l\u1edbp 2C x\u1ebfp th\u00e0nh bao nhi\u00eau h\u00e0ng? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 277","\u0110\u00c1P \u00c1N Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : e B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: B C\u00e2u a b c d :4 \u0110\u00e1p \u00e1n B C C A B\u00e0i 2: : S\u1ed1? a) : 4 :3 \u00d72 b) \u00d7 8 :4 :4 \u00d73 B\u00e0i 3: T\u00f4 m\u00e0u s\u1ed1 \u00f4 vu\u00f4ng \u1edf m\u1ed7i h\u00ecnh : Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : B\u00e0i 1: T\u00ednh 4\u00d75:2 25 : 5 \u00d7 3 3\u00d76:2 3\u00d73\u00d73 5\u00d76:3 9 :3\u00d72 = 18 : 2 =9\u00d73 = 30 : 3 =3\u00d72 = 20 : 2 =5\u00d73 =9 = 27 = 10 =6 = 10 = 15 B\u00e0i 2: S\u1ed1? S\u1ed1 b\u1ecb chia 10 8 25 16 35 28 32 50 40 4 S\u1ed1 chia 5 4 5 4 5 4 4 5 10 Th\u01b0\u01a1ng 2 4 5 4 7 7 8 10 b. Vi\u1ebft c\u00e1c s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng? Th\u1eeba s\u1ed1 3 3 3 3 3 3 5 5 3 2 4 5 Th\u1eeba s\u1ed1 6 1 9 2 5 8 5 7 7 6 7 9 To\u00e1n 2-1 Page 278","T\u00edch 18 3 27 6 15 24 25 35 21 12 28 45 B\u00e0i 3: T\u00ecm x: a)x \u00d7 5 =20 c) x \u00d7 4 = 16 e) x \u00d7 3 = 12 x = 20 : 5 x = 16 : 4 = 12 : 3 x =4 x =4 =4 b) x + 5 = 20 d) x \u2013 4 = 16 g) x + 3 = 12 x = 20 \u2013 5 x = 16 + 4 = 12 \u2013 3 x = 15 x = 20 =9 B\u00e0i 4: : \u0110i\u1ec1n d\u1ea5u > , <, = v\u00e0o ch\u1ed7 ch\u1ea5m (\u2026.) 3 cm \u00d7 5 \u2013 7 cm < 2 cm \u00d7 9 \u2013 8 cm 9 kg \u00d7 3 + 34 kg > 6 kg \u00d7 3 + 5 kg 4 l \u00d7 5 \u2013 8l = 8 l \u00d7 5 \u2013 28 l 7 dm \u00d7 3 - 8 dm < 9 dm \u00d7 4 \u2013 17 dm B\u00e0i 5: \u00a0T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD nh\u01b0 h\u00ecnh sau: B\u00e0i gi\u1ea3i 4cm \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac ABCD l\u00e0: 7 cm 4 + 7 + 3 = 14 (cm) \u0110\u00e1p s\u1ed1: 14cm B\u00e0i 6: C\u00f3 20 b\u00f4ng hoa \u0111\u01b0\u1ee3c c\u1eafm \u0111\u1ec1u v\u00e0o 4 b\u00ecnh hoa. H\u1ecfi m\u1ed7i b\u00ecnh hoa c\u00f3 m\u1ea5y b\u00f4ng hoa? B\u00e0i gi\u1ea3i M\u1ed7i b\u00ecnh c\u00f3 s\u1ed1 b\u00f4ng hoa l\u00e0: 20 : 4 = 5 ( b\u00f4ng hoa) \u0110\u00e1p s\u1ed1: 5 b\u00f4ng hoa B\u00e0i 7: Gi\u1ea3i b\u00e0i to\u00e1n theo t\u00f3m t\u1eaft sau? 1 b\u00ecnh: 5 b\u00f4ng hoa 15 b\u00f4ng hoa: ? b\u00ecnh B\u00e0i gi\u1ea3i 15 b\u00f4ng hoa \u0111\u01b0\u1ee3c c\u1eafm v\u00e0o s\u1ed1 b\u00ecnh l\u00e0: To\u00e1n 2-1 Page 279","15 : 5 = 3 ( b\u00ecnh) \u0110\u00e1p s\u1ed1: 3 b\u00ecnh hoa B\u00e0i 8: C\u00f3 36 vi\u00ean bi chia \u0111\u1ec1u cho c\u00e1c b\u1ea1n, m\u1ed7i b\u1ea1n \u0111\u01b0\u1ee3c 4 vi\u00ean. H\u1ecfi c\u00f3 m\u1ea5y b\u1ea1n \u0111\u01b0\u1ee3c nh\u1eadn bi? B\u00e0i gi\u1ea3i