ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻨﻲ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ : ﺍﻟﺩﻭﺍل ﺍﻷﺴﻴﺔ -ﺩﻭﺍل ﺍﻟﻘﻭﻯ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻭ ﺍﻟﺘﺭﺍﺠﻊ ﺍﻟﺤﺴﺎﺏ ﺍﻟﺘﻜﺎﻤﻠﻲ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻓﻲ Z ﺍﻟﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ Z
-ﺩﻭﺍل ﺃﺴﻴﺔ – ﺩﻭﺍل ﺍﻟﻘﻭﻯ -ﺩﻭﺍل ﺍﻟﺠﺫﻭﺭ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : ﺤل ﻤﺸﻜﻼﺕ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺩﻭﺍل ﺍﻷﺴﻴﺔ. ﻤﻌﺭﻓﺔ ﻭ ﺘﻔﺴﻴﺭ ﻨﻬﺎﻴﺎﺕ ﺩﻭﺍل ﺃﺴﻴﺔ ﻭ ﺩﻭﺍل ﺍﻟﻘﻭﻯ. ﺤﺴﺎﺏ ﻤﺸﺘﻘﺎﺕ ﺩﻭﺍل ﺃﺴﻴﺔ ﻭ ﺩﻭﺍل ﺍﻟﻘﻭﻯ ﻭ ﺩﻭﺍل ﺍﻟﺠﺫﻭﺭ ... ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. – Iﺍﻟﻘﻭﻯ ﺍﻟﺤﻘﻴﻘﻴﺔ. – IIﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ a ∈ ∗ −{1} :a – IIIﺍﻟﺩﺍﻟﺔ ﺍﻟﺠﺫﺭ n-icim – Vﺩﻭﺍل ﺍﻟﻘﻭﻱ. ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : 1 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﺍﻟﻌﺩﺩ ( )f x ﺤﻴﺙ f ( x ) = 10x : – 1ﺒﻴﻥ ﺃﻥ 10x = e xLn10ﺤﻴﺙ eﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻨﻴﺒﻴﺭﻱ . ( ) ( )lim f x f ∞x → + ﺜﻡ lim x – 2ﺍﺤﺴﺏ : ∞x → − – 3ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ f – 4ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ Cﻟﻠﺩﺍﻟﺔ ) ﺒﻌﺩ ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ () ( ;O → → ﻤﺘﺠﺎﻨﺱ ﻤﺘﻌﺎﻤﺩ ﻤﻌﻠﻡ ﻓﻲ i, j ﺍﻟﺤل : ﻟﺩﻴﻨﺎ ) 10x = eln10x :ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ elnα = α (1 ﻭ ﻋﻠﻴﻪ ) 10x = e xln10 :ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ lnxn = nlnx ﻭ ﻤﻨﻪ ( )f x = e xln10 : lim f ( x ) = lim e xln10 = 0 (2 ∞x→ − ∞x→ − ∞lim f ( x ) = lim e xln10 = + ∞x → + ∞x → + (3ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ : ﻟﺩﻴﻨﺎ( )f x = e xln10 : ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺤﻴﺙ : x xln10ﻭ x e xﺍﻟﻠﺘﻴﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ f ′ ( x ) = ( ln10 ) .e xln10 = ( ln10 ) .10 x (4ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : Cﻴﻘﺒل ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ y = 0 :ﻋﻨﺩ ∞( )−f( )l i mx = lim e xLn10 = × lim L n1 0 e xLn10 = ∞+ ﻭ ﻟﺩﻴﻨﺎ : x x xL n10∞x→ + ∞x→ + ∞x→ + ﻭ ﻋﻠﻴﻪ Cﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞( )+ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ :
y 2 1,5 1 0,5 -1,5 -1 -0,5 0 0,5 x ﺍﻟﻨﺸﺎﻁ : 2 f )(x = 1 x ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : x ﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ f 2 1 x = e − xln 2 ﺒﻴﻥ ﺃﻥ : -1 2 ( ) ( )lim f x f x ∞x → + ﺜﻡ lim -2ﺃﺤﺴﺏ : ∞x → − -3ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ . -4ﺃﻨﺸﺊ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ γﻟﻠﺩﺍﻟﺔ ( )f ) ﺒﻌﺩ ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ( . ﺍﻟﺤل : 1 x 1 1 x = eln 1 x 2 2 2 2 = e xln ﻭ ﻤﻨﻪ : ﻟﺩﻴﻨﺎ (1 ( )f x = e− xln2 ﺇﺫﻥ : 1 x = e− xln2 ﻭ ﻋﻠﻴﻪ : 2 (2ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :∞lim f ( x ) = lim e− xln2 = + lim f ( x ) = lim e− xln2 = 0∞x → − ∞x → − ∞x → + ∞x → + (2ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ :ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ x − xln2ﻭ x → e xﺍﻟﻘﺎﺒﻠﺘﺎﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ .
x ﺤﻴﺙ f ′ x = −ln2 e− xln2 := ) ( ) ( )f ′ ( x1 (− ln 2 ) 2 ﻭ ﻋﻠﻴﻪ : - (4ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ : γﻴﻘﺒل ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ y = 0ﻋﻨﺩ ∞( )+( ) ( )lim f x e− xln2 ∞× − xln2 = −∞xx → − = lim e− xln2 = lim −ln2 ﻟﺩﻴﻨﺎ : ∞xx→− ∞x→− ﺇﺫﻥ C :ﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ( ). -ﺇﻨﺸﺎﺀ ) (γﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ :
ﺍﻟﻘﻭﻯ ﺍﻟﺤﻘﻴﻘﻴﺔ -1ﺘﻌﺭﻴﻑ : ﻤﻥ ﺃﺠل a :ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ bﻋﺩﺩ ﺤﻘﻴﻘﻲ ab = eblna : -2ﺨﻭﺍﺹ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ ﻭ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ bﻟﺩﻴﻨﺎ : • lnab = blna • ab+b′ = ab .ab′ • a b− b′ = ab ( )• ab b′ = ab×b′ a b′ • (a.a′)b = ab .a′b • a b = ab a′ a′b ﺃﻤﺜﻠﺔ : 22 2 2 2 3 23 = π ( )1π 1 3 1 π + 3 3 1 3 2 22 2 2 2 2 . = ; 2 = ; π3 ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ a ∈ ∗ −{1} :a -1ﺘﻌﺭﻴﻑ : ﻟﻴﻜﻥ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﺒﺤﻴﺙ a ≠ 0 ﺍﻟﺩﺍﻟﺔ x a x = e xlnaﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ aﻭ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ expa -ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ x a x : f ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ( )lim f x = lim a x = lim e xlna = 0 ﺃ( ﻤﻥ ﺃﺠل : a > 1 ∞x → − ∞x→− ∞x → − ﻷﻥ lna > 0 ∞lim f ( x ) = lim a x = lim e xlna = + ∞x → + ∞x → + ∞x → + ﺏ( ﻤﻥ ﺃﺠل lna < 0 : 0 < a < 1 ∞lim f ( x ) = lim a x = lim e xlna = + ∞x → − ∞x → − ∞x → −
lim f ( x ) = lim a x = lim e xlna = 0 ∞x → + ∞x→+ ∞x→+ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x a x : f f ( x ) = e xlna xﻭ x e xﻭ ﻫﻤﺎ ﻗﺎﺒﻠﺘﺎﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻫﻤﺎ xlna ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ f ′ ( x) = ( lna) .e xlna • ﻤﻥ ﺃﺠل l n a > 0 : a > 1ﻭﻤﻨﻪ f ′( x ) > 0 :ﻭﻋﻠﻴﻪ f ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ . • ﻤﻥ ﺃﺠل lna > 0 : 0 < a < 1ﻭ ﻤﻨﻪ f ′ ( x ) < 0 ﻭ ﻋﻠﻴﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻤﻥ ﺃﺠل 0 < a < 1 ﻤﻥ ﺃﺠل a > 1 x ∞−∞ + x ∞−∞ +)f ′(x - )f ′(x +)f (x ∞+ f (x) 0 ∞+ 0 ﻤﻥ ﺃﺠل 0 < a < 1 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : y ﻤﻥ ﺃﺠل a > 1 2,5 y 2 2,5 1,5 2 1 y = ax 1,5 0,5 y = ax -1 -0,5 0 0,5 1 1,5x 1 0,5 -1 -0,5 0 0,5 1 1,5x
ﺍﻟﺩﺍﻟﺔ ﺍﻟﺠﺫﺭ n ∈ ∗ − {1} ، n − ieim -1ﺍﻟﺠﺫﺭ n ∈ ∗ − {1} n − ieimﻟﻌﺩﺩ ﺤﻘﻴﻘﻲ ( ): • ﺘﻌﺭﻴﻑ ﻭ ﺘﺭﻤﻴﺯ :ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻤﻥ ∗ − 1ﻭ ﻋﺩﺩ aﻤﻥ +ﻓﺈﻥ ﺍﻟﺠﺫﺭ n − ieimﻟﻠﻌﺩﺩ} { ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ ﺍﻟﺫﻱ ﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ n a 1 ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : n a = anﻭ n 0 = 0 ﺇﺫﺍ ﻜﺎﻥ : a > 0 • ﺍﻟﺨﻭﺍﺹ ﺍﻟﺠﺒﺭﻴﺔ : b, aﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ b ،ﻏﻴﺭ ﻤﻌﺩﻭﻡ p, n .ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻭ ﻜل ﻤﻨﻬﻤﺎ ﻴﺨﺘﻠﻑ ﻋﻥ 1ﻟﺩﻴﻨﺎ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺘﺎﻟﻴﺔ :• n a ×b b =n a.b •) ( n n a =n• n a =n a ( )• n a p =n a p n b b• n a =np a p • n p a =np a -2ﺍﻟﺩﺭﺍﺴﺔ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : x n xﺤﻴﺙ } n ، n ∈ ∗ − {1ﺜﺎﺒﺕ ﻭ ﻫﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞[ [0;+ 1 ﻭ ﻴﻤﻜﻥ ﺘﻌﺭﻴﻔﻬﺎ ﺒﺎﻟﻌﺒﺎﺭﺓ f x = x n :ﻜﻤﺎ ﻴﻤﻜﻥ ﺘﻌﺭﻴﻔﻬﺎ ﻜﻤﺎ ﻴﻠﻲ ( ): ﻭ f (0) = 0 ( )fx = e 1 lnx x≠0 n : ﻤﻥ ﺃﺠل lim = )f (x lim e1 lnx ∞= + n ∞x → + ∞x → + f (′ )x = 1 × 1 e1 lnx ﻤﻥ ﺃﺠل [∞: x ∈ ]0;+ n x n ﻭ ﻟﺩﻴﻨﺎ f ′ x > 0ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ( ). x ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞[ [0;+
ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : x ∞0 + )f ′(x + f (x) 0 ∞+ -ﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ :ﺒﻴﺎﻥ ﺍﻟﺩﺍﻟﺔ ﻴﻘﺒل ﻓﺭﻋﺎ ﻻﻨﻬﺎﺌﻴﺎ ﻭ ﻟﺩﻴﻨﺎ :( )lim f x 1 = lim n x = lim x n = 1 lim x1 − 1 ∞ xx → + ∞ xx → + n∞x→ + x = lim x n .x −1 ∞x→ + ∞x→ + = lim 1− n = lim e 1− n lnx =0 n ∞x→+ xn ∞x → +ﻋﻨﺩ +∞ : ﻭ ﻋﻠﻴﻪ ﺒﻴﺎﻥ ﺍﻟﺩﺍﻟﺔ ﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل 1− n < 0 ﻷﻥ n ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ : y 2 1 0 1 2 3 4x ﺩﻭﺍل ﺍﻟﻘﻭﻯ ﺩﺭﺍﺴﺔ ﺍﻟﺩﻭﺍل n ، x → xn : fﻋﺩﺩ ﺜﺎﺒﺕ ﻤﻥ ∗ ﺍﻟﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞ 0; +ﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ] [xα = eαlnx : ∞lim f ( x) = + ؛ lim f ( x) = 0 -ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ : ∞x → + x→0 ﻤﻥ ﺃﺠل : α > 0 lim f ( x) = 0 ؛ x>0 ﻤﻥ ﺃﺠل : α < 0 ∞x → + ∞lim f ( x) = + -ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻗﻴﺔ : x→0 x>0
ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ∞ 0;+ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﻤﻌﺭﻓﺔ[ ] . f ′ ( x ) = α . 1 eα Lnx ﻜﻤﺎ ﻴﻠﻲ : x ﻤﻥ ﺃﺠل f ′ ( x ) > 0 : α > 0ﻭ ﻋﻠﻴﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ [∞. ]0;+ ﻤﻥ ﺃﺠل f ′ ( x ) < 0 : α < 0ﻭ ﻋﻠﻴﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ [∞. ]0;+ ﻤﻥ ﺃﺠل α < 0 ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : x ∞0 + x ﻤﻥ ﺃﺠل α > 0 ∞0 +)f ′(x )- f ′(x +f ( x) +∞ . )f (x +∞ . 00 ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻴﻘﺒل ﻓﺭﻉ ﻻﻨﻬﺎﺌﻲ ﻤﻥ ﺃﺠل α > 0ﻭ ﻟﺩﻴﻨﺎ : ( )lim f x = lim xα = = lim xα −1 lim e (α −1)lnx ∞x→ + x x ∞x→ + ∞x→ + ∞x→ + lim )f (x :α >1 ﻨﻼﺤﻅ ﺃﻨﻪ :ﻤﻥ ﺃﺠل ∞x→ + ∞x = + ﻭ ﻋﻠﻴﻪ ﻟﻠﺒﻴﺎﻥ ﻓﺭﻉ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ. lim f (x ) = 0 ﻤﻥ ﺃﺠل : α < 1 ∞x→ + x ﺇﺫﻥ ﺒﻴﺎﻥ ﺍﻟﺩﺍﻟﺔ ﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . ﻤﻥ ﺃﺠل ) f ( x ) = x : α = 1ﺒﻴﺎﻨﻬﺎ ﻫﻭ ﺍﻟﻤﻨﺼﻑ ﺍﻷﻭل ( . ﺃﻤﺎ ﻤﻥ ﺃﺠل α < 0ﻓﺈﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﻴﻘﺒل ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻘﺎﺭﺒﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ x = 0 :ﻭ . y = 0 α <0 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ α > 1 :
y y 2 21,5 1,5 1 10,5 0,5 0 0,5 1 1,5 2 x 0 0,5 1 1,5 2 xﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ . 1ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ :∈x ﻤﻊ 1 x = e − xln 2 -1 2 ∈x ﻤﻊ 10x.10− x = 1 -2 π π = eπ lnπ -3 ( ) ( ) ( )3 5 15 2 .2 = 2 -4 (π )4 3 -5 = ( )5 π ( )π -6ﺍﻟﺩﺍﻟﺔ 0, 5 x xﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ( ). -7ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x 10xﻫﻲ ﻨﻔﺴﻬﺎ .∈ { }a ∗ − 1 xﻤﻥ ﺃﺠل -8ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ a x + .x 1 .a x ﻫﻲ ﺍﻟﺩﺍﻟﺔ : lna lim 1 x = ∞+ -9 2 ∞x → + lim 10− x = 0 -10 ∞x → +
lim 5− x = 0 -11 ∞x→− lim x.3x = 0 -12 ∞x → + x 10x = 10 2 -13 6 53 = 5 -14 lnx ∈x ∗ , x =e 2 -15 + lnx ∈x ∗ , xx = e x -16 + -17ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x x xﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞] [0; + ﻫﻲ ﺍﻟﺩﺍﻟﺔ x (1 + lnx ) × x x 1 lnx ∈x ∗ , x 4 = e 4 -18 + -19 lim x− 1 x = ∞+ 3 ∞x → + ∞lim x 2 = + -20 ∞x → + ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺤل ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : x 32x − 7.3x + 12 = 0 (110x − 10 2 − 6 = 0 (2104x − 4.102x + 3 ≤ 0 (5 1 x > 0,0001 (4 10x < 5 (3 2 ﺍﻟﺘﻤﺭﻴﻥ. 3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻟﻠﺩﻭﺍل ﺍﻵﺘﻴﺔ ﺜﻡ ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺍﻷﻁﺭﺍﻑ : f ( x) = 10 x (2 f ( )x = 3x (1 3x −1=)f (x 1 (4 f =)(x 1 2 (3 10 x + 1 x 2 − 1f )(x = x . 1 x (6 f ( x) = ( x + 4) 3x (5 2
ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻭ ﻤﺠﻤﻭﻋﺔ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ﺜﻡ ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻜل ﻤﻨﻬﺎ : f =)(x 1 2x − 5 1 x + 3 (2 ( )f x = 10x2 −2x (1 2 2 f ( x) = ln( 2x − 1) (4 f ( )x = 4x 1 (3 4x − f ( )x = 1 ) x( x−1 (6 f = )(x 52x − 1 (5 3 52x + 1 ﺍﻟﺘﻤﺭﻴﻥ. 5. f )(x = 10x − 1 ﺫﺍﺕ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﻭ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ 10 x -1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -2ﻟﻴﻜﻥ ) (Cﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ . O ; → , → ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ i j ﺃ( ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ Cﻤﻊ ﺍﻟﻤﺤﺎﻭﺭ ﺍﻹﺤﺩﺍﺜﻴﺔ ( ). ﺏ( ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻲ ( ). C - 3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ Cﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ( ). 0 - 4ﺃﻨﺸﺊ ﺍﻟﻤﻨﺤﻨﻲ ) . (C ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( )f x = 2x − 2− x : . →→ ﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O; i, j ﺍﻟﺘﻤﺭﻴﻥ. 7 ﺍﺩﺭﺱ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ λﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fλﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : . fλ x = λ .3x − 3− xﻨﻔﺭﺽ ) (C λﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ( ). ﺃﻨﺸﺊ ) . (C−1 ) , (C1 ) , (C0
ﺍﻟﺘﻤﺭﻴﻥ. 8 f (1ﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ . f ( x ) = x x : -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ Cﻓﻲ ﻤﻌﻠﻡ) ( . O →→ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ;i, j (2ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )g x = x x : -ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ gﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ . -ﺍﻜﺘﺏ g xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ( ). -ﺍﺴﺘﻨﺘﺞ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ γﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺴﺎﺒﻕ ( ). ﺍﻟﺘﻤﺭﻴﻥ. 9 1 12. 5 2 + 42 2 + 8 2 + 24 2 = 5 2 + 2 3 ﺒﻴﻥ ﺃﻥ : 3 5 3 .8 3 5 3 .8 3 83 ﺍﻟﺘﻤﺭﻴﻥ. 10 ( )f 3 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ x3 − x : =x ﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞. [1 ;+ ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ Cﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ) ( ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ . O ; → , → ﻤﺘﺠﺎﻨﺱ i j
ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ 1 √ (5 × (4 √ (3 √ (2 √ (1 √ (10 × (9 √ (8 × (7 × (6√ (17 × (16 √ (15 √ (14 √ (13 × (12 × (11 √ (20 √ (19 √ (18 ﺍﻟﺘﻤﺭﻴﻥ. 2 (1ﻟﺩﻴﻨﺎ 32x − 7.3x + 12 = 0 :ﺒﻭﻀﻊ 3x = yﻨﺠﺩ y2 − 7 y + 12 = 0 : y2 = 4 ، y1 = 3 ، ∆ = 1ﻭ ﻤﻨﻪ 3x = 3 :ﺃﻭ 3x = 4 • 3x = 31ﺘﻜﺎﻓﺊ x = 1 : • 3x = 4ﺘﻜﺎﻓﺊ ln3x = ln4 :ﻭﻤﻨﻪ xln3 = ln4 : S = 1 ; ln 4 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل : x = ln 4 ﻭ ﻋﻠﻴﻪ : ln 3 ln 3 2 x 1 0 x − x −6= 0 ﻭﻫﻲ ﺘﻜﺎﻓﺊ : (2ﻟﺩﻴﻨﺎ 10x − 10 2 − 6 = 0 : 2 10 2 x ﺒﻭﻀﻊ 10 2 = t :ﻨﺠﺩ t 2 − t − 6 = 0 : t2 = 3 ، t1 = −2 ، ∆ = 25 xx -ﻟﻤﺎ t = −2ﻓﺈﻥ 10 2 = −2 :ﻤﺭﻓﻭﺽ ﻷﻥ 10 2 > 0 xx -ﻟﻤﺎ t = 3 :ﻓﺈﻥ 10 2 = 3 :ﻭﻋﻠﻴﻪ ln10 2 = ln3 : x = 2ln3 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : x ln10 = ln3 ﻭﻤﻨﻪ : ln10 2 S = 2 ln 3 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل : ln 1 0 (3ﻟﺩﻴﻨﺎ 10x < 5 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ ln10x < ln5 : x < ln5 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : xln10 < ln5 ﻭﻋﻠﻴﻪ : ln10
S = − ∞ ; ln 5 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل : ln1 0 ln 1 x > ln 0, 0001 ﻭﻫﻲ ﺘﻜﺎﻓﺊ : 1 x > 0, 0001 (4ﻟﺩﻴﻨﺎ : 2 2 ﺇﺫﻥ − xln2 > −4ln10 : xln 1 > ln10−4 ﻭﻋﻠﻴﻪ : 2S = ∞− ; 4. ln10 : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﺇﺫﻥ <x 4ln10 ﻭﺒﺎﻟﺘﺎﻟﻲ : ln2 ln2 (5ﻟﺩﻴﻨﺎ 104x − 4.102x + 3 ≤ 0 :ﺒﻭﻀﻊ 102x = zﻨﺠﺩ z2 − 4z + 3 ≤ 0 : ﻨﺤﻠل ﺍﻟﻌﺒﺎﺭﺓ z2 − 4z + 3 : z 2 = 3 ; z1 = 1 ; ∆ = 4 ﻭ ﻋﻠﻴﻪ z2 − 4z + 3 = ( z − 1) ( z − 3) : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ( ) ( )104x − 4102x + 3 = 102x − 1 102x − 3 : ﻟﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ 102x − 1 :ﻭ 102x − 3 102x − 1 = 0ﺘﻜﺎﻓﺊ 102x = 1ﻭﻤﻨﻪ 2 x = 0ﻭﻋﻠﻴﻪ x = 0 102x − 1 > 0ﺘﻜﺎﻓﺊ 102x > 1ﻭﻤﻨﻪ 2 x > 0ﻭﻋﻠﻴﻪ x > 0 102x −3= 0ﺘﻜﺎﻓﺊ 102x = 3ﻭﻤﻨﻪ ln102x = ln3ﻭﻋﻠﻴﻪ x = 2xln10 = ln3 =x ln 3 ﻭ ﻋﻠﻴﻪ : 2 ln1 0 102x − 3 > 0ﺘﻜﺎﻓﺊ 102x > 3 :ﻭﻤﻨﻪ ln102x > ln3 : x > ln 3 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : ﺃﻱ ﺃﻥ 2xln10 > ln3 : 2 ln1 0 ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ( ) ( )102x − 1 102x − 3 : x ∞− 0 ln3 ∞+ 2ln10 102x − 1 - + 102x − 3 - - + + -( ) ( )102x − 1 102x − 3 + + S 0 ; 2 ln 3 0 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ : ln 1
ﺍﻟﺘﻤﺭﻴﻥ. 3 f ( )x = 3x (1ﻟﺩﻴﻨﺎ : 3x −1 -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ :ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل 3x − 1 ≠ 0 :ﺃﻱ 3x ≠ 1 :ﻭ ﻤﻨﻪ x ≠ 0 : ﺇﺫﻥ [ ∞ D f = ]− ∞ ; 0 [ ∪ ]0 ; + -ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :( )lim fx = lim 3x = lim e xln3 = 0 3x −1 e xln3 − 1∞x → − ∞x→− ∞x→−( )lim f x = lim 3x 1 = ∞− 3x −x→0 x→0 x<0 x<0( )lim f x = lim 3x 1 = ∞+ 3x −x→0 x→0 x>0 x>0( )lim fx = lim 3x 1 = lim 1 =1 −1 − 3x 1∞x→ + ∞x→ + 3x ∞x→ + 1 − 3x (2ﻟﺩﻴﻨﺎ f ( x ) = 10 x : -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ . ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :∞lim f ( x ) = lim 10 x = lim e x .ln10 = +∞x → − ∞x → − ∞x→−∞lim f ( x ) = lim 10 x = lim e x .ln10 = +∞x → + ∞x → + ∞x→+ f ( x ) = 1 2 (3ﻟﺩﻴﻨﺎ : 10x + -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ :ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ 10x + 2 ≠ 0 :ﺃﻱ 10x ≠ −2 : ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ .ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ -ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :
( )lim fx = lim 10 1 2 = lim 1 + 2 = 1 x+ e xln10 2x → −∞ x→−∞ x→−∞( )lim fx = lim 1 2 = lim 1 + 2 = 0 10x + e xln10x → +∞ x → +∞ x→+∞ f ( x) = 1 1 : ( ﻟﺩﻴﻨﺎ4 2 x − 1 : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ- 1 x − 1 ≠ 0 : ﻤﻌﺭﻓﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺩﺍ ﻜﺎﻥ f ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ 2 x ≠ 0 : ﻭﻋﻠﻴﻪ 1 x ≠1 : ﺃﻱ 2 ]−∞ ;0[ ∪ ]0 ;+∞[ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ- 1 x = e − xln2 : ﻟﺩﻴﻨﺎ 2 ( )lim f x = lim 1 −1 = 0 : ﻤﻨﻪ ﻭ e− xln2 x → −∞ x → −∞ ( )lim f x = lim 1 −1 = −1 e− xln2 x → +∞ x→+∞ ( )lim f x = lim 1 1 = +∞ 2 x x→0 x→0 −1 x<0 x<0 1 x > : ﻷﻥ 2 −1→0 ( )lim f x = lim 1 1 = −∞ 2 x x→0 x→0 −1 x>0 x>0
1 x < : ﻷﻥ 2 −1→0 1 x −1 : ﺇﺸﺎﺭﺓ 2 ∞x −∞ 0 + 1 x 1 + - 2 − (5ﻟﺩﻴﻨﺎ f ( x) = ( x + 4) 3x : -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ : -ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ :lim f ( x ) = lim ( x + )3 e xln3 = lim x.e xln3 + 3e xln3 = 0∞x → − ∞x → − ∞x→− ∞lim f ( x ) = lim ( x + 3) e xln3 = + ∞x → + ∞x → + f ( )x = x 1 x (6ﻟﺩﻴﻨﺎ : 2 -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ -ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :( )lim fx = lim x 1 x = lim x .e x ln 1 = lim x .e − xln 2 = ∞− 2 2∞x→ − ∞x→ − ∞x→ − ∞x→ − x e − xln 2 −1 e − xln 2 = 0( ) ( )lim f ln 2 ∞x→ + x = lim = lim . − xln 2 ∞x→ + ∞x→ + ﺍﻟﺘﻤﺭﻴﻥ. 4 (1ﻟﺩﻴﻨﺎ ( )f x = 10x2 −2x : -ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : -ﺍﻟﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥ x x2 − 2 x ﻭ x 10xﺍﻟﻘﺎﺒﻠﺘﺎﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ . ﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ( )f x ( )= e x2 −2x ln10 : ﻭﻋﻠﻴﻪ f ′ ( x ) = ( 2 x − 2) ln10.e( x2 −2 )x ln10 :
f ′ ( x ) = 2( x − 1) ( ln10) .10x2−2x f )(x = 1 2x − 5 1 x + 3 (2ﻟﺩﻴﻨﺎ : 2 2 -ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ -ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺠﻤﻭﻉ ﻭ ﻤﺭﻜﺏ ﺩﻭﺍل ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ . ﻭﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ( )f x = e− xln2 − 5e−2 xln2 + 3 : ﻭﻋﻠﻴﻪ f ′ ( x ) = ( −2ln2) e−2xln2 − ( −ln2) e− xln2 : 1 2 x 1 x 2 2 f ′ ( x ) = ( )−2ln2 . + ( )ln2 ﺇﺫﻥ : f ( )x = 4x (3ﻟﺩﻴﻨﺎ : 4x −1 -ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل 4x − 1 ≠ 0ﺃﻱ 4x ≠ 1ﻭ ﻋﻠﻴﻪ x ≠ 0 ﺇﺫﻥ [∞Df = ]−∞ ;0[ ∪ ]0 ;+ -ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ D fﻷﻨﻬﺎ ﺤﺎﺼل ﻗﺴﻤﺔ ﺩﻭﺍل ﺘﻘﺒل ( )f x e xln4 . ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﻴﻤﻜﻥ ﺃﻥ ﻨﻜﺘﺏ = e xln4 − 1 : ( )( ) ( )ln4 .e xLn4 e xln4 − 1 − ln4 .e xln4 .e xln4= ( )( )f ′ x e xln4 − 1 2 ( )( )ln4 .e xln4 e xln4 − 1 − e xln4= ( )( )f ′ x e xln4 − 1 2(′ )x − ( ln4) .4x (′ )x − ( ln4) .e xln4 4x −1 2 e xln4 − 1 2( )f = ( )f = (4ﻟﺩﻴﻨﺎ ( )f ( x) = ln 2x − 1 : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ :ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل 2x − 1 > 0ﻭ ﻋﻠﻴﻪ 2x > 1ﺃﻭ x > 0
