1+h - 2 + 1 4+3 4 = lim h→0 h 4 1+h -8+4+h = lim 4 + (4 + h) h→0 h = lim 4 1 + h - (4 - h) h→0 4h(4 + h) = lim 4 1+ h - (4 - h) × 4 1 + h + (4 - h) h→0 4h(4 + h) 4 1 + h(4 - h) = lim (-h + 24) h→0 4(4 + h) 4 1 + h + 4 - h = 16 24 14) = 24 = 3 (4 + 1608 32 ( )f ′ 1 = 3 ﺤﻴﺙ1 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ f ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ 32 f (x) = x2 + 9x - 2 ; x0 = 2 : ( ﻟﺩﻴﻨﺎ7 x -1 f ( 2) = 20 ؛Df = \ - {1} : ﻭ ﻤﻨﻪ f -f (2) (2 + h)2 + 9(2 + h) - 2 - 20 hlim = lim 2+ h-1h→0 h→0 h
4 + 4h + h2 + 18 + 9h - 2 - 20 1 +h = lim h→0 h h2 + 13h + 20 -20 1+ h = lim h→0 h h2 + 13h + 20 - 20(1 + h) h2 - 7h = lim 1+ h = lim 1+ h h→0 h h→0 h = lim h (h - 7) = lim h - 7 = -7 h→0 h (1 + h) h→0 1 + h ( )f ′ 2 = -7 : ﺤﻴﺙ2 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ . 3ﺍﻟﺘﻤﺭﻴﻥ { }D f = x ∈ \ : 9 - x2 ≥ 0 : ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ-1 x −∞ -3 : ﻟﺩﻴﻨﺎ 3 +∞ 9 − x2 - + - Df = [-3 ; 3] : ﻭﻋﻠﻴﻪ lim f (x) : ﺤﺴﺎﺏ-2 x→3 x -3lim f ( x) = lim 9 - x2 = lim 9 - x2 . 9 - x2 < x -3 < x -3 < ( x - 3) 9 - x2x→3 x→3 x→3 = lim 9 - x2 = lim (3 - x) (3 + x) < ( x - 3) 9 - x2 < ( x - 3) 9 - x2 x→3 x→3
∞= lim -(x -3) (x + 3) = lim -(3 + x) = - < )( x - 3 9 - x2 < 9 - x2x→3 x→3 -( x + 3) → -6 ﻷﻥ : 9 - x2 → 0ﻭﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ 3ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻭﻋﻠﻴﻪ ( )C f ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . -3ﺘﺒﻴﺎﻥ ﺃﻥ C fﻫﻭ ﻨﺼﻑ ﺩﺍﺌﺭﺓ ( ): ﻟﺩﻴﻨﺎ f ( x ) = 9 - x2 :ﻭﻤﻨﻪ y = 9 - x2 2 9 - x2y2 = 9 - x2 = ( )y2y ≥ 0 ﻭﻋﻠﻴﻪ : ﻭﺒﺎﻟﺘﺎﻟﻲ : y ≥ 0 x2 + y2 = 9 ﺇﺫﻥ : y ≥ 0ﺇﺫﻥ C f :ﻤﻥ ﻨﺼﻑ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ Oﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ 3ﺤﻴﺙ ( ). y ≥ 0 ﺍﻟﺘﻤﺭﻴﻥ. 4 -1ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ D f = \ : 0lim )f (x = lim sin x =1=f )(0 xx→0 x→0 ﻭﻤﻨﻪ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . 0 -ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻲ ﺍﻟﻤﻘﻠﻭﺏ ﻭ sinﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ *\ ﻟﻜﻥ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 0ﻭﻤﻨﻪ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ \ (2ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ : 0
f (h) - f (0) = lim 1 sin h 1 sin h h h hlim >h = lim × = ∞+ > h→0 >h h→0h→0 lim )f (h) - f (0 = lim 1 . sin h ∞= - < < h h h h→0 h→0 ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ . O ﺍﻟﺘﻤﺭﻴﻥ. 5 ( )x2 x2 + 2x + 1 f ( x) = ( x + 1) (x2 - x + 1) ; x ≠ -1 f )(x = (x x2 ( x + 1)2 )1 ; x ≠ -1 ﻭﻤﻨﻪ : ﻭﻋﻠﻴﻪ : + 1) (x2 - x + f )(x = (x x.x +1 + 1) (x2 )- x + 1 -1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : { }Df = x ∈ \ : (x + 1) (x2 - x + 1) ≠ 0 ﻭﻋﻠﻴﻪ ( x + 1) x2 - x + 1 = 0 :ﺘﻜﺎﻓﺊ x + 1 = 0ﺃﻭ) ( x2 - x + 1 = 0ﻭﺃﻥ x = -1ﺃﻭ x2 - x + 1 = 0 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - x + 1 = 0 : D = −3ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل . ﻭﺒﺎﻟﺘﺎﻟﻲ { }D f = \ - -1 : – 2ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ : 0 f )(x = (x x.x +1 ﻟﺩﻴﻨﺎ : + 1) (x2 )- x + 1