C\u00f3 s\u1ed1 b\u1ea1n \u0111\u01b0\u1ee3c nh\u1eadn bi l\u00e0: 36 : 4 = 9 ( b\u1ea1n) \u0110\u00e1p s\u1ed1: 9 b\u1ea1n \u0111\u01b0\u1ee3c nh\u1eadn bi B\u00e0i 9: L\u1edbp 2B c\u00f3 35 h\u1ecdc sinh x\u1ebfp \u0111\u1ec1u th\u00e0nh 5 h\u00e0ng . H\u1ecfi m\u1ed7i h\u00e0ng c\u00f3 bao nhi\u00eau h\u1ecdc sinh ? B\u00e0i gi\u1ea3i M\u1ed7i h\u00e0ng c\u00f3 s\u1ed1 h\u1ecdc sinh l\u00e0: 35 : 5 = 7 ( h\u1ecdc sinh) \u0110\u00e1p s\u1ed1: 7 h\u1ecdc sinh B\u00e0i 10\u00a0:L\u1edbp 2C c\u00f3 35 h\u1ecdc sinh x\u1ebfp th\u00e0nh c\u00e1c h\u00e0ng , m\u1ed7i h\u00e0ng c\u00f3 5 h\u1ecdc sinh . H\u1ecfi l\u1edbp 2C x\u1ebfp th\u00e0nh bao nhi\u00eau h\u00e0ng? B\u00e0i gi\u1ea3i L\u1edbp 2C x\u1ebfp \u0111\u01b0\u1ee3c s\u1ed1 h\u00e0ng l\u00e0: 35 : 5 = 7 ( h\u1ecdc sinh) \u0110\u00e1p s\u1ed1: 7 h\u1ecdc sinh To\u00e1n 2-1 Page 280","H\u1ecd v\u00e0 t\u00ean:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026...................L\u1edbp A. T\u00d3M T\u1eaeT L\u00cd THUY\u1ebeT TRONG TU\u1ea6N .1. M\u1ed9t ph\u1ea7n n\u0103m Chia h\u00ecnh vu\u00f4ng th\u00e0nh 5 ph\u1ea7n b\u1eb1ng nhau. L\u1ea5y m\u1ed9t ph\u1ea7n \u0111\u01b0\u1ee3c m\u1ed9t ph\u1ea7n n\u0103m h\u00ecnh vu\u00f4ng. M\u1ed9t ph\u1ea7n n\u0103m vi\u1ebft l\u00e0: 3. Gi\u1edd, ph\u00fat 1 gi\u1edd = 60 ph\u00fat. 1 ph\u00fat = 60 gi\u00e2y 1 ng\u00e0y c\u00f3 24 gi\u1edd 2 gi\u1edd 30 ph\u00fat hay c\u00f2n g\u1ecdi l\u00e0 2 gi\u1edd r\u01b0\u1ee1i. C\u00e1ch xem gi\u1edd khi kim ph\u00fat ch\u1ec9 v\u00e0o s\u1ed1\u00a012, s\u1ed1\u00a03\u00a0ho\u1eb7c s\u1ed1\u00a06. - X\u00e1c \u0111\u1ecbnh kim ch\u1ec9 gi\u1edd v\u00e0 ch\u1ec9 ph\u00fat: Kim ng\u1eafn ch\u1ec9 s\u1ed1 gi\u1edd, kim d\u00e0i ch\u1ec9 s\u1ed1 ph\u00fat. - Khi kim ph\u00fat ch\u1ec9 v\u00e0o s\u1ed1 12 th\u00ec em \u0111\u1ecdc gi\u1edd nguy\u00ean; - Kim ph\u00fat ch\u1ec9 v\u00e0o s\u1ed1 3 th\u00ec em \u0111\u1ecdc s\u1ed1 gi\u1edd v\u00e0 15 ph\u00fat; - Kim ph\u00fat ch\u1ec9 v\u00e0o s\u1ed1 6 th\u00ec em \u0111\u1ecdc s\u1ed1 gi\u1edd v\u00e0 30 ph\u00fat ho\u1eb7c \u201cr\u01b0\u1ee1i\u201d. V\u00ed d\u1ee5: To\u00e1n 2-1 Page 281","To\u00e1n 2-1 Page 282","B. B\u00c0I T\u1eacP C\u01a0 B\u1ea2N Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: a. H\u00ecnh n\u00e0o \u0111\u00e3 t\u00f4 m\u00e0u m\u1ed9t ph\u1ea7n n\u0103m h\u00ecnh: AB C b. M\u1ed7i bu\u1ed5i s\u00e1ng Mai t\u1eadp th\u1ec3 d\u1ee5c t\u1eeb 6 gi\u1edd \u0111\u1ebfn 6 gi\u1edd 30 ph\u00fat. V\u1eady Mai t\u1eadp th\u1ec3 d\u1ee5c trong...... ph\u00fat. S\u1ed1 th\u00edch h\u1ee3p \u0111\u1ec3 \u0111i\u1ec1n v\u00e0o ch\u1ed7 ch\u1ea5m l\u00e0: A. 6 ph\u00fat B. 10 ph\u00fat C. 30 ph\u00fat