ﻭﻤﻨﻪ Df = ]0 ; +∞[ : ﺍﻻﺸﺘﻘﺎﻕ :ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﺭﻜﺏ ﺩﻭﺍل ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ D fﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ، D fﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ( )( )f x = ln e xln2 − 1 : f ′ ( )x = ( ln2) .2x ﺇﺫﻥ : f (′ )x = ( ln2) .e xln2 ﻭﻤﻨﻪ : 2x −1 e xln2 − 1 f ( )x = 52 x −1 (5ﻟﺩﻴﻨﺎ : 52 x +1 ﻷﻥ 52x + 1 ≠ 0ﻭﻋﻠﻴﻪ D f = ]−∞;+∞[ : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻻﺸﺘﻘﺎﻕ :ﻭ ﻴﻤﻜﻥ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﺤﺎﺼل ﻗﺴﻤﺔ ﺩﻭﺍل ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ( )fx = e2 xln5 − 1 ﻜﺘﺎﺒﺔ : e2 x ln5 + 1 2ln5 .e2xln5 e2xln5 + 1 − 2ln5 e2xln5 e2xln5 − 1 e2xln5 + 1 2= ( ) ( ) ( ( ) )f ′ x ﻭﻋﻠﻴﻪ : 2ln5 .e2 xln5 e2 xln5 + 1 − e2 xln5 + 1 e2 xln5 + 1 2 ( ) ( ) ( )f ′x= (4ln5) 52x 4 ln5 .e2 xln5 = e2 xln5 + 1 2 (′ )x 52x + 1 2 ( )( ) ( )f ′ ( )f = ﻭ ﺒﺎﻟﺘﺎﻟﻲ : x f )(x = 1 ) x(x−1 (6ﻟﺩﻴﻨﺎ : 3 ﺤﻴﺙ Df = ]−∞;+∞[ : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ : ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻻﺸﺘﻘﺎﻕ : ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ( )f x = e− x( x−1)ln3
f ′ ( x ) = ( −2x + 1) ( ln3) e− x( x−1)ln3 : ﻭ ﻋﻠﻴﻪ 1 x ( x +1) 3 f ′ ( x ) = ( −2 x + 1) ( ln3 ) . : ﺇﺫﻥ . 5ﺍﻟﺘﻤﺭﻴﻥ D f = ]−∞;+∞[ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1 ( )lim f x = lim e xln10 − 1 = −∞ e xln10 x → −∞ x→−∞ 10x − 1 10 x 1 − 1 10 x 10 x ( )lim f x = lim = lim 10 xx→ +∞ x→ +∞ x→ +∞ = lim 1 − 1 x =1 10 x→+∞ ( )f x = e xln10 − 1 e xln10 ( ) ( ) ( )ln10 e xln10 .e xln10 − ln10 e xln10 . e xln10 − 1( ) ( )f ′ x = e xln10 2( ) ( )f ′( x) = ( ln10)10x.10x − ( ln10)10x. 10 x −1 10x 2f ′( x) = ( ln10)10x. 10x − 10x + 1 = ln10 10 x 10 x .10 x : ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰf ﻭ ﻤﻨﻪf ′ ( x ) > 0 ﻭ ﻋﻠﻴﻪ x −∞ +∞f ′′ ( x) + 1 f ( x) −∞
ﻭﻤﻨﻪ 10x − 1 = 0 : -a (2ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ : -ﻤﻊ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل f ( x ) = 0 :ﻭﻋﻠﻴﻪ 10x = 1 :ﻭﻤﻨﻪ x = 0 :ﺇﺫﻥ (C ) ∩ ( y′y) = {0} : -bﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : ﻫﻨﺎﻟﻙ ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ y = 1ﻋﻨﺩ ∞+ ( )lim f x = lim 10x − 1 = ∞− x10 x ∞xx → − ∞x → − ﻭ ﻤﻨﻪ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞− -3ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ y = f ′ (0) .( x − 0) + f (0) : f ′ (0) = ln10 ; f (0) = 0ﻭﻤﻨﻪ y = xln10 : -4ﺇﻨﺸﺎﺀ ) (Cy10,5-0,5 0 0,5 1 1,5 2 2,5 3 3,5 x -0,5 -1 -1,5
. 6ﺍﻟﺘﻤﺭﻴﻥ Df = ]−∞;+∞[ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ lim f ( x ) = lim 2x − 2− x = +∞ x → +∞ x → +∞ lim f ( x ) = lim 2x − 2− x = −∞ x → −∞ x → −∞ ( )f x = e xln2 − e− xln2 f ′ ( x ) = ln2.e xln2 + ( )ln2 e− xln2 = 2x ln2 + 2− x ln2 ( )f ′ ( x) = 2x + 2− x ln2 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰf ﻭ ﻋﻠﻴﻪf ′ ( x ) > 0 : ﻭ ﻤﻨﻪ x −∞ +∞ f ′(x) + f (x) +∞ −∞ : ﺇﻨﺸﺎﺀ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ y 4 3 2 1-3 -2 -1 0 1 2 3x -1 -2 -3 -4
. 7ﺍﻟﺘﻤﺭﻴﻥ ] [D f = −∞;+∞ : λ ﺤﺴﺏ ﻗﻴﻡfλ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ( )( )lim x → −∞ f0 x = lim −3− x = −∞ : λ = 0 ﻤﻥ ﺃﺠل x→−∞ ( )( )lim x → +∞ f0 x = lim −3− x =0 x → +∞ f0′ ( x ) = ( ln3) × 3− x ( ) ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎf0 ﻭ ﻋﻠﻴﻪf0′ x ﻭ ﻤﻨﻪ x −∞ +∞ f0′ ( x) + f0 ( x) 0 −∞ ( )fλ x = λ .3x − 3− x = λ .e xln3 − e− xln3 : λ > 0 ﻤﻥ ﺃﺠل-( )limfλx= lim λ .e xln3 − e− xln3 = −∞ x → −∞x → −∞( )limfλx= lim λ .e xln3 − e− xln3 = +∞ x → +∞x → +∞ fλ′ ( x ) = λ ( ln3) e xln3 + ( Ln3) e− xln3 = λ ( ln3) .3x + ( ln3) 3− x = ( Ln3) λ .3x + 3− x ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰf : ﻭ ﻋﻠﻴﻪf ′ ( x ) > 0 : ﻭ ﻤﻨﻪ x . −∞ +∞ . fλ′ ( x) + fλ ( x) -∞ . +∞ ] [( )fλ x = λe xln3 − e− xln3 ، D f = −∞; +∞ : λ < 0 ﻤﻥ ﺃﺠل- lim fλ (x) = −∞ lim fλ ( x) = −∞ x→−∞ x → +∞
fλ′ ( x ) = λ ( ln3) .e xln3 + ( )ln3 e− xln3 = ( ln3) λe xln3 + e− xln3 fλ′ ( x ) = ( ln3) λ 3x + 3− x : ﻭ ﻤﻨﻪλ .3x = −3− x : ﻭﻤﻨﻪλ .3x + 3− x = 0 : ﺘﻜﺎﻓﺊf ′ ( x ) = 0ln 3 2 x = ln −1 : ﻭﻋﻠﻴﻪ 32x = −1 : ﺇﺫﻥ 3x = −1 : ﺃﻱ λ λ 3− x λ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ − ln − 1 : ﺃﻱ λ x = 2 ln 3λ .3x > −3− x : ﻭ ﻤﻨﻪλ .3x + 3− x > 0 : ﺘﻜﺎﻓﺊf ′ ( x ) > 032 x < −1 ﻭ ﻤﻨﻪ λ .32x > 1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ λ3x > −1 : ﻋﻠﻴﻪ ﻭ λ 3− x 2 x ln 3 < ln −1 : ﻭ ﻋﻠﻴﻪ ln 32 x < ln −1 : ﺇﺫﻥ λ λ − ln − 1 λ x< : ﻭ ﻋﻠﻴﻪ 2 xln 3 < − ln − 1 : ﺇﺫﻥ 2 ln 3 λ − ln − 1 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ f ﺇﺫﻥ λ −∞ ; 2 ln 3 − ln − 1 λ : ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ; + ∞ 2ln 3
x −∞ − ln (− 1 ) : ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ λfλ′ ( x) + +∞ 2ln 3fλ ( x) - f -ln (- 1 ) λ 2 ln 3 +∞ −∞ y : (C−1 ) ( ﻭC1 ) ( ﻭC0 ) ﺇﻨﺸﺎﺀ 1,5 (C1) 1 0,5-1,5 -1 -0,5 0 0,5 1 1,5 2 x -0,5 -1 (C0) -1,5 -2 (C-1) -2,5 -3 -3,5
. 8 ﺍﻟﺘﻤﺭﻴﻥ ( )f x = e xln x ﻟﺩﻴﻨﺎ: f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ Df = ]−∞ ;0[ ∪ ]0 ;+∞[ lim f ( x ) = lim e xln x = 0 x → −∞ x → −∞ ( )lim f x = lim e xln x = lim e−(− x)ln(− x) =1 < << x→0 x→0 x→0 lim f ( x ) = lim e xlnx =1 lim f ( x ) = lim e xlnx =+∞ >> x→0 x→0 x→+∞ x→+∞ ( )f ′ ( x ) = ln x + 1 e xln x ﻭﻤﻨﻪ f ′( x) = 1.ln x + x. 1 e xln x x x = 1 ﻭﻤﻨﻪln x = −1 ﻭﻋﻠﻴﻪln x + 1 = 0 ﺘﻜﺎﻓﺊ f ′(x) = 0 e x= 1 ﺃﻭ x = − 1 ﺃﻱ ﺃﻥ e e x > 1 ﻭﻤﻨﻪln x > −1 ﻭﻋﻠﻴﻪ ln x + 1 > 0 : ﺘﻜﺎﻓﺊ f ′(x) > 0 e . ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ f ﻭ ﺒﺎﻟﺘﺎﻟﻲ x ∈ −∞; −1 ∪ −1 ; +∞ ﺇﺫﻥ e e 0 ; 1 ; -1 ; 0 ﺍﻟﻤﺠﺎﻟﻴﻥ ﻤﻥ ﻜل ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ f ﻭ ﻤﻨﻪ e ex −∞ − 1 0 1 +∞ e ef ′(x) + - - + f −1 1 +∞ e f (x) 1 e f 01
ﻫﻨﺎﻟﻙ 4ﻓﺭﻭﻉ ﻻﻨﻬﺎﺌﻴﺔ :( )lim f x e xln x e xlnx x xlnx∞xx →+ = lim = lim ∞xlnx=+ ∞x→+ ∞x→+ ﺇﺫﻥ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞+f 1 = e1 ln 1 = −1 0, 7 f − 1 = e− 1 l n 1 = 1 1, 5 e e e e e e ee y ee 3 2,5 2 1,5 1 0,5-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 x -2ﺇﺜﺒﺎﺕ ﺃﻥ gﺯﻭﺠﻴﺔDg = ]−∞ ;0[ ∪ ]0 ;+∞[ : ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ − x ∈ Dg ، Dgﻭ g ( − x ) = − x − xﻭ ﻤﻨﻪ g ( − x ) = g ( x ) :ﺇﺫﻥ gﺯﻭﺠﻴﺔ . g ( x ) = x x ﻜﺘﺎﺒﺔ g xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ( )x > 0 g ( x ) = (− x )(− )x x<0 -ﺍﺴﺘﻨﺘﺎﺝ ) : (γ ﻤﻥ ﺃﺠل g ( x) = f ( x) : x > 0 ﻭ ﻤﻨﻪ ) (γﻴﻨﻁﺒﻕ ﻋﻠﻰ ) (Cﻓﻲ ﺍﻟﻤﺠﺎل [∞]0;+ﻓﻲ ﺍﻟﻤﺠﺎل γ : −∞;0ﻤﺘﻨﺎﻅﺭ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻷﻥ gﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ] [( ).