x −∞ −1 0 : ﻭﻤﻨﻪ x −x −x +∞ x+1 −( x + 1) x+1 x x( x + 1) − x( x + 1) x ⋅ x+1 x+1 − x( x + 1) : ﻭﺒﺎﻟﺘﺎﻟﻲ f ( x ) = x (x + 1) x ∈ ]-∞ ; -1[ ∪ [0 ; +∞[ (x + 1) (x2 - x + 1) -x (x + 1) f ( x ) = (x + 1) (x2 - x + 1) x ∈ ]-1 ; 0] f ( -1) = 1 3 : ﻭ ﻋﻠﻴﻪ f ( x ) = x , x ∈ ]-∞ ; -1[ ∪ [0 ; +∞[ f ( x ) = x2 - x + 1 , x ∈ ]-1 ; 0] −x x2 - x + 1 1 f ( -1) = 3 lim f ( x) = lim f ( x) -x =0 : ﻭ ﻟﺩﻴﻨﺎ << x +1 x→0 x→0 lim f ( x) = lim f ( x) x =0 >> x +1 x→0 x→0
f )(0 = (0 0.0 +1 )1 = 0 + 1) (02 -0+ ﺇﺫﻥ lim f ( x ) = lim f ( x ) = f (0) : >< x→0 x→0 ﻭﻋﻠﻴﻪ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . 0 -ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ : -1 lim f ( x) = lim x2 x +1 = -1 << -x 3 x→0 x→0 ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ – 1ﻤﻥ ﺍﻟﻴﺴﺎﺭ ( ). f f ﻭﻤﻨﻪ )x ≠ f (−1 ﻭﻋﻠﻴﻪ lim < x → −1 lim f ( x ) = lim x2 −x = 1 > x→−1 − x+1 3 x → −1 ﻭﻤﻨﻪ ) lim f ( x ) = f ( − 1ﻭﻋﻠﻴﻪ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ – 1ﻤﻥ ﺍﻟﻴﻤﻴﻥ x ;→ −1 ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . - 1 – 3ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ : 0 -h lim f (h) - f (0) = lim h2 - h + 1 < h < h h→0 h→0 = lim -h 1 < h2 - h + 1 × h h→0 = lim -1 = -1 < h2 - h + 1 h→ 0 ﻭﻋﻠﻴﻪ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﺴﺎﺭ . -hlim f (h) - f (0) = lim h2 - h + 1 = lim -h 1 > >h h > h2 - h + 1 × h h→0h→0 h→0
= lim h2 -1 = 1 > -h+1 h→0 ﻭﻋﻠﻴﻪ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ . 0 -ﺩﺭﺍﺴـﺔ ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ : - 1 f (1 + h) - f (-1) = lim (-1 -1 + h - 1 + h)2 - (-1 + h) +1 3lim > h > hh→0 h→0 = lim -1 + h - 1 × 1 < 1 - 2h + h2 + 1 - h + 1 3 h h→0 = lim 3 (-1 + h) - (h2 - 3h + 3) × 1 < h )3 (h2 - 3h + 3 h→ 0 = lim -3 + 3h - h2 + 3h - 3 × 1 < )3 (h2 - 3h + 3 h h→0 = lim -h2 + 6h - 6 × 1 ∞= + < )3 (h2 - 3h + 3 h h→0 ﻭﻤﻨﻪ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻭﻴﻤﻜﻥ ﺍﻹﺠﺎﺒﺔ ﺃﻴﻀﺎ ﺒﻘﻭﻟﻨﺎ ﺒﻤﺎ ﺃﻥ fﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ – 1ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻓﻬﻲ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ -1ﻤﻥ ﺍﻟﻴﺴﺎﺭ . f (-1 + h) - f (-1) = lim (-1 +1 - h +1 - 1 )+ h)2 - (-1+ h 3lim > h > hh→ 0 h→ 0 1 - 2h + 1-h - h +1 - 1 h2 + 1 3 = lim > h h→ 0
h2 1-h - 1 - 3h + 3 3 = lim > h h→ 0 = lim 3 - 3h - h2 + 3h - 3 × 1 > 3 (h2 )- 3h + 3 h h→ 0 = lim -h2 > )3h (h2 - 3h + 3 h→ 0 = Lim 3(h2 −h + )3 = 0 h ;→ 0 − 3h ﻭﻤﻨﻪ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ -1ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ . - 1 ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺤﺴﺎﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤـﺸـﺘﻘـﺔ : f = )(x x2 − 4x + 2 (1ﻟﺩﻴﻨﺎ : x2 + x + 1 { }Df = x ∈ \ : x2 + x + 1 ≠ 0 ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + x + 1 = 0 :ﻭﻟﺩﻴﻨﺎ ∆ = -3 ﻭﻤﻨﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل D f = \ . ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻭ ﻤﻨﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ Dﺤﻴﺙ :)f ′( x = (2x - )4 (x2 + x + 1) - (2x + )1 ( x2 - 4x + )2 ( x2 + x + 1)2)f ′(x = 2x3+ 2x2 + 2x - 4x2- 4x - 4-2x3 + 8x2-4x-x2 + 4x-2 (x2 + x + 1)2