c. \u0110\u1ed3ng h\u1ed3 ch\u1ec9 m\u1ea5y gi\u1edd? A. 7 gi\u1edd 3 ph\u00fat B. 7 gi\u1edd 15 ph\u00fat C. 3 gi\u1edd 7 ph\u00fat d. Trong chu\u1ed3ng c\u00f3 15 con th\u1ecf, s\u1ed1 th\u1ecf trong m\u1ed7i chu\u1ed3ng l\u00e0: A. 5 con B. 10 con C. 3con B\u00e0i 2: V\u1ebd th\u00eam kim ph\u00fat v\u00e0o m\u1ed7i \u0111\u1ed3ng h\u1ed3 \u1ee9ng v\u1edbi \u0111\u1ed3ng h\u1ed3 \u0111i\u1ec7n t\u1eed : B\u00e0i 3: N\u1ed1i h\u00ecnh v\u1ebd \u0111\u00e3 t\u00f4 m\u00e0u h\u00ecnh \u0111\u00f3 v\u1edbi To\u00e1n 2-1 Page 283","B\u00e0i 4: N\u1ed1i m\u1ed7i c\u00e2u v\u1edbi \u0111\u1ed3ng h\u1ed3 th\u00edch h\u1ee3p: Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : Page 284 To\u00e1n 2-1","B\u00e0i 1: T\u00ednh b) 5 \u00d7 4 = ...................... c) 35 : 5 = ................ a) 5 gi\u1edd + 2 gi\u1edd = 20 : 5 = ................ 25 : 5= ................ 5 \u00d7 3 = ................ 20 : 5 = ................ 6 gi\u1edd + 3 gi\u1edd = 5 : 5 = ................ 45 : 5 = ................ 8 gi\u1edd + 4 gi\u1edd = 7 gi\u1edd + 6 gi\u1edd = To\u00e1n 2-1 Page 285","B\u00e0i 2: \u0110\u1ed3ng h\u1ed3 ch\u1ec9 m\u1ea5y gi\u1edd ................................. ................................. ................................. ................................. B\u00e0i 3: T\u00ecm x: x+2=4 x \u00d7 3 = 12 x\u00d73=6 x - 3 = 12 .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... 5 + x = 52 - 25 x + 4 = 20 + 16 x \u00d7 4 = 20 + 8 5 \u00d7 x = 50 - 25 .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... .......................... B\u00e0i 4: : Ph\u01b0\u01a1ng ng\u1ee7 d\u1eady l\u00fac 6 gi\u1edd 15 ph\u00fat, Mai ng\u1ee7 d\u1eady l\u00fac 6 gi\u1edd. Ai ng\u1ee7 d\u1eady mu\u1ed9n h\u01a1n? V\u00e2n \u0111i ng\u1ee7 l\u00fac 21 gi\u1edd 15 ph\u00fat, \u0110\u1ea1t \u0111i ng\u1ee7 l\u00fac 21 gi\u1edd 30 ph\u00fat. Ai \u0111i ng\u1ee7 s\u1edbm h\u01a1n? B\u00e0i 5: \u00a0S\u1ed1? 3\u00d76= 4\u00d78= : 3 : = 2 = Page 286 To\u00e1n 2-1","B\u00e0i 6: M\u1ed7i chu\u1ed3ng c\u00f3 4 con g\u00e0. H\u1ecfi 5 chu\u1ed3ng nh\u01b0 th\u1ebf th\u00ec c\u00f3 bao nhi\u00eau con g\u00e0? B\u00e0i gi\u1ea3i B\u00e0i 7: L\u1edbp 2B c\u00f3 35 h\u1ecdc sinh x\u1ebfp \u0111\u1ec1u th\u00e0nh 5 h\u00e0ng . H\u1ecfi m\u1ed7i h\u00e0ng c\u00f3 bao nhi\u00eau h\u1ecdc sinh B\u00e0i gi\u1ea3i B\u00e0i 8: C\u00f3 12 c\u00e1i b\u00e1nh x\u1ebfp \u0111\u1ec1u v\u00e0o 4 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 bao nhi\u00eau c\u00e1i b\u00e1nh ? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 287","B\u00e0i 9: Vi\u1ebft ti\u1ebfp v\u00e0o ch\u1ed7 tr\u1ed1ng: a. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 2 \u0111o\u1ea1n th\u1eb3ng l\u00e0:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. b. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 3 \u0111o\u1ea1n th\u1eb3ng l\u00e0:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. c. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 4 \u0111o\u1ea1n th\u1eb3ng l\u00e0:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. d. T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac NPQH. e. T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ. d. B\u00e0i gi\u1ea3i: M \u2026\u2026\u2026H\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. e. B\u00e0i gi\u1ea3i: \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 To\u00e1n 2-1 Page 288","\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. B\u00e0i 10\u00a0: Gi\u1ea3i b\u00e0i to\u00e1n d\u1ef1a theo t\u00f3m t\u1eaft sau: 5 bao g\u1ea1o : 45 kg 1 bao g\u1ea1o: ...kg? B\u00e0i gi\u1ea3i C. B\u00c0I T\u1eacP N\u00c2NG CAO B\u00e0i 1*: M\u1ed9t ph\u00e9p t\u00ednh c\u00f3 t\u00edch l\u00e0 s\u1ed1 li\u1ec1n sau s\u1ed1 14. Th\u1eeba s\u1ed1 th\u1ee9 nh\u1ea5t l\u00e0 s\u1ed1 l\u1edbn h\u01a1n 4 nh\u01b0ng b\u00e9 h\u01a1n 6. T\u00ecm th\u1eeba s\u1ed1 th\u1ee9 hai B\u00e0i 2*: T\u00ecm s\u1ed1 l\u1edbn nh\u1ea5t m\u00e0 khi \u0111em 5 nh\u00e2n v\u1edbi s\u1ed1 \u0111\u00f3 v\u1eabn nh\u1ecf h\u01a1n 40. B\u00e0i 3*: T\u00ecm s\u1ed1 b\u00e9 nh\u1ea5t c\u00f3 hai ch\u1eef s\u1ed1 m\u00e0 th\u01b0\u01a1ng c\u1ee7a hai ch\u1eef s\u1ed1 \u0111\u00f3 b\u1eb1ng 5 To\u00e1n 2-1 Page 289","B\u00e0i 4*: Cho ph\u00e9p t\u00ednh 15 : 5 = 3. H\u00e3y l\u1eadp m\u1ed9t b\u00e0i to\u00e1n c\u00f3 s\u1eed d\u1ee5ng ph\u00e9p t\u00ednh tr\u00ean v\u00e0 gi\u1ea3i b\u00e0i to\u00e1n \u0111\u00f3. B\u00e0i 5*: H\u00e0 b\u1eaft \u0111\u1ea7u \u0111i h\u1ecdc t\u1eeb nh\u00e0 l\u00fac 7 gi\u1edd. Sau 30 ph\u00fat th\u00ec H\u00e0 \u0111\u1ebfn tr\u01b0\u1eddng. H\u1ecfi l\u00fac H\u00e0 \u0111\u1ebfn tr\u01b0\u1eddng th\u00ec kim ph\u00fat c\u1ee7a \u0111\u1ed3ng h\u1ed3 ch\u1ec9 s\u1ed1 m\u1ea5y? To\u00e1n 2-1 Page 290","\u0110\u00c1P AN B\u00c0I T\u1eacP C\u01a0 B\u1ea2N Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: C\u00e2u a b c d \u0110\u00e1p \u00e1n B C B A B\u00e0i 2: V\u1ebd th\u00eam kim ph\u00fat v\u00e0o m\u1ed7i \u0111\u1ed3ng h\u1ed3 \u1ee9ng v\u1edbi \u0111\u1ed3ng h\u1ed3 \u0111i\u1ec7n t\u1eed : B\u00e0i 3: N\u1ed1i h\u00ecnh v\u1ebd \u0111\u00e3 t\u00f4 m\u00e0u h\u00ecnh \u0111\u00f3 v\u1edbi B\u00e0i 4: N\u1ed1i m\u1ed7i c\u00e2u v\u1edbi \u0111\u1ed3ng h\u1ed3 th\u00edch h\u1ee3p: To\u00e1n 2-1 Page 291","Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : B\u00e0i 1: T\u00ednh a) 5 gi\u1edd + 2 gi\u1edd = 7 gi\u1edd b) 5 \u00d7 4 = 20 c) 35 : 5 = 7 25 : 5= 5 6 gi\u1edd + 3 gi\u1edd = 9 gi\u1edd 20 : 5 = 4 20 : 5 = 4 45 : 5 = 9 8 gi\u1edd + 4 gi\u1edd = 12 gi\u1edd 5 \u00d7 3 = 15 5 gi\u1edd 15 ph\u00fat 7 gi\u1edd + 6 gi\u1edd = 13 gi\u1edd 5:5=1 B\u00e0i 2: \u0110\u1ed3ng h\u1ed3 ch\u1ec9 m\u1ea5y gi\u1edd 4 gi\u1edd 30 ph\u00fat To\u00e1n 2-1 Page 292","10 gi\u1edd 8 gi\u1edd 30 ph\u00fat B\u00e0i 3: T\u00ecm x: x+2 =4 x \u00d7 3 = 12 x\u00d73 =6 x \u2013 3 = 12 x =4\u20132 x = 12 : 3 x = 6:3 x = 12 + 3 x =2 x =4 x =2 x = 15 5 + x = 52 \u2013 25 x + 4 = 20 + 16 x \u00d7 4 = 20 + 8 5 \u00d7 x = 50 \u2013 25 5 + x = 30 x + 4 = 36 x \u00d7 4 = 28 5 \u00d7 x = 25 x = 30 \u2013 5 x = 36 \u2013 4 x = 28 : 4 x = 25 : 5 x = 25 x = 32 x =7 x =5 B\u00e0i 4: : Ph\u01b0\u01a1ng ng\u1ee7 d\u1eady l\u00fac 6 gi\u1edd 15 ph\u00fat, Mai ng\u1ee7 d\u1eady l\u00fac 6 gi\u1edd. Ai ng\u1ee7 d\u1eady mu\u1ed9n h\u01a1n? Ph\u01b0\u01a1ng ng\u1ee7 d\u1eady mu\u1ed9n h\u01a1n. V\u00e2n \u0111i ng\u1ee7 l\u00fac 21 gi\u1edd 15 ph\u00fat, \u0110\u1ea1t \u0111i ng\u1ee7 l\u00fac 21 gi\u1edd 30 ph\u00fat. Ai \u0111i ng\u1ee7 s\u1edbm h\u01a1n? V\u00e2n \u0111i ng\u1ee7 s\u1edbm h\u01a1n B\u00e0i 5: \u00a0S\u1ed1? 4 \u00d7 8 = 32 3 \u00d7 6 = 18 :: 23 == 42 B\u00e0i 6: M\u1ed7i chu\u1ed3ng c\u00f3 4 con g\u00e0. H\u1ecfi 5 chu\u1ed3ng nh\u01b0 th\u1ebf th\u00ec c\u00f3 bao nhi\u00eau con g\u00e0? B\u00e0i gi\u1ea3i 5 chu\u1ed3ng nh\u01b0 th\u1ebf th\u00ec c\u00f3 s\u1ed1 con g\u00e0 l\u00e0: 5 \u00d7 4 = 20 ( con g\u00e0) \u0110\u00e1p s\u1ed1: 20 con g\u00e0 B\u00e0i 7: L\u1edbp 2B c\u00f3 35 h\u1ecdc sinh x\u1ebfp \u0111\u1ec1u th\u00e0nh 5 h\u00e0ng . H\u1ecfi m\u1ed7i h\u00e0ng c\u00f3 bao nhi\u00eau h\u1ecdc sinh ? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 293","M\u1ed7i h\u00e0ng c\u00f3 s\u1ed1 h\u1ecdc sinh l\u00e0: 35 : 5 = 7 ( h\u1ecdc sinh) \u0110\u00e1p s\u1ed1: 7 h\u1ecdc sinh B\u00e0i 8: C\u00f3 12 c\u00e1i b\u00e1nh x\u1ebfp \u0111\u1ec1u v\u00e0o 4 h\u1ed9p . H\u1ecfi m\u1ed7i h\u1ed9p c\u00f3 bao nhi\u00eau c\u00e1i b\u00e1nh ? B\u00e0i gi\u1ea3i M\u1ed7i h\u1ed9p c\u00f3 s\u1ed1 b\u00e1nh l\u00e0: 12 : 4 = 3 ( c\u00e1i) \u0110\u00e1p s\u1ed1: 3 c\u00e1i b\u00e1nh B\u00e0i 9: Vi\u1ebft ti\u1ebfp v\u00e0o ch\u1ed7 tr\u1ed1ng: a. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 2 \u0111o\u1ea1n th\u1eb3ng l\u00e0: MNP, NPQ, PQH b. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 3 \u0111o\u1ea1n th\u1eb3ng l\u00e0: MNPQ, NPQH c. Trong h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y, \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac g\u1ed3m 4 \u0111o\u1ea1n th\u1eb3ng l\u00e0: MNPQH d. T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac NPQH. e. T\u00ednh \u0111\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ. d. B\u00e0i gi\u1ea3i: M \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac NPQH l\u00e0: H 4 \u00d7 3 = 12 (cm) \u0110\u00e1p s\u1ed1: 12 cm e. B\u00e0i gi\u1ea3i: \u0110\u1ed5i 40cm = 4dm \u0110\u1ed9 d\u00e0i \u0111\u01b0\u1eddng g\u1ea5p kh\u00fac MNPQ l\u00e0: 4 \u00d7 3 = 12 (cm) \u0110\u00e1p s\u1ed1: 12 cm B\u00e0i 10\u00a0: Gi\u1ea3i b\u00e0i to\u00e1n d\u1ef1a theo t\u00f3m t\u1eaft sau: 5 bao g\u1ea1o : 45 kg 1 bao g\u1ea1o: ...kg? B\u00e0i gi\u1ea3i 1 bao g\u1ea1o n\u1eb7ng s\u1ed1 ki-l\u00f4-gam l\u00e0: 45 : 5 = 9 ( kg) To\u00e1n 2-1 Page 294","\u0110\u00e1p s\u1ed1: 9 kg g\u1ea1o \u0110\u00c1P AN B\u00c0I T\u1eacP N\u00c2NG CAO B\u00e0i 1*: M\u1ed9t ph\u00e9p t\u00ednh c\u00f3 t\u00edch l\u00e0 s\u1ed1 li\u1ec1n sau s\u1ed1 14. Th\u1eeba s\u1ed1 th\u1ee9 nh\u1ea5t l\u00e0 s\u1ed1 l\u1edbn h\u01a1n 4 nh\u01b0ng b\u00e9 h\u01a1n 6. T\u00ecm th\u1eeba s\u1ed1 th\u1ee9 hai T\u00edch l\u00e0: 15 Th\u1eeba s\u1ed1 th\u1ee9 nh\u1ea5t l\u00e0 5 Th\u1eeba s\u1ed1 th\u1ee9 hai l\u00e0: 15 : 5 = 3 B\u00e0i 2*: T\u00ecm s\u1ed1 l\u1edbn nh\u1ea5t m\u00e0 khi \u0111em 5 nh\u00e2n v\u1edbi s\u1ed1 \u0111\u00f3 v\u1eabn nh\u1ecf h\u01a1n 40. C\u00e1c s\u1ed1 nh\u00e2n v\u1edbi 3 \u0111\u01b0\u1ee3c t\u00edch l\u00e0 s\u1ed1 40 l\u00e0 : 0, 1, 2, 3, 4,5, 6, 7 Trong c\u00e1c s\u1ed1 \u0111\u00f3, s\u1ed1 l\u1edbn nh\u1ea5t l\u00e0 7. V\u1eady s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 7. B\u00e0i 3*: T\u00ecm s\u1ed1 b\u00e9 nh\u1ea5t c\u00f3 hai ch\u1eef s\u1ed1 m\u00e0 th\u01b0\u01a1ng c\u1ee7a hai ch\u1eef s\u1ed1 \u0111\u00f3 b\u1eb1ng 5 S\u1ed1 b\u00e9 nh\u1ea5t c\u00f3 hai ch\u1eef s\u1ed1 c\u00f3 s\u1ed1 ch\u1ee5c l\u00e0 1. Th\u01b0\u01a1ng c\u1ee7a hai ch\u1eef s\u1ed1 \u0111\u00f3 b\u1eb1ng 5 v\u1eady s\u1ed1 \u0111\u01a1n v\u1ecb l\u00e0 5 v\u00ec 5 : 1 = 5 V\u1eady s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 15 B\u00e0i 4*: Cho ph\u00e9p t\u00ednh 15 : 5 = 3. H\u00e3y l\u1eadp m\u1ed9t b\u00e0i to\u00e1n c\u00f3 s\u1eed d\u1ee5ng ph\u00e9p t\u00ednh tr\u00ean v\u00e0 gi\u1ea3i b\u00e0i to\u00e1n \u0111\u00f3. B\u00e0i to\u00e1n: C\u00f3 15 b\u00f4ng hoa \u0111\u01b0\u1ee3c c\u1eafm v\u00e0o c\u00e1c b\u00ecnh hoa. M\u1ed7i b\u00ecnh c\u00f3 5 b\u00f4ng hoa. H\u1ecfi c\u00f3 bao nhi\u00eau b\u00ecnh hoa? B\u00e0i gi\u1ea3i C\u00f3 s\u1ed1 b\u00ecnh hoa l\u00e0: 15 : 5 = 3 ( b\u00ecnh hoa) \u0110\u00e1p s\u1ed1: 3 b\u00ecnh hoa B\u00e0i 5*: H\u00e0 b\u1eaft \u0111\u1ea7u \u0111i h\u1ecdc t\u1eeb nh\u00e0 l\u00fac 