. 9ﺍﻟﺘﻤﺭﻴﻥ 22 42 52 = 53.53 ; 82 = 83.83 : ﻨﻼﺤﻅ ﺃﻥ 11 5 2 4 2 2 5 4 . 5 2 42 2 : ﻭ ﻋﻠﻴﻪ 3 3 3 ﻭ + 5 3 .8 = + 5 3 .8 3 11 4 2 2 2 2 2 2 2 3 3 3 3 3 = 5 5 + 8 = 53 5 + 8 11 8 2 24 2 8 4 .8 2 5 2 .8 4 2 3 3 3 3 + 5 3 .8 3 = + 1 1 = 8 4 . 8 2 + 2 2 = 2 5 2 + 2 2 3 3 3 53 83 83 : ﻭ ﻋﻠﻴﻪ 5 2 + 42 1 + 8 2 + 24 = 5 2 + 2 1 5 2 + 2 = 5 2 + 2 3 3 3 3 5 3 .8 3 2 5 3 .8 3 83 2 83 83 2 . 10ﺍﻟﺘﻤﺭﻴﻥ : ﻜﻤﺎ ﻴﻠﻲf ﻴﻤﻜﻥ ﺃﻥ ﻨﻜﺘﺏ ﺍﻟﺩﺍﻟﺔ ( )f x = ( )e 1ln x3 − x : x > 1 * ﻤﻥ ﺃﺠل 3 f ( x ) = 0 : x = 1 * ﻤﻥ ﺃﺠل [ [: 1; +∞ ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻋﻠﻰ : ( ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ1 ( x) 1 ln( x 3 − x ) f (x) = 1 ln( x 3 − x ) 3 3 lim f = lim e = 0 lim lim e =+∞ x →1 x→1 x→+∞ x→+∞ x>1 x>1
(2ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ :ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﺭﻜﺏ ﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺤﺩﻭﺩ ﻭ ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﻭﺁﺴﻴﺔ ﻓﻬﻲ ﺇﺫﻥ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ [∞]1; + ( )( )f ′ 1 3 3x2 −1 1 (ln x 3 − x ) x3 − x 3 x = × e ﺤﻴﺙ : =x 3 ﻭ ﻋﻠﻴﻪ : x2 = 1 ﻭ ﻤﻨﻪ : 3x2 −1 = 0 ﺘﻜﺎﻓﺊ : f ′(x) = 0 3 3 3x2 −1 > 0 ﻭ ﻓﻲ ﺍﻟﻤﺠﺎل [∞x3 − x > 0 : ]1;+ x=− 3 ﺃﻭ 3 : ﻜﻤﺎ ﻴﻅﻬﺭ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ :x −∞ -1 − 3 33 ∞0 3 1 + x - - - ++ + + - - -- + x2 −1 - + + -- +)x ( x2 − 13x2 −1 + + - -+ +ﻭ ﻋﻠﻴﻪ f ′ x > 0ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ ∞ 1;+ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ) ( [ [ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞[1;+ (3ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 1ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ( )f 1 = 0 : 11 ( ) ( ) ( )lim f x3 − x x→1 x−1 ( )x>1 x −f 1 = lim 3 x3 − x 3 x−1 x→1 = lim x−1 3 x>1 x→1 x>1
11 x ( x − 1)( x + 1) 3 x ( x + 1) 3 = lim = lim = +∞ x→1 ( x − 1)( x − 1)2 x→1 ( x − 1)2 x>1 x>1 . ﻤﻥ ﺍﻟﻴﻤﻴﻥ1 ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﺇﺫﻥ : – ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ4x1 +∞f ′(x) +f (x) 0 +∞ : ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ- 5 ( ). ﻴﻘﺒل ﻓﺭﻋﺎ ﻻﻨﻬﺎﺌﻴﺎ ﻭﺤﻴﺩﺍC ﺍﻟﺒﻴﺎﻥ( )( )lim f x 1xx → +∞ = lim x3 − x 3 x → +∞ x( ( ) )= x3 − x 1 1 1 3 1 x3 − x 3 1 3lim = lim = lim 1 − x 2 =1 x3 3 x3 x→ +∞ x→ +∞ x→ +∞( )( )lim 1x→+∞ f x − x = lim x3 − x 3 − x x→+∞ 1 2 1 3 3 3+x ( ) ( ) ( ) x3 − x − x x3 − x x3 − x + x 2= lim x → +∞ 21 ( ) ( )x3 − x 3 + x x3 − x 3 + x2 ( ) 1 3 3 x3 − x − x3 2 1 x3 − x 3 + x x3 − x 3 + x2( ) ( )= lim x→ +∞ x3 − x − x3 21 x3 − x 3 + x x3 − x 3 + x2( ) ( )= lim x → +∞
lim −x +x∞x→+=) ( 1 2 1 x 3 1 − x2 x3 − x 3 3 + x2 lim −x +x∞x→ +=) ( x 2 1 − 2 x3 − x 1 1 3 3 + x2 x 2 −x( )= lim∞x→ + 1 2 1 x2 3 + x x x 1 − 3 + x3 − x −1 =0( )= lim∞x→ + 1 2 1 x2 x 1 − 3 + x3 − x 3+x ﻭﻋﻠﻴﻪ y = xﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﺎﺌل ﻋﻨﺩ ∞+ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ :ﻤﻼﺤﻅﺔ :ﺍﻟﺩﺭﺍﺴﺔ ﺘﻤﺕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ 1 ; +ﻟﻜﻥ ﺍﻟﺘﻤﺜﻴل ﻓﻲ ﺍﻵﻟﺔ[ [ ﺘﻡ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞ . [-1 ; +
ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻭﺍﻟﺘﺭﺍﺠﻊ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : ﺍﺴﺘﻌﻤﺎل ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺘﺨﻤﻴﻥ ﺴﻠﻭﻙ ﻭ ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ. ﺇﺜﺒﺎﺕ ﺨﺎﺼﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ. ﺩﺭﺍﺴﺔ ﺴﻠﻭﻙ ﻭ ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ. ﻤﻌﺭﻓﺔ ﻤﻔﻬﻭﻡ ﻤﺘﺘﺎﻟﻴﺘﻴﻥ ﻤﺘﺠﺎﻭﺭﺘﻴﻥ. -ﺤل ﻤﺸﻜﻼﺕ ﺘﻭﻅﻑ ﻓﻴﻬﺎ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻭ ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺃﺸﻁﺔ. – Iﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ. – IIﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ. – IIIﺘﻌﺎﺭﻴﻑ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ. – Vﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭﺍﻻﺘﺼﺎل. ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ. ﺍﻟﺤﻠﻭل.
ﺃﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : -1ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎ ﻴﻠﻲ : f x = 80 + α e β xﺤﻴﺙ αو βﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ( ). ⎛ O ; → , → ⎞ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ f ) (Cﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ⎜⎝ ⎠⎟ i jﻋﻴﻥ αﻭ βﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ ) A ( 0; 5 3ﻭ ) B ( 3; 6 0ﻨﻘﻁﺘﺎﻥ ﻤﻥ ) . (C ﺘﻌﻁﻲ ﺍﻟﻘﻴﻡ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻌﺩﺩﻴﻥ αﻭ βﺜﻡ ﺘﻌﻁﻲ ﺍﻟﻘﻴﻤﺘﻴﻥ ﺍﻟﻤﺩﻭﺭﺘﻴﻥ ﺇﻟﻰ 10−1ﻟﻬﻤﺎ . – 2ﻴﻌﻁﻲ ﺇﻨﺘﺎﺝ ﺸﺭﻜﺔ ﻓﻲ ﺍﻟﻴﻭﻡ n ) nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ( ﺒﺎﻟﻌﺒﺎﺭﺓ un = 80 − 27.e−0,1n :ﻭ ﺤﺩﺓ ﺨﻼل ﺒﺩﺍﻴﺔ ﺍﻨﻁﻼﻗﻬﺎ . ﺃ – ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( u nﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ . ﺏ – ﺒﻌﺩ ﻜﻡ ﻴﻭﻡ ﺘﺯﻴﺩ ﻜﻤﻴﺔ ﺍﻹﻨﺘﺎﺝ ﻋﻠﻰ 72ﻭﺤﺩﺓ . n ﺤﻴﺙ V = e−0,1n ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : (V n ) – 3ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ n ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . ﺃ – ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ( ). . lim V n ﺍﺤﺴﺏ ∞n→ + ﺏ – ﺍﺤﺴﺏ. S = V1 + V2 + ... + V10 :ﺝ – ﻤﺎ ﻫﻭ ﺇﻨﺘﺎﺝ ﺍﻟﺸﺭﻜﺔ ﻓﻲ ﻤﺩﺓ 10ﺃﻴﺎﻡ ﺤﻴﺙ ﺘﻌﻁﻲ ﻗﻴﻤﺔ ﻤﺩﻭﺭﺓ ﺇﻟﻰ ﺍﻟﻭﺤﺩﺓ ﻟﻬﺫﺍ ﺍﻹﻨﺘﺎﺝ. ﺍﻟﺤل : -1ﺘﻌﻴﻴﻥ αﻭ : β ﻟﺩﻴﻨﺎ ) A ∈ (Cﻭﻤﻨﻪ f ( 0 ) = 5 3 : ﻭ ) B ∈ ( Cﻭﻤﻨﻪ f ( 3 ) = 6 0 :⎧ α = −27 ﺃﻱ : ⎧ 80 + α = 53 ﻭﻋﻠﻴﻪ :⎨ ⎨⎩ 8 0 − 2 7 .e 3 β = 60 ⎩ 80 + α e 3β = 60 e 3β = 20 ﻭﻋﻠﻴﻪ −27.e3β = −20 :ﺃﻱ : 27
3β = n ⎛ 20 ⎞ ﻭﻋﻠﻴﻪ : ln e 3β = ln ⎛ ⎞ 20 ﻭﺒﺎﻟﺘﺎﻟﻲ : ⎜⎝ 27 ⎠⎟ ⎝⎜ ⎠⎟ 2 7=αβ1 ⎛ 20 ⎞ ﻭ ﻭﻋﻠﻴﻪ = −27 : β = 1 ln ⎛ 20 ⎞ ﺇﺫﻥ : 3 ln ⎝⎜ 27 ⎠⎟ 3 ⎜⎝ 27 ⎟⎠ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺩﻭﺭﺓ : α = − 2 7ﻭ β − 0,1 -2ﺃ( ﻨﺒﻴﻥ ﺃﻥ unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ): ( )un+1 − un = 80 − 27.e0,1(n+1) − 80 − 27.e−0,1n un+1 − un = −27.e−0,1(n+1) + 27.e−0,1n un+1 − un = −27e−0,1n × e−0,1 + 27.e−0,1n ( )un+1 − un = −27.e−0,1n e−0,1 − 1 ﻟﺩﻴﻨﺎ e−0,1 − 1 < 0 :ﻭ −27.e−0,1n < 0 ﻭ ﻋﻠﻴﻪ un+1 − un > 0 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). ﺏ( ﻋﺩﺩ ﺍﻷﻴﺎﻡ ﺍﻟﺘﻲ ﻴﺯﻴﺩ ﺒﻌﺩﻫﺎ ﺍﻹﻨﺘﺎﺝ ﻋﻥ 72ﻭﺤﺩﺓ : ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ un > 72 : ﻭ ﻋﻠﻴﻪ 80 − 27.e−0,1n > 72 : < e−0,1 8 ﺃﻱ ﺃﻥ : ﺇﺫﻥ −27.e−0,1 > −8 : 27< −0,1n ln ⎛ ⎞8 ﻭﺒﺎﻟﺘﺎﻟﻲ : l n e − 0 ,1 n < ln ⎛ 8 ⎞ ﻭﻋﻠﻴﻪ : ⎜⎝ ⎟⎠ 2 7 ⎜⎝ 27 ⎠⎟ ﺇﺫﻥ . n ≥ 13 : − ln 8 27 ﺃﻱ n > 1 2 , 1 6 : n > ﻭﻤﻨﻪ : 0,1 ﻭ ﻋﻠﻴﻪ ﺒﻌﺩ ﺜﻼﺜﺔ ﻋﺸﺭ ﻴﻭﻡ ﻴﺯﻴﺩ ﺍﻹﻨﺘﺎﺝ ﻋﻥ 72ﻭﺤﺩﺓ . ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ( ):V – 3ﺃ( ﻨﺒﺭﻫﻥ ﺃﻥ n Vn+1 = e−0,1(n+1) = e−0,1n .e−0,1
ﻭ ﻋﻠﻴﻪ Vn+1 = Vn .e −0 ,1 : ﺇﺫﻥ ( V n ) :ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ q = e −0,1 lim Vn = l i m e − 0 ,1 n = 0 ﻭ ﻋﻠﻴﻪ : ∞ →x ∞ →x ﺏ( ﺤﺴﺎﺏ : S S = V 1 + V 2 + ... + V 10 V1 = e−0,1 ﺤﻴﺙ : S × = V1 1 − q 10 ﻟﺩﻴﻨﺎ : 1− q( )S 10 1 − e − 0 ,1 1 − e −1= e − 0 ,1 × 1 − e − 0 ,1 = e − 0 ,1 × 1 − e − 0 ,1 ﻭ ﻤﻨﻪ : ﺝ( ﺤﺴﺎﺏ ﺇﻨﺘﺎﺝ ﺍﻟﺸﺭﻜﺔ ﻓﻲ ﻤﺩﺓ 10ﺃﻴﺎﻡ : ﻟﺩﻴﻨﺎ S′ = u1 + u2 + ... + u10 : ﻟﻜﻥ un = 80 − 27.e−0,1n : ﺃﻱ ﺃﻥ un = 80 − 27.Vn : ﻭ ﻋﻠﻴﻪ :) S ′ = (80 − 27 V1 ) + (80 − 27 V2 ) + ... + (80 − 27 V10) S ′ = 80 + 80 + ... + 80 − 27 (V1 + V2 + ... + V10 ﻭ ﻤﻨﻪ S ′ = 1 0 × 8 0 − 2 7 × S : S′ = 800 − × 27 e − 0 ,1 × 1 − e −1 ﺇﺫﻥ : 1 − e − 0 ,1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ . S′ 638 : ﻭ ﻤﻨﻪ ﺍﻹﻨﺘﺎﺝ ﻫﻭ 638ﻭﺤﺩﺓ .
ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ﺘﻌﺭﻴﻑ : ﻟﺘﻜﻥ ) p ( nﺨﺎﺼﻴﺔ ﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ . n ﻨﻘﻭل ﻋﻥ ﺍﻟﺨﺎﺼﻴﺔ p nﺃﻨﻬﺎ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( )n ﺤﻴﺙ n ≥ n0 :ﺇﺫﺍ ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ : p ( n ) (1ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل . n = n0 (2ﻨﺒﺭﻫﻥ ﺃﻥ p nﻭﺭﺍﺜﻴﺔ ﺃﻱ ﻨﺒﺭﻫﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ ) p ( kﺼﺤﻴﺤﺔ) ( ﻓﺈﻥ p k + 1ﺼﺤﻴﺤﺔ ﺤﻴﺙ kﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻜﻴﻔﻲ ( ). ﺃﻭ ﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ : (1ﻨﻌﻭﺽ nﺒﺄﺼﻐﺭ ﻗﻴﻤﺔ ﺘﺄﺨﺫﻫﺎ ﻓﻲ ﻟﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ. (2ﻨﻔﺭﺽ ﺼﺤﺔ p kﺜﻡ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( ). p k + 1 ﻤﺜﺎل :1+ 2+ 3+ ... + n = )n(n + 1 ﻓﺈﻥ : n ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ 2 ﺍﻟﺤل : -ﻤﻥ ﺃﺠل n = 0ﻟﺩﻴﻨﺎ 0 = 0 :ﻭ ﻤﻨﻪ p 0ﺼﺤﻴﺤﺔ ( ). -ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1 ﺍﻟﻔﺭﻀﻴﺔ : p(k ) : 1 + 2 + 3 + ... + k = k (k + )1 2 ﺍﻟﻤﻁﻠﻭﺏ :p (k + 1): 1+ 2 + 3+ ... + k + (k + = )1 (k + 1)(k + )2 21 + 2 + 3 + ... + k + (k + )1 = k (k + )1 + (k + )1 ﻟﺩﻴﻨﺎ: 2 = k (k + 1)+ 2 (k + = )1 (k + 1 )(k + )2 2 2
ﻭ ﻤﻨﻪ p k + 1 :ﺼﺤﻴﺤﺔ( ). ﺇﺫﻥ p n :ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). n ﻤﺜﺎل :2 ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ :13 + 23 + 33 + ... + n3 = 1 n2 (n + 1)2 4 ﺍﻟﺤل : p (0):13 + 23 + 33 + ... + n3 = 1 n 2 ( n + 1 )2 ﻨﻔﺭﺽ : 4 (1ﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ) : p ( 0ﻟﺩﻴﻨﺎ 0 3 = 1 ( 0 )2 ( 0 + 1 )2 : n ﺃﻱ ﺃﻥ 0 = 0ﻭ ﻤﻨﻪ p 0 :ﺼﺤﻴﺤﺔ ( ). (2ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1p(k ): 13 + 23 + 33 + ... + k3 = 1 k 2 (k + 1 )2 4 1p (k + 1): 13 + 23 + 33 + ... + k3 = 4 ( k + 1 )2 (k + 2 )213 + 23 + 33 + ... + k3 + (k + 1 )3 = 1 k 2 (k + 1 )2 + (k + 1 )3 4 1 = 4 ( k + 1 )2 ⎡⎣ k 2 + 4(k + ⎦⎤) 1 = 1 ( k + 1 )2 ⎡⎣ k 2 + 4k + ⎤⎦ 4 4 1 = 4 ( k + 1 )2 (k + 2 )2 ﻭﻤﻨﻪ ) p ( k + 1ﺼﺤﻴﺤﺔ ﻭﻋﻠﻴﻪ ) p ( nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n
ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﺘﻌﺭﻴﻑ :ﻫﻲ ﻜل ﻤﺘﺘﺎﻟﻴﺔ ) ( u nﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل ﻭ ﻋﻼﻗﺔ ﺘﺭﺒﻁ un+1ﻭ unﻤﻥ ﺍﻟﺸﻜل : un+1 = f unﺤﻴﺙ fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ( ). ﻭ ﺃﺤﻴﺎﻨﺎ ﺘﻌﺭﻑ ﺒﺤﺩﻴﻬﺎ ﺍﻷﻭﻟﻴﻥ ﻭ ﻋﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ. ﻤﺜﺎل: 1 ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ unﻜﻤﺎ ﻴﻠﻲ ( ): ⎧ u 0 = 1 2un + 1 , n≥0 ⎨ u n = ⎩ +1 -ﺍﺤﺴﺏ ﻜل ﻤﻥ . u1 , u2 , u3 ﺍﻟﺤل : ﺒﻭﻀﻊ u1 = 2 u0 + 1 = 2 (1 ) + 1 = 3 : n = 0 ﺒﻭﻀﻊ u 2 = 2 u 1 + 1 = 2 ( 3 ) + 1 = 7 : n = 1 ﺒﻭﻀﻊ u3 = 2 u2 + 1 = 2 ( 7 ) + 1 = 15 : n = 2 ﻤﺜﺎل : 2 ﻜﻤﺎ ﻴﻠﻲ ( ):V ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ n⎪⎧ VVV1n0 = 2 2 Vn+1 − Vn , n≥0⎨ = 3⎩⎪ = +2 -ﺍﺤﺴﺏ ﻜل ﻤﻥ . V2 , V3 , V4V2 = 2V1 − V0 = 2 ( 3 ) − 2 = 4 ﺍﻟﺤل : ﻤﻥ ﺃﺠل : n = 0V 3 = 2 V 2 − V 1 = 2 (4 ) − 3 = 5 ﻤﻥ ﺃﺠل : n = 1V4 = 2V3 − V2 = 2 (5 ) − 4 = 6 ﻤﻥ ﺃﺠل : n = 2
ﺘﻌﺎﺭﻴﻑ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ – 1ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ : -ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ :ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ un n≥n0ﻤﺘﺯﺍﻴﺩﺓ )ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ() (ﺇﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺍﻟﺭﺘﺒﺔ n0ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ un+1 > un ) un+1 ≥ un ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ . n0 -ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ :ﺘﻜﻭﻥ ﻤﺘﺘﺎﻟﻴﺔ un n≥n0ﻤﺘﻨﺎﻗﺼﺔ )ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ() (ﺇﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺍﻟﺭﺘﺒﺔ n0ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ un+1 < un ) un+1 ≤ un ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ . n0 -ﻤﺘﺘﺎﻟﻴﺔ ﺜﺎﺒﺘﺔ :ﺘﻜﻭﻥ ﻤﺘﺘﺎﻟﻴﺔ un n≥n0ﺜﺎﺒﺘﺔ ﺇﺒﺘﺩﺍﺀﺍ ،ﻤﻥ ﺍﻟﺭﺘﺒﺔ ( )n0 ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ un+1 = unﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ . n0 -ﻤﺘﺘﺎﻟﻴﺔ ﺭﺘﻴﺒﺔ :ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺭﺘﻴﺒﺔ ﻋﻠﻰ ﻤﺠﺎل Iﻤﻥ ) ﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ( ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ )ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ( ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﺃﻭ ﻤﺘﻨﺎﻗﺼﺔ ) ﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ( ﻋﻠﻰ ﺍﻟﻤﺠﺎل ) Iﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ( . – 2ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﻋﻠﻰ : ﻴﻘﺎل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ unﺃﻨﻬﺎ ﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﻋﻠﻰ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ) ( ﺤﻘﻴﻘﻲ Mﺒﺤﻴﺙ un ≤ M :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n -3ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺩﻨﻰ : ﻴﻘﺎل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ unﺃﻨﻬﺎ ﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺩﻨﻰ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ) ( ﺤﻘﻴﻘﻲ mﺒﺤﻴﺙ un ≥ m :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n - 4ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﺤﺼﻭﺭﺓ : ﻴﻘﺎل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ unﺃﻨﻬﺎ ﻤﺤﺼﻭﺭﺓ ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺤﺩﻭﺩﺓ ﻤﻥ) ( ﺍﻷﻋﻠﻰ ﻭ ﻤﻥ ﺍﻷﺩﻨﻰ ﺃﻱ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ Mﻭ m ﺒﺤﻴﺙ m ≤ un ≤ M :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n
( 4ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭ ﺍﻟﻬﻨﺩﺴﻴﺔ : -1ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ : ﺃ – ﺘﻌﺭﻴﻑ :ﻨﻘﻭل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ unﺃﻨﻬﺎ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﺇﺫﺍ) (ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ rﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n un+1 = un + r؛ : rﻴﺴﻤﻰ ﺃﺴﺎﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ . ﻤﻼﺤﻅﺎﺕ : -ﺇﺫﺍ ﻜﺎﻥ r = 0ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﺜﺎﺒﺘﺔ ﻭ ﻜل ﺤﺩﻭﺩﻫﺎ ﺘﺴﺎﻭﻯ ﺍﻟﺤﺩ ﺍﻷﻭل . u0 -ﺇﺫﺍ ﻜﺎﻥ r > 0ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. -ﺇﺫﺍ ﻜﺎﻥ r < 0ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ.ﺒﺎﻟﻌﺒﺎﺭﺓ u n = 1 0 n + 7 : ﻤﺜﺎل : ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ) ( ﺍﻟﺤل : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n u n + 1 − u n = ⎣⎡1 0 ( n + 1 ) + 7 ⎤⎦ − [1 0 n + 7 ] = 1 0ﺇﺫﻥ unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ r = 10ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ( )u0 = 1 0 × 0 + 7 ﺃﻱ u0 = 7 : ﺏ – ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ : unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺃﺴﺎﺴﻬﺎ rﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ) ( unﻫﻭ un = u0 + nr :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). nﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ :ﻨﻔﺭﺽ ( )p n : un = u0 + nr : -ﻤﺭﺤﻠﺔ ﺍﻻﺒﺘﺩﺍﺀ :ﻤﻥ ﺃﺠل n = 0ﻟﺩﻴﻨﺎ u0 = u0 :ﺼﺤﻴﺤﺔ ﻭ ﻤﻨﻪ p 0ﺼﺤﻴﺤﺔ ( ).
-ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻭﺭﺍﺜﻴﺔ : ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1 ) uk = u0 + kr : p( kﺼﺤﻴﺤﺔ . ) uk+1 = u0 + ( k + 1) r : p( k + 1ﺘﺒﺭﻫﻥ . ﻟﺩﻴﻨﺎ uk+1 = uk + r :ﺤﺴﺏ ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ . ﻭ ﻟﺩﻴﻨﺎ uk = u0 + kr :ﺤﺴﺏ ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ ﻭ ﻋﻠﻴﻪ uk+1 = u0 + kr + r : ﻭ ﻤﻨﻪ ( )uk+1 = u0 + k + 1 r : ﻭ ﻤﻨﻪ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( )n ﺝ – ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ : unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺃﺴﺎﺴﻬﺎ ( )r ﻟﻴﻜﻥ ﺍﻟﻤﺠﻤﻭﻉ s = u0 + u1 + ... + un : n+1 2 ( )s = u0 + un ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺇﺫﻥ sﻴﺴﺎﻭﻱ ﻨﺼﻑ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻤﻀﺭﻭﺏ ﻓﻲ ﻤﺠﻤﻭﻉ ﺍﻟﺤﺩ ﺍﻷﻭل ﻭ ﺍﻟﺤﺩ ﺍﻷﺨﻴﺭ. ﻤﺜﺎل : unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0 = 3ﻭ ﺃﺴﺎﺴﻬﺎ ( )r = 5 -ﺍﺤﺴﺏ ﺍﻟﻤﺠﺎﻤﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ : s1 = u0 + u1 + ... + un (1 s2 = u0 + u1 + ... + u10 (2 s3 = u3 + u4 + ... + un (3 ﺍﻟﺤل : n + 1 ( )s1= 2 u0 + un (1ﻟﺩﻴﻨﺎ : ﺤﻴﺙ un = u0 + nr :ﻭ ﻋﻠﻴﻪ un = 3 + 5n :s1 = n+ 1 (3 + 3 + = )5n n + 1 (6 + )5n ﻭ ﻋﻠﻴﻪ : 2 2
. s2 = 11 ( 5 6 ) = 308 (2ﻟﺩﻴﻨﺎ : 2 (3ﻟﺩﻴﻨﺎ : 2 (u3 2 (21 +. s3 = n − + = ) un n− )5n 2 2 - 5ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ : unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ .ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺤﺴﺎﺒﻴﺔ ﺇﺫﺍ ﻭ ﻓﻘﻁ) ( ) ( n. ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ = un+1 un + un+2 ﺇﺫﺍ ﻜﺎﻥ : 2 un+1ﻴﺴﻤﻰ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻟﻠﺤﺩﻴﻥ unﻭ . un+2 – 2ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ : ﺃ – ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : ﻨﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﺇﺫﺍ ﻭ ﻓﻘﻁ) ( ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ qﺤﻴﺙ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n un+1 = un × qﺤﻴﺙ : qﻴﺴﻤﻰ ﺃﺴﺎﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). un ﻤﻼﺤﻅﺔ : -ﺇﺫﺍ ﻜﺎﻥ q = 1ﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺜﺎﺒﺘﺔ ﺠﻤﻴﻊ ﺤﺩﻭﺩﻫﺎ ﺘﺴﺎﻭﻱ u0 ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )un = 10n : ﺃﺜﺒﺕ ﺃﻥ unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺇﻋﻁﺎﺀ ﺤﺩﻫﺎ ﺍﻷﻭل ( )u0 ﺍﻟﺤل : un+1 = 10n+1 = 10n.10 ﻭ ﻋﻠﻴﻪ un+1 = un .10 :ﻭ ﻤﻨﻪ un :ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ( ). ﺃﺴﺎﺴﻬﺎ q = 10ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل u0 = 100 = 1 ﺏ – ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺃﺴﺎﺴﻬﺎ ( )q
ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ unﻴﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ un = u0 .qn :ﻤﻥ ﺃﺠل) ( ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n ﺍﻟﺒﺭﻫﺎﻥ ):ﺒﺎﻟﺘﺭﺍﺠﻊ ( ﻨﻔﺭﺽ ( )p n un : u0 .qn : -ﺒﺩﺍﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ : ﻤﻥ ﺃﺠل u0 = u0 : n = 0ﺼﺤﻴﺤﺔ ﻭ ﻤﻨﻪ p 0ﺼﺤﻴﺤﺔ( ). -ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻭﺭﺍﺜﻴﺔ : ﻨﻔﺭﺽ ﺼﺤﺔ p kﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( )p k + 1 p k : uk = u0 .qkﺍﻟﻔﺭﻀﻴﺔ) ( p k + 1 : uk+1 = u0 .qk+1ﺍﻟﻤﻁﻠﻭﺏ) ( ﻟﺩﻴﻨﺎ ) uk+1 = uk .q :ﺍﻟﺘﻌﺭﻴﻑ ( . ﻭ ﻟﺩﻴﻨﺎ ) uk = u0 .qk :ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ ( . ﻭ ﻋﻠﻴﻪ uk+1 = u0 .qk .q :ﻭ ﻤﻨﻪ uk+1 = u0 .qk+1 : ﻭ ﻤﻨﻪ p nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). n ﻤﻼﺤﻅﺎﺕ : -ﺇﺫﺍ ﻜﺎﻥ u1ﻫﻭ ﺍﻟﺤﺩ ﺍﻷﻭل ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﺈﻥ un = u1 × qn−1 -ﺒﺼﻔﺔ ﻋﺎﻤﺔ ﺇﺫﺍ ﻜﺎﻥ p ) upﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺃﺼﻐﺭ ﻤﻥ ( n ﺍﻟﺤﺩ ﺍﻷﻭل ﻓﺈﻥ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ . un = up × qn− p : -ﺘﻌﻴﻴﻥ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻴﺅﻭل ﺇﻟﻰ ﻜﺘﺎﺒﺔ unﺒﺩﻻﻟﺔ . n ﺝ – ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﻌﺎﻗﺒﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺃﺴﺎﺴﻬﺎ ( ). q ﻟﻴﻜﻥ ﺍﻟﻤﺠﻤﻭﻉ s = u0 + u1 + ... + un : -ﺇﺫﺍ ﻜﺎﻥ s = ( n + 1) u0 : q = 1 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n
s = u0 × 1 − qn+1 = u0 qn+1 − 1 : q ≠1 : ﻜﺎﻥ ﺇﺫﺍ - 1−q q−1 -ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n 1 − qn+1 sﻫﻭ ﺠﺩﺍﺀ ﺍﻟﺤﺩ ﺍﻷﻭل ﻓﻲ ﺍﻟﻨﺴﺒﺔ 1 − q ﺤﻴﺙ n + 1ﺘﻤﺜل ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻉ . ﻤﺜﺎل : unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0 = 20ﻭ ﺃﺴﺎﺴﻬﺎ ( )q = 2 -1ﺍﺤﺴﺏ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ .s2 = u0 + u1 + ... + u10 -2ﺍﺤﺴﺏ ﺍﻟﻤﺠﺎﻤﻴﻊ ﺍﻵﺘﻴﺔ : s1 = u0 + u1 + ... + un؛ s3 = u10 + u11 + ... + u20 ﺍﻟﺤل : (1ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ un = u0 × qn :ﻭﻤﻨﻪun = 20 × 2n : (2ﺤﺴﺎﺏ ﺍﻟﻤﺠﺎﻤﻴﻊ : * ﻟﺩﻴﻨﺎ s1 = u0 + u1 + ... + un : s1 = u0 . 1 − qn+1 = 20 × 1 − 2n+1 ﻭﻤﻨﻪ : 1−q 1− 2 ( )s1 = 20 2n+1 − 1 ﺇﺫﻥ : * ﻟﺩﻴﻨﺎ s2 = u0 + u1 + ... + u10 : ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ 11: 1 − q11 1 − 211 1−q 1− 2( )s2= u0 . = 20 × = 20 211 − 1 ﻭﻤﻨﻪ : * ﻟﺩﻴﻨﺎ s3 = u10 + u11 + ... + u20 : ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ 20 − 10 + 1 = 11 :
ﺤﻴﺙ u10 = 20 × 210 : s3 = u10 . 1 − q11 ﻭ ﻤﻨﻪ : 1−q 1 − 211 1− 2( )s3= 20 × 210 × = 20 × 210 211 − 1 ﻭ ﻋﻠﻴﻪ : ﺩ – ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ :ﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻫﻨﺩﺴﻴﺔ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ un+1 2 = un .un+2 :ﻤﻥ ﺃﺠل) ( ) ( ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n un+1ﻴﺴﻤﻰ ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻟﻠﺤﺩﻴﻥ unﻭ . un+2 – 5ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ : ﺘﻌﺭﻴﻑ :) ( u nﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻭ pﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻨﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( u nﺘﻘﺒل lﻜﻨﻬﺎﻴﺔ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍﻜﺎﻥ ﻤﺠﺎل ﻤﻔﺘﻭﺡ Iﻴﺸﻤل lﻓﻬﻭ ﻴﺸﻤل ﺃﻴﻀﺎ ﻜل ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ) ( lim un =l ﻭ ﻨﻜﺘﺏ : ∞n→+ ﻭ ﻨﻘﻭل ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻘﺎﺭﺒﺔ( ). ﺘﻌﺭﻴﻑ un :ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ( ).ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ +ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻜل ﻤﺠﺎل ﻤﻔﺘﻭﺡ ∞] [ ( )a;+∈ aﻴﺸﻤل ﻜل ﺍﻟﺤﺩﻭﺩ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ unﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ﻭ ﻨﻜﺘﺏ ( ) ( ): lim un = ∞+ ∞n→+ ﻭ ﻨﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻤﺘﺒﺎﻋﺩﺓ ( ).ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ −ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻜل ﻤﺠﺎل ﻤﻔﺘﻭﺡ ] [ ( )−∞ ;a∈ aﻴﺸﻤل ﻜل ﺍﻟﺤﺩﻭﺩ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ unﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ﻭ ﻨﻜﺘﺏ ( ) ( ): lim un = ∞− ∞n→ + ﻭ ﻨﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻤﺘﺒﺎﻋﺩﺓ( ).