f ′( x) = 5x2 - 2x - 6 (x2 - x - 1)2 f (x) = (x - x+3 2) : ( ﻟﺩﻴﻨﺎ2 1) ( x + Df = {x ∈ \ : ( x - 1) ( x + 2) ≠ 0} Df = \ − { 1 ; − 2} : ﺇﺫﻥf ′(x) = 1 (x - 1) - [1 (x + 2) + 1(x - 1)] (x + 3) 1)2 (x + 2)2 (x -f ′(x) = (x - 1) (x + 2) - (2x + 1) (x + 3) (x - 1)2 (x + 2)2f ′(x) = x2 + x - (2x2 + 7x + 3) (x - 1)2 (x + 2)2 f ′(x) = - x2 - 6x - 5 : ﺇﺫﻥ (x - 1)2 (x + 2)2 f ( x ) = (2x + 1)2 (x2 + 3)2 : ( ﻟﺩﻴﻨﺎ3 . D f = \ : ﻭ ﻤﻨﻪf ′( x) = 2.2.(2x + 1) (x2 + 3)2 + 3 (2x) (x2 + 3) . (2x + 1)2f ′( x) = (x + 1) (x2 + 3) 4 (x2 + 3) + 6x (x - 1) f ′( x) = (x + 1) (x2 + 3) (16x2 + 6x + 12) 2 3 5 Df = \ : ﻭ ﻤﻨﻪ f (x) = x3 + 4x + 1 : ( ﻟﺩﻴﻨﺎ4 6 2 2 5 5 f ′(x) =3 × x 2 + 4 x 3 + 4x + 1
f )( x = - x2 + 3x - 5 (5ﻟﺩﻴﻨﺎ : x +1 ﻭ ﻤﻨﻪ Df = \ - {-1} : )f ′(x = (-2x + )3 (x + 1) - 1 (-x2 + 3x - )5 (x + 1)2 )f ′( x = -2x 2 - 2x + 3x + 3 + x2 - 3x +5 (x + 1)2 )f ′(x = - x2 - 2x + 8 ( x + 1)2 (6ﻟﺩﻴﻨﺎ f ( x ) = -4x2 + 5 x : ﻭ ﻤﻨﻪ . D f = \ : ﻭﻟﺩﻴﻨﺎ : f ( x) = -4x2 + 5x ; x ≥ 0 f )( x = -4x 2 - 5x ; x≤0 xﻤﻥ ﺃﺠل f ′( x ) = -8x + 5 : x > 0 xﻤﻥ ﺃﺠل f ′( x ) = -8x - 5 : x < 0 ﻨﺩﺭﺱ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ( )f 0 = 0 : 0lim f (h) - f (0) = lim -4h2 -5h < h < hh→0 h→0 = lim h (-4h -5) = -5 < h h→0 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ . 0
( )Df = \ : ﻭ ﻤﻨﻪf x = - x2 + 8 x - 15 : ( ﻟﺩﻴﻨﺎ7 f ( x) = - x2 + 8x - 15 ; x ∈ [3 ; 5] f ( x) = -x 2 + 8x - 15 ; x ∈ [3 ; 5] ∪ [5 ; + ∞] - x2 + 8 x - 15 : ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓx x2 = 3 ؛x1 = 5 : ∆ ﻭﻤﻨﻪ′ = 1 : ﻟﺩﻴﻨﺎ −∞3 5+∞→ : ﻭ ﻤﻨﻪ ﺍﻹﺸﺎﺭﺓ ﻫﻲ + 0- 0 + f ( x) = - x2 + 8x - 15 ; - x2 + 8 x - 15 ≥ 0 f ( x ) = - x2 + 8x - 15 ; - x2 +8x - 15 ≤ 0 f ′( x) = - 2x + 8 x ∈ ]3 ; 5[ ﻟﻤﺎ f ′( x) = - 2x + 8 : x ∈ ]- ∞ ; 3[ ∪ ]5 ; +∞[ ﻟﻤﺎ ( )f 3 = 0 : 3 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩlim f (3 + h) - f (h) = lim f (3 + h) - f (h) + 15 < h < hh→0 h→0lim f (3 +h)- f (h) = lim f (3 +h) - 8(3 +h) +15 < h < hh→0 h→0lim h2 - 2h = lim (h - 2) = - 2 < h < h→0h→0 ﻤﻥ ﺍﻟﻴﺴﺎﺭ3 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ f ﺇﺫﻥlim f (3+ h)- f (h) = lim f (3+ h)- 8(3+ h) + 15 < h < hh→0 h→0
= lim -9 - 6h - h2 + 24 + 8h - 15 = lim -h2 + 2h > h > h h→0 h→0 = lim h (-h + 2h) = lim (-h + 2) = 2 > h > h→0 h→0 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ . 3....... ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ . 3 xﻗﺒﻠﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ( )f 5 = 0 : 5lim f (5 + h) - f (5) = lim − (5 + h)2 - 8 (5 + h) - 15 < h < hh→0 h→0 = lim -25 - 10h - h2 + 40 + 8h - 15 = lim -h2 - 2h < h < h h→0 h→0 = lim h (-h - 2) = lim (-h - 2) = -2 < h < h→0 h→0 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 5ﻤﻥ ﺍﻟﻴﺴﺎﺭ.lim f (5 + h) - f (5) = lim (5 + h)2 - 8 (5 + h) + 15 > h > hh→0 h→0 = lim 25 + 10h + h2 - 40 - 8h + 15 = lim h2 + 2h > h > h h→0 h→0 = lim h (h + 2) = lim (h + 2) = 2 > h > h→0 h→0 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 5ﻤﻥ ﺍﻟﻴﻤﻴﻥ . ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ 5 (8ﻟﺩﻴﻨﺎ f ( x ) = - x + 2 . x + 5 :ﻭ ﻤﻨﻪ D f = \ : ﻨﻜﺘﺏ f xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) (