7 gi\u1edd. Sau 30 ph\u00fat th\u00ec H\u00e0 \u0111\u1ebfn tr\u01b0\u1eddng. H\u1ecfi l\u00fac H\u00e0 \u0111\u1ebfn tr\u01b0\u1eddng th\u00ec kim ph\u00fat c\u1ee7a \u0111\u1ed3ng h\u1ed3 ch\u1ec9 s\u1ed1 m\u1ea5y? L\u00fac H\u00e0 \u0111\u1ebfn tr\u01b0\u1eddng l\u00e0 7 gi\u1edd 30 ph\u00fat. Khi \u0111\u00f3 kim ph\u00fat c\u1ee7a \u0111\u1ed3ng h\u1ed3 ch\u1ec9 s\u1ed1 6. To\u00e1n 2-1 Page 295","H\u1ecd v\u00e0 t\u00ean:\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026...................L\u1edbp A. T\u00d3M T\u1eaeT L\u00cd THUY\u1ebeT TRONG TU\u1ea6N .1. T\u00ecm s\u1ed1 b\u1ecb chia Cho a : b = c n\u00ean a = b \u00d7 c Mu\u1ed1n t\u00ecm s\u1ed1 b\u1ecb chia ta l\u1ea5y th\u01b0\u01a1ng nh\u00e2n v\u1edbi s\u1ed1 chia. 2. Chu vi h\u00ecnh tam gi\u00e1c \u2013 chu vi h\u00ecnh t\u1ee9 gi\u00e1c - Chu vi h\u00ecnh tam gi\u00e1c l\u00e0 t\u1ed5ng \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh c\u1ee7a h\u00ecnh tam gi\u00e1c. Chu vi tam gi\u00e1c ABC = AB + BC + CA - Chu vi c\u1ee7a t\u1ee9 gi\u00e1c l\u00e0 t\u1ed5ng \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh c\u1ee7a h\u00ecnh t\u1ee9 gi\u00e1c. Chu vi t\u1ee9 gi\u00e1c ABCD = AB + BC + CD + DA B. B\u00c0I T\u1eacP Ph\u1ea7n 1. B\u00e0i t\u1eadp tr\u1eafc nghi\u1ec7m : B\u00e0i 1: Khoanh v\u00e0o ch\u1eef c\u00e1i tr\u01b0\u1edbc \u00fd \u0111\u00fang trong m\u1ed7i c\u00e2u sau: a. T\u1eeb 12 gi\u1edd tr\u01b0a \u0111\u1ebfn 12 gi\u1edd \u0111\u00eam c\u00f3 s\u1ed1 gi\u1edd l\u00e0: A. 13 gi\u1edd B. 24 gi\u1edd C. 12 gi\u1edd To\u00e1n 2-1 Page 296","b. B\u00e1c Xu\u00e2n \u0111\u1ebfn nh\u00e0 m\u00e1y l\u00fac 7 gi\u1edd r\u01b0\u1ee1i . B\u00e1c Thu \u0111\u1ebfn nh\u00e0 m\u00e1y l\u00fac 7 gi\u1edd 15 ph\u00fat . H\u1ecfi ai \u0111\u1ebfn nh\u00e0 m\u00e1y s\u01a1m h\u01a1n ? A. B\u00e1c Xu\u00e2n B. Hai b\u00e1c \u0111\u1ebfn c\u00f9ng m\u1ed9t l\u00fac C. B\u00e1c Thu c. T\u00ednh chi vi h\u00ecnh tam gi\u00e1c c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 3 cm , 4 cm , 5 cm. A. 12 cm B. 12 dm C. 15 cm d. So s\u00e1nh chu vi h\u00ecnh tam gi\u00e1c ABC v\u1edbi chu vi h\u00ecnh t\u1ee9 gi\u00e1c MNPQ : A. Chu vi h\u00ecnh tam gi\u00e1c ABC b\u1eb1ng chu vi h\u00ecnh t\u1ee9 gi\u00e1c MNPQ. B. Chu vi h\u00ecnh tam gi\u00e1c ABC b\u00e9 h\u01a1n chu vi h\u00ecnh t\u1ee9 gi\u00e1c MNPQ. C. Chu vi h\u00ecnh tam gi\u00e1c ABC l\u1edbn h\u01a1n chu vi h\u00ecnh t\u1ee9 gi\u00e1c MNPQ. e. T\u00ecm x: x : 7 = 5 A. 2 B. 35 C. 28 D. 12 B\u00e0i 2: N\u1ed1i ( theo m\u1eabu ) : 21 32 27 30 18 10 B\u00e0i 3: T\u00f4 m\u00e0u v\u00e0o s\u1ed1 \u00f4 vu\u00f4ng \u1edf m\u1ed7i h\u00ecnh : To\u00e1n 2-1 Page 297","B\u00e0i 