ﻤﺒﺭﻫﻨﺔ :ﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ un = f n :ﺤﻴﺙ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل) ( ) ( ﻤﻥ ﺍﻟﺸﻜل ∞ a ;+ﺤﻴﺙ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ] [. lim un = l ﻓﺈﻥ : ﺇﺫﺍ ﻜﺎﻨﺕ lim f ( x ) = l (1 ∞n→ + ∞x→ +( )l i m∞n→ + un = ∞+ ﺇﺫﺍ ﻜﺎﻨﺕ ∞ lim f x = +ﻓﺈﻥ : (2 ∞x→ +lim un = ∞− ﺇﺫﺍ ﻜﺎﻨﺕ ∞ l i m f ( x ) = −ﻓﺈﻥ : (3 ∞x→ +∞n→ + ﻤﻼﺤﻅﺔ :ﺍﻟﻨﺘﺎﺌﺞ ﻭ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺤﻭل ﺍﻟﻨﻬﺎﻴﺎﺕ ﻓﻲ ﺍﻟﺩﻭﺍل ﺘﺒﻘﻰ ﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺒﺸﺭﻁ ﺃﻥ ﺘﻜﻭﻥ nﻓﻲ ﺃﻜﺒﺭ ﺃﻭ ﻴﺴﺎﻭﻱ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ . n0 ﻤﺒﺭﻫﻨﺔ : 4) (u nﻭ ) ( V nﻭ ) ( w nﺜﻼﺙ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻋﺩﺩﻴﺔ ﻭ lﻋﺩﺩ ﺤﻘﻴﻘﻲ . ﺇﺫﺍ ﻜﺎﻨﺕ wn ≤ un ≤ Vnﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻭ ﻜﺎﻨﺕ lim un = l ﻓﺈﻥ : lim w n = lim vn = l ∞n→+ ∞n→+ ∞n→+ ﻤﺒﺭﻫﻨﺔ : 5 Vnﻭ unﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ( ) ( ): ﺇﺫﺍ ﻜﺎﻥ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ un ≥ Vn : n0 lim un = ∞+ ﻓﺈﻥ : lim v = ∞+ ﻭ ﻜﺎﻨﺕ : n ∞n→+ ∞n→+ ﻤﺒﺭﻫﻨﺔ : 6 Vnﻭ unﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ( ) ( ): ﺇﺫﺍ ﻜﺎﻥ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ un ≤ Vn : n0 lim un = ∞− ﻓﺈﻥ : lim vn = ∞− ﻭ ﻜﺎﻨﺕ : ∞n→+ ∞n→+ ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : ﻤﺒﺭﻫﻨﺔ : 7 unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﻭ ﺃﺴﺎﺴﻬﺎ ( )q ﻟﺩﻴﻨﺎ un = u0qn :
lim un = ∞+ -ﺇﺫﺍ ﻜﺎﻥ q > 1ﻭ un > 0ﻓﺈﻥ :∞n→ + ﻭ ﻋﻠﻴﻪ unﻤﺘﺒﺎﻋﺩﺓ( ).lim un = ∞− -ﺇﺫﺍ ﻜﺎﻥ q > 1ﻭ u n < 0ﻓﺈﻥ :∞n→ + ﻭ ﻋﻠﻴﻪ unﻤﺘﺒﺎﻋﺩﺓ( ). lim un = 0 ﻓﺈﻥ : -ﺇﺫﺍ ﻜﺎﻥ −1 < q < 1 ∞n→+ ﻭ ﻋﻠﻴﻪ unﻤﺘﻘﺎﺭﺒﺔ ( ). -ﺇﺫﺍ ﻜﺎﻥ q ≤ −1ﻓﺈﻥ ﺍﻟﻨﻬﺎﻴﺔ ﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ ﻭ ﻋﻠﻴﻪ unﻤﺘﺒﺎﻋﺩﺓ( ). ﻤﻼﺤﻅﺔ : ﻤﻥ ﺃﺠل un = u0 .enlnq : q > 0ﻭ ﻋﻠﻴﻪ ﻨﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ. ﺃﻤﺜﻠﺔ :∞lim 3n = + ؛ lim ⎛ 1 ⎞n = 0 ⎝⎜ 2 ⎠⎟∞n→ + ∞n→ +lim ⎛ − 1 ⎞n = 0 lim ( − 2 )nﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ ؛ ⎜⎝ 2 ⎟⎠ ∞n→ +∞n→ + - 5ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﺍﻟﻤﺘﺠﺎﻭﺭﺘﺎﻥ : ﺘﻌﺭﻴﻑ :ﻨﻘﻭل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺘﺎﻥ ) ( V nﻭ ) ( u nﺃﻨﻬﻤﺎ ﻤﺘﺠﺎﻭﺭﺘﺎﻥ ﺇﺫﺍ ﻜﺎﻨﺕ( )lim∞n→+un − vn ﺇﺤﺩﺍﻫﻤﺎ ﻤﺘﺯﺍﻴﺩﺓ ﻭ ﺍﻷﺨﺭﻯ ﻤﺘﻨﺎﻗﺼﺔ ﻭ ﻜﺎﻨﺕ = 0 : ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ Vnﻭ unﺤﻴﺙ ( ) ( ): vn = 2 ﻭ un = 2 − n n ﻫل Vnﻭ unﻤﺘﺠﺎﻭﺭﺘﺎﻥ ؟) ( ) ( ﺍﻟﺤل : ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻨﺎﻗﺼﺔ ﻭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﻤﺘﺯﺍﻴﺩﺓ( ) ( ).
( )l i m lim ⎛ 2 2 ⎞ 0 ﻭ ﻟﺩﻴﻨﺎ : ⎝⎜ n n ⎟⎠ ∞n→ + ∞n→ + un − v n = + = ﻭ ﻋﻠﻴﻪ Vnﻭ unﻤﺘﺠﺎﻭﺭﺘﺎﻥ ( ) ( ). ﻤﺒﺭﻫﻨﺔ : 8ﺇﺫﺍ ﻜﺎﻨﺕ Vnﻭ unﻤﺘﺘﺎﻟﻴﺘﻴﻥ ﻤﺘﺠﺎﻭﺭﺘﻴﻥ ﺤﻴﺙ :ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﺯﺍﻴﺩﺓ ﻭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ) ( ) ( ) ( Vnﻤﺘﻨﺎﻗﺼﺔ ﻓﺈﻥ ( ): (1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ un ≤ vn : (2ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ Vnﻭ unﻤﺘﻘﺎﺭﺒﺘﺎﻥ ﻨﺤﻭ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ( ) ( )λun ≤λ ≤ v ﻓﺈﻥ : n0 ﺃﻜﺒﺭ ﻤﻥ ﺭﺘﺒﺔ n ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ (3 n ﻓﻔﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ : Vn -ﻤﺘﺯﺍﻴﺩﺓ ﻭ unﻤﺘﻨﺎﻗﺼﺔ ﻭ ﻋﻠﻴﻪ ( ) ( ): v ≤ u ﻓﺈﻥ : n ﻁﺒﻴﻌﻲ ﻋﺩﺩ ﺃﺠل ﻜل ﻤﻥ (1 n n Vn (2ﻭ unﻤﺘﻘﺎﺭﺒﺘﺎﻥ ﻨﺤﻭ ( ) ( ). 0 v ≤ 0 ≤ un : ﻓﺈﻥ n ﻁﺒﻴﻌﻲ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ (3 n
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218