x −∞ -5 2 +∞ -x + 2 x+5 -x + 2 -x + 2 -(-x + 2)-x + 2 x + 5 -(x + 5) x +5 x +5 -(-x+2)(x+5) (-x+2)(x+5) -(-x+2)(x+5) : ﺇﺫﻥ f ( x) = -(-x + 2) (x + 5) ; x ∈ ]-∞ ; -5] ∪ [2 ; +∞[ f ( x) = (-x + 2) (x + 5) ; x ∈ [-5 ; 2[ f ′( x) = -1 (x + 5) + 1 (-x + 2) : x ∈ ]-5 ; 2[ * ﻟﻤﺎ f ′( x) = -x - 5 - x + 2 f ′( x) = - (-2x - 3) : x ∈ ]-∞ ; -5[ ∪ ]2 ; +∞[ * ﻟﻤﺎ f ′( x) = 2x + 3 ( )f −5 = 0 : -5 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩxlim f (-5 + h) - f (-5) = lim -(5 - h + 2) (-5 + h +5) < h < hh→0 h→0 = lim -h (7 - h) = lim - (7 - h) < h < h→0 h→0 = -7 . ﻤﻥ ﺍﻟﻴﺴﺎﺭ-5 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻭﻋﻠﻴﻪlim f (-5 + h) - f (-5) = lim (5 - h + 2) (-5 + h +5) > h > hh→0 h→0 = lim h (- h + 7) = lim (-h + 7) = 7 > h > h→0 h→0 .-5 ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ-5 ﻭﻤﻨﻪ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ
. 2 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩxlim f (2 + h) - f (2) = lim (-2 - h + 2) (2 + h +5) < h < hh→0 h→0 = lim -h (7 + h) = lim -(7 + h) = -7 < h < h→0 h→0 . ﻤﻥ ﺍﻟﻴﺴﺎﺭ2 ﻗﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﺇﺫﻥlim f (2 + h) - f (2) = lim -(-2 - h + 2) (2 + h +5) > h > hh→0 h→0 = lim h (7 + h) = lim (7 + h) = 7 > h > h→0 h→0 . ﻤﻥ ﺍﻟﻴﻤﻴﻥ2 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﺇﺫﻥ . 2 ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ . 7ﺍﻟﺘﻤﺭﻴﻥ : ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ1) f ( x ) = cos3 x , Df = \ f ′( x) = -3 sin x cos2 x2) f ( x) = sin3 x Df = {x ∈ k : cosx ≠ 0} x = π + \π , k ∈ ] : ﻤﻌﻨﺎﻩ cosx = 0 2 Df =\ - π + kπ / k ∈ ] 2 f ′( x) = 3 (1 + tan2 x) (tan2 x) ( )f ′( x) = 3 . tan2g 1 + tan2 x
3) f ( x) = sin x Df = {x ∈ \ : sin x ≥ 0} sin x ≥ 0 : ﻨﺠﺩ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ [ ]S = 2kπ ; (2k + 1) π : ﺤﻠﻭﻟﻬﺎ ﻤﻥ ﺍﻟﺸﻜل k ∈ ] ﺤﻴﺙ Df = [2kπ ; (2k + 1) π] : ﻭﻤﻨﻪ k ∈ ] ﻤﻊ ] [k ∈ ] ﻤﻊ2kπ ; (2k + 1) π ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰf ﻭ ﺍﻟﺩﺍﻟﺔ . f ′(x) = cosx : ﻭ ﻤﻨﻪ 2 sinx4) f ′( x) = cos 2 x 1 - sin x Df = {x ∈ \ : 1 - sin x ≠ 0} sin x = 1 ﺃﻱ1 - sin x = 0 ﻜل ﺍﻟﻤﻌﺎﺩﻟﺔ x = π + 2kπ , k∈] : ﻭﻤﻨﻪ 2 Df =\ - π + 2kπ / k ∈ ] 2 f ′(x) = -2 sin2x (1 - sin) - (-cos x) . cos 2x (1 - sinx)2 f ′(x) = -1 sin x cosx (1 - sin x) + cosx . cos 2x (1 - sinx)2 f ′(x) = cosx [-4 sin x (1 - sin x) + cos 2x] (1 - sinx)2
f ′(x) = ( )cosx -4 sinx + 4 sin2 x + 1 - 2 sin2 x (1 - sinx)2f ′(x) = ( )cosx 2 sin2 x - 4 sinx + 1 (1 - sinx)25) f ( x) = sin x - cos2xDf = {x ∈ \ / sin x - cos2x ≥ 0} ﺃﻱsin x - cos2x ≥ 0 : ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ sin x - (1 - 2sin2 x) ≥ 0 sin x + 1 + 2sin2 x ≥ 0 2 sin2 x + sinx - 1 ≥ 0 . . . (1) 2z2 + z - 1 ≥ 0 : ﻨﺠﺩsin x = z ﻨﻀﻊ ∆ = 9 ( = ∆ ﻭﻤﻨﻪ1)2 - 4 (-1) (2) z2 = -1 +3 = 1 , z1 = -1 +3 = -1 : ﻭﻋﻠﻴﻪ 4 2 4 2z 2 + z - 1 = 2 (z + 1) z - 1 : ﺇﺫﻥ 2 2 sin2 x + sinx - 1 = 2 ( sinx + 1) sinx - 1 : ﺇﺫﻥ 2 2 ( sinx + 1) sinx - 1 ≥ 0 : ( ﺘﻜﺎﻓﺊ1) ﻭﻋﻠﻴﻪ 2 sin x 1 + ≥ 0 : ﻷﻥ sin x - 1 ≥0 : ﻭﻤﻨﻪ 2x∈ π + 2kπ ; 5π + 2kπ : ﺇﺫﻥ sin x ≥ 1 6 6 2 : ﻭﻋﻠﻴﻪ
Df ∈ π ; + 2kπ 5π + 2kπ , ]∈k ﺤﻴﺙ : 6 6 π + 2kπ ; 5π + 2kπ ﺍﻟﺩﺍﻟﺔ fﺘﻘل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ 6 6 ﺤﻴﺙ : )f ′(x = cosx + 2 sin2x 2 sin x - cos2x)6 f )(x = 2- sin x 4- cosx ﺒﻤﺎ ﺃﻥ 4 - cosx > 0ﻓﺈﻥ D f = \ :)f ′(x = -cosx (4 - cos) - sin x )(2 -sin x (4 - cosx)2)f ′(x = -cosx (4 - cos) - sin x )(2 -sin x (4 - cosx)2)f ′(x = -4 cosx - 2 sin x +1 (4 - cosx)2 ﺍﻟﺘﻤﺭﻴﻥ. 8 ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ : f -1ﻓﻲ ﺍﻟﻤﺠﺎل : -∞ ; -1ﻟﺩﻴﻨﺎ f ′ x > 0ﻭﻤﻨﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ( ) ] ]. -2ﻓﻲ ﺍﻟﻤﺠﺎل : -1 ; 0ﻟﺩﻴﻨﺎ f ′ x ≥ 0ﻭﻤﻨﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ( ) [ ]. -3ﻓﻲ ﺍﻟﻤﺠﺎل : 0 ; 2ﻟﺩﻴﻨﺎ f ′ x ≤ 0ﻭ ﻤﻨﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ( ) [ ]. -4ﻓﻲ ﺍﻟﻤﺠﺎل : 2 ; 3ﻟﺩﻴﻨﺎ f ′ x ≤ 0ﻭﻤﻨﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ( ) [ ]. -5ﻓﻲ ﺍﻟﻤﺠﺎل ∞ f ′ x ≥ 0 : 3 ; +ﻭﻤﻨﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ) [ [. ﺍﻟﺘﻤﺭﻴﻥ. 9
ﻓﻲ ﺍﻟﻤﺠﺎل f2 x < 0 : -1 ; 0ﻭﻟﺩﻴﻨﺎ f1ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ( ) [ ]. ﻭ ﻓﻲ ﺍﻟﻤﺠﺎل f2 x < 0 : 0 ; 1ﻭ ﻟﺩﻴﻨﺎ f1ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻓﻲ ﺍﻟﻨﻘﻁﺔ] [ ) ( ) M1(-1 ; 2ﻟﺩﻴﻨﺎ C1ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ) ( f2 -1 = 0ﻓﻲ ﺍﻟﻨﻘﻁﺔ ) M1(1 ; -2ﻓﺈﻥ C1ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ) ( ) (ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ f2 1 = 0 :ﺇﺫﻥ C1ﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ f1ﻭ ( ) ( ) ( )C2 ﺍﻟﺘﻤﺜل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f1′ﺇﺫﻥ f2 = f1′ : ﺍﻟﺘﻤﺭﻴﻥ. 10 -1ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ [ [D f -1 ; +∞ : ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ( )f 0 = 1 : 0 -2lim )f (h) - f (0 = lim 1+h -1 h hh→0 h→0 = lim ( 1 + h - 1) ( )1 + h + 1 h→0 ( )h 1 + h + 1 = lim 1 + h - 1 = lim 1 1 + 1 = 1 h→0 h 1 + h + 1 h→0 +h 2 ( )f ′ 0 = 1 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﺤﻴﺙ 2 y=1+ 1 x ﺃﻱ : ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ : O 2 )y = f (0) + f (0) × ( x - 0 -3ﺍﻟﺘﻘﺭﻴﺏ ﺍﻟﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ : f ( )gx =1+ 1 x ﺃﺤﺴﻥ ﺘﻘﺭﻴﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ﻋﻨﺩ 0ﻫﻭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ : 2
-4ﺤﺴﺎﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺭﺒﺔ := 1,00007 1 + 0,00007 1+ 1 )(0,00007 2 1 + 0,000035 1,000035 ﺇﺫﻥ 1,00005 1,000035 := 0,999917 1 - 0,000083 =1- 1 )(0,000083 2 = 0,9999585 -5ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ : f[∞Df = [-1 ; +lim f ( x) = lim 1+x =0>>x →−1 x →−1lim f ( x) = lim ∞1 + x = +∞x→+ ∞x→+ = )f ′(x 1 ﻤﻥ ﺃﺠل : x > -1 1+x ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ -1ﻤﻥ ﺍﻟﻴﻤﻴﻥ ( )f −1 = 0 :lim f (h) - f ( ) = lim - 0 = lim h > > h >hhh→0 h→0 h→0 ∞= lim 1 = + >h h→0ﻭﻋﻠﻴﻪ fﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ -1ﻭ ﺒﻴﺎﻥ C fﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ) ( ﻋﻠﻰ ﻴﻤﻴﻥ ﺍﻟﻌﺩﺩ. -1 ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ : ( )lim fx ﻓﺈﻨﻨﺎ ﻨﺤﺴﺏ : ( )lim fx ﺒﻤﺎ ﺃﻥ = +∞ : x ∞x→+ ∞x→+
ﻟﺩﻴﻨﺎ :lim f ( x) = lim 1 + x∞x→+ x ∞x→+ x= lim 1+x . 1+x = lim 1+x × 1 =0 ∞x→+ x 1+x ∞x→+ x 1+x ﺇﺫﻥ C fﻴﻘﺒل ﻓﺭﻉ ﺘﻘﺎﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞( ). + ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ :ﻤﻥ ﺃﺠل x = 0 :ﻓﺈﻥ y = 1 :ﻤﻥ ﺃﺠل y = 0ﻓﺈﻥ . x = 1 : ﺍﻟﺘﻤﺭﻴﻥ. 11 ﺤﺴﺎﺏ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ : ﻟﺩﻴﻨﺎ f x = xn :ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ( ): f ′( x ) = nxn-1 ﺍﻟﺩﺍﻟﺔ f ′ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ( )f ′′ x = n (n -1) xn-2 :ﺍﻟﺩﺍﻟﺔ f ′′ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ( )f ′′′ x = n (n -1) (n - 2) xn-3 : ﺍﻟﺩﺍﻟﺔ f ′′′ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ : f (4) ( x ) = n (n -1) (n - 2) (n - 3) xn-4 ﺍﻟﺘﻤﺭﻴﻥ. 12 ﺤﺴﺎﺏ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ :
f ( x ) = cos (ax + b) ﻟﺩﻴﻨﺎ ( )f ′ x = a sin (ax + b) : ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙf ﺍﻟﺩﺍﻟﺔ f ′(x) = a cos ax +b + π : ﻭﻤﻨﻪ 2 ( )f ′′ x = a2 sin ax + b + π : \ ﺤﻴﺙ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ f ′ ﺍﻟﺩﺍﻟﺔ 2 f ′′( x ) = a2 cos (ax + b + π) : ﻭﻤﻨﻪ f ′′′( x ) = -a3 sin (ax + b + π) ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰf ′′ ﺍﻟﺩﺍﻟﺔ f ′′′( x) = a3 sin ax +b+ 3π 2 . 13ﺍﻟﺘﻤﺭﻴﻥ y′′ = - 4π 2 y : ﻭﻤﻨﻪ y′′ + 16π2 y = 0 : ﻟﺩﻴﻨﺎ 5 25 y = a cos 4π x + sin 4π x : ﻭﻋﻠﻴﻪ ﺤﻠﻬﺎ ﻫﻭ 5 5 1 = a cos0 + b sin0 : ﻭﻋﻠﻴﻪy = 1 : x = 0 ﻭﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل y′ = 0 : x= 5 : ﻭ ﻤﻥ ﺃﺠل a = 1 : ﻭﻤﻨﻪ 4 4πa 4π 4πb 4πx y′ = 5 sin 5 x + 5 cos 5 : ﻟﻜﻥ 0 = 4πa sinπ + 4πb cosπ : ﻭﻤﻨﻪ 5 5 4πb b = 0 ﻭﻤﻨﻪ 5 cosπ = 0 : ﻭﻋﻠﻴﻪ
y = cos 4πx x ﻭﻋﻠﻴﻪ ﺍﻟﺤل ﻫﻭ : 5 ﺍﻟﺘﻤﺭﻴﻥ. 14 -1ﻨﺒﻴﻥ ﺃﻥ f ′′( x ) + 4 f ( x ) - 2 = 0 :ﻟﺩﻴﻨﺎ f ′( x ) = -2sin x cosxﻭﻤﻨﻪ f ′( x ) = -sin2x : ﺇﺫﻥ f ′′( x ) = -2 cos2x :ﻭﻋﻠﻴﻪ f ′′( x) + 4 f ( x) - 2 = -2 cos2x + 4 cos2 x - 2 : = -2 (2cos2 x - 1) + 4 cos2 x - 2 = -4 cos2 x + 2 + 4 cos2 x - 2 ﺇﺫﻥ : f ′′( x) + 4 f ( x) - 2 = 0 -2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ : y′′ = -4y + 2 ﻨﻔﺭﺽ ) y = f ( xﻓﻨﺠﺩ f ′′( x) + 4 f ( x ) - 2 = 0 : ﻭﻤﻥ ﺍﻟﺴﺅﺍل )( )f x = cos2 x : (1 ﺍﻟﺘﻤﺭﻴﻥ. 15 -1ﺤﺴﺎﺏ ﺍﻟﻤﺸﺘﻘﺎﺕ ﺍﻟﻤﺘﺘﺎﺒﻌﺔ :f ′( x) = 4x3 - 18x2 + 24x + 24f ′′( x) = 12x2 - 36x + 24f ((3) x ) = 24x - 36f (4) ( x ) = 24f ((5) x ) = 0 ﻨﻼﺤﻅ ﺃﻨﻪ ﻤﻥ ﺃﺠل ( )f (n) x = 0 : n ≥ 5 -2ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ f ′′( x ) = 12x2 - 36x + 24 : ( )f ′′ x
ﻭﻤﻨﻪ ( )f ′′( x) = 12 x2 - 3x + 2 : f ′′( x ) = 0ﺘﻜﺎﻓﺊ x2 - 3x + 2 = 0 :x2 = 3+1 =2 , x1 = 3-1 =1 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : ∆ =1 2 2 −∞ 1 ∞2 + x )f ′′( x + -+ ﺍﻟﺩﺍﻟﺔ f ′′ﺘﻨﻌﺩﻡ ﻋﻨﺩ 1ﻭ 2ﻤﻐﻴﺭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺇﺸﺎﺭﺘﻬﺎ ﻭﻤﻥ ﻫﻨﺎﻙ ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ : ))M2 ( 2 ; f (2)) , M1 (1 ; f (1 ﺤﻴﺙ f ( 2) = 40 , f (7) : ﺍﻟﺘﻤﺭﻴﻥ. 16 -1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ : f[∞Df = [0 ; +∞lim f ( x) = lim x x = 0 ; lim f ( x) = lim x x = + > > ∞x→+ ∞x→+x→0 x→0 x+ x 2x = ] [( )f ′ x ﺤﻴﺙ : ∞0 ; + fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ)f ′(x = 2x +x + 3x = 3 x 2 x 2x 2 ﻭﻤﻨﻪ f ′ x > 0ﻭﻋﻠﻴﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل) ( [∞[0 ; +
ﺍﻹﻨﺸﺎﺀ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ : -2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ 2y′ = 3 x :y′ = 3x ﻭﻋﻠﻴﻪ : 2y′ = 3 x ﻭﻤﻨﻪ : 2ﻭﺒﺎﻟﺘﺎﻟﻲ ﺤﺴﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻥ f xﺤل ﻟﻬﺫﻩ ﺍﻟﻤﻌﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻭﻤﻨﻪ ( ) ( )y = f x : ﺃﻱ y = x x ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺘﻌﻴﻴﻥ aﻭ bﻭc fﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y′′ = 12x2 - 24x + 1 : ﺃﻱ f ′′( x ) = x2 - 4x + 1 : ﻟﻜﻥ f ′( x ) = 4ax3 + 3bx2 + 2cx :f ′′( x ) = 12ax2 + 6bx2 + 2cxa = 1 12a = 12 6b = -24ﺃﻱ ﺃﻥ b = -4 : ﻭﻤﻨﻪ :c = 5 2c = 10 ﺍﻟﺘﻤﺭﻴﻥ. 18 (1ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ { }D f = \ - -1 :
∞] [ ] [Df = -∞ ; -1 ∪ -1 ; + (2ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ :lim f ( x) = lim 1 =0 ; ∞lim f ( x) = -∞x→− ∞x→− (1 + x)3 < x →−1lim f ( x) = lim 1 =0 ; ∞lim f ( x) = +∞x→+ ∞x→+ (1 + x)3 > x →−1)f (x = -3 (1 + x)2 = -3 (1 + x)6 (1 + x)4ﻭﻋﻠﻴﻪ f ′ x < 0 :ﻭﻤﻨﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ -∞ ; -1ﻭ) ( [ ] [∞]-1 ; + x −∞ -1 ∞+ )f ′(x -- )f (x ∞0 + 0 ∞− -3ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ y = f (0) × ( x - 0) + f (0) : ﺤﻴﺙ f ′(0) = -3 , f (0) = 1 : ﻭﻋﻠﻴﻪ y = -3x +1 :ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ( ). -4ﺇﻨﺸﺎﺀ ) ∆ ( ﻭ ) : ( γ y 0,5 x 0 0,5
-5ﺃﺤﺴﻥ ﺘﻘﺭﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ fﻭﻫﻭ ﺍﻟﺩﺍﻟﺔ x 6 -3x + 1 : -6ﺤﺴﺎﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺭﺒﺔ : 1 = 1 - 3 (0,001) + 1 0,997 (1,001)3 (1 + 0,001)3 1 0,997 ﻭﻤﻨﻪ : (1,001)3 1 = 1 - 3 (-0,001) + 1 (0,999)3 (1 - 0,001)3 1,003 1 1,003 ﻭﻋﻠﻴﻪ : (0,999)3 ﺍﻟﺘﻤﺭﻴﻥ. 19 -1ﺘﻌﻴﻴﻥ : D f{ }Df = x ∈ \ : x2 - 3x + 2 ≠ 0 ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 3x + 2 = 0 :ﻫﻲ . 2 ، 1 : }Df = \ - {1 ; 2 -2ﺘﻌﻴﻴﻥ ﺍﻷﻋﺩﺍﺩ aﻭ bﻭ : c)f (x =a+ b + c x -1 x -2 a (x - )1 (x )- 2) + b (x - 2 + c (x - )1f ( )x = )(x - 1) (x - 2f )( x = ax 2 - 3ax + 2a + bx + 2b + cx - c x2 - 3x - 2f )( x = a x2 (b - 3a+c) x + 2b -c x2 - 3x + 2
f (x) = x2 + 2x + 1 a = 1 x2 - 3x + 2 : ﻷﻥb - 3a + c = 2 : ﻭﻤﻨﻪ 2a - 2b -c = 1 a = 1 a = 1 b = -4 : ﺃﻱb + c = 5 : ﻭﻋﻠﻴﻪ b = 9 2b - c = -1 f (x) =1- 4 + 9 : ﻭﻋﻠﻴﻪ x -1 x -2 : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ-2• Df = ]-∞ ; 1[ ∪ ]1 ; 2[ ∪lim f ( x) lim 1- 4 + 9 =1 x -1 x -2x→−∞ x→−∞lim f ( x) lim 1- 4 + 9 = +∞ < < x -1 x -2x →1 x→1lim f ( x) lim 1- 4 + 9 = -∞ > > x -1 x -2x →1 x→1lim f ( x) lim 1- 4 + 9 = -∞ < < x -1 x -2x→2 x→2lim f ( x) lim 1- 4 + 9 = +∞ > > x -1 x -2x→2 x→2lim f ( x) lim 1- 4 + 9 =1 x -1 x -2x→+∞ x→+∞ f ′(x) = 4 - 9 ( x - 1)2 ( x - 2)2
)f ′(x = 4 ( x - 2)2 - 9 ( x - 1)2 ( x - 1)2 ( x - 2)2)f ′(x [2 (x ])- 2) - 3 ( x - 1 [2 ( x - 2) + 3 ( x ])- 1 ( x - 1)2 ( x - 2)2)f ′(x = )(− x - 1) - (5x - 7 ( x - 1)2 ( x - 2)2 ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ : x −∞ -1 1 7 ∞2 + + 5 )f ′(x - - -- ; [ [17 5 ﻭ -1 ; 1 ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ∞] [ ] ]2 ; +7 2 ﻭ 5 ; ﻭ -∞ ; -1 ﻭﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻻﺕ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : x −∞ -1 1 7 ∞2 + 5f ′(x) - - + - -f (x) 1 ∞+ f 7 ∞+ 5 )f (-1 ∞− ∞− 1f )(1 =1 - 4 1 + 9 2 = 1 + 2 =-3 0 -1 - -1 -
f 7 =1 - 4 + 9 =1- 4 9 5 2+ -3 7 -1 7 - 2 5 5 5 5f 7 =1 - 4 × 5 +9 × 5 = 1 - 10 -15 = -24 5 2 -3 – 3ﺘﻌﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : ﺒﻤﺎ ﺃﻥ lim f (x) = 1 :ﻓﺈﻥ y = 1ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ( ). y′y ∞x→ +( ) ( ). x′x ﻓﺈﻥ x = 1 :ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ lim f x ﻭﺒﻤﺎ ﺃﻥ ∞= + x→1 -ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ) (Cﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( ).y = 1 :)f (x =-1 -4 + 9 = )-4(x - 2) + 9 (x - 1 x -1 x -2 )(x - 1) (x - 2f )( x = (x - x -1 - )2 1) (x x ∞− 1 ∞1 2 + 5 ++ 5x - 1)( x - 1) (x - 2 -+ f (x) - y ++ - + -+-+ ( )M1 1 ; 1 ∆ ﻭﻋﻠﻴﻪ ) (Cﻭ 5 ﺘﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ∞] [ ( )2 ; + ﻭ 1 ; 1 ∆ ) (Cﻓﻭﻕ 5 ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ
] [ ( )1 ; 2 ∞- ; 1 ∆ ) (Cﻴﻘﻊ ﺘﺤﺕ ﻭ 5 ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ -4ﺍﻟﺘﻘﺭﻴﺏ ﺍﻟﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ : 0 ﻟﻨﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ y = f ( 0) . ( x - 0) + f (0) :y = 7 x + 1 ﺇﺫﻥ : )f ′(0 = 7 , f )(0 = 1 ﺤﻴﺙ : 4 2 4 2 7 1 x 6 4 x + 2 ﻭﻋﻠﻴﻪ ﺃﺤﺴﺏ ﺘﻘﺭﻴﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ fﻫﻭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ : -5ﺇﻨﺸﺎﺀ )(C y 25 20 15 10 5-5 -4 -3 -2 -1 0 1 2 3 4 5x -5 -10 -15 -20 -25 -30 (1 (IIﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ : g{ }Dg = x ∈ \ : x2 - 3 x + 2= 0
ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 3 x + 2 = 0 :ﺃﻱ x 2 - 3 x + 2 = 0 : ﻨﻭﻀﻊ x = z :ﻨﺠﺩ z2 -3z + 2 =0 :ﻭ ﺤﻠﻴﻬﺎ z = 1ﺃﻭ z = 2ﻭ ﺒﺎﻟﺘﺎﻟﻲ x = 1 :ﺃﻭ x = 2 ﻭﻤﻨﻪ x = 1 :ﺃﻭ x = -1ﺃﻭ x = -2ﺃﻭ x = 2 }Df = \ - {-2 ; -1 ; 1 ; 2 -2ﻜﺘﺎﺒﺔ g xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) ( f ( )x = x2+ 2 x + 1 ; [∞x ∈ ]0 ; +1[ ∪ ]1 ; 2[ ∪ ].... ; + x2- 3x + 2 x2 -2x +1 f ( )x = x2 + 3x + 2 ; [x ∈ ]-∞