4: \u0110\u00fang ghi \u0110 ; sai ghi S : T\u00ednh chu vi h\u00ecnh t\u1ee9 gi\u00e1c c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 21 dm ; 22 dm ; 23 dm v\u00e0 24 dm. a) 80 dm \u2026 b) 90 dm \u2026 T\u00ecm x bi\u1ebft : a) x : 2 = 4 b) x : 2 = 4 x=4:2 x=4\u00d72 x=2\u2026 x=8\u2026 c) x : 6 = 3 d) x : 6 = 3 x=6:3 x=3\u00d76 x=2\u2026 x = 18 \u2026 Ph\u1ea7n 2 - T\u1ef1 Lu\u1eadn : B\u00e0i 1: T\u00ednh 100 - 34 - 19 = \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 4 \u00d7 5 : 2 = \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 =\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. =\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. 28cm + 45cm - 39cm = \u2026\u2026\u2026\u2026\u2026\u2026 9 \u00d7 5 - 18 = \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 =\u2026\u2026\u2026\u2026\u2026\u2026\u2026 =\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. 9l + 27l + 43l = \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 50 : 5 + 70 = \u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026 =\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026. =\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026\u2026.. B\u00e0i 2: S\u1ed1? S\u1ed1 b\u1ecb chia 20 36 35 18 27 S\u1ed1 chia 24455339 To\u00e1n 2-1 Page 298","Th\u01b0\u01a1ng 5 98 B\u00e0i 3: T\u00ecm x: x:3=8 x : 4 = 8 : 2 x : 4 = 28 : 4 x + 3 = 21 + 9 x \u00d7 3 = 21 B\u00e0i 4: : \u0110i\u1ec1n d\u1ea5u \u00d7, +, - v\u00e0o ch\u1ed7 ch\u1ea5m (\u2026.) (2 \u0111i\u1ec3m) 3 \u2026.. 3 \u2026.. 4 = 5 7 \u2026.. 2 \u2026.. 9 = 18 9 \u2026. 3 \u2026.. 8 = 35 6 \u2026. 5 \u2026.. 15 = 15 B\u00e0i 5: \u00a0. Vi\u1ebft s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng : : : : 5=4 : 3=5 = = 3 4 B\u00e0i 6: T\u00ednh chu vi h\u00ecnh tam gi\u00e1c bi\u1ebft \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 7 cm ; 8 cm v\u00e0 9 cm. B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 299","B\u00e0i 7: T\u00ednh chu vi c\u1ee7a h\u00ecnh tam gi\u00e1c, h\u00ecnh t\u1ee9 gi\u00e1c theo s\u1ed1 \u0111o cho tr\u00ean h\u0301 nh v\u1ebd: A 5cm 3cm 5cm 3cm 5cm B 7cm C 6cm B\u00e0i gi\u1ea3i B\u00e0i 8: T\u00ednh chu vi h\u00ecnh t\u1ee9 gi\u00e1c c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 21 dm, 22 dm, 23 dm, 24 dm. B\u00e0i gi\u1ea3i B\u00e0i 9: B\u00e1c An nu\u00f4i m\u1ed9t \u0111\u00e0n th\u1ecf .S\u1ed1 th\u1ecf n\u00e0y \u0111\u01b0\u1ee3c nh\u1ed1t v\u00e0o 8 chu\u1ed3ng , m\u1ed7i chu\u1ed3ng c\u00f3 4 con th\u1ecf . H\u1ecfi \u0111\u00e0n th\u1ecf \u0111\u00f3 bao nhi\u00eau con ? B\u00e0i gi\u1ea3i To\u00e1n 2-1 Page 300"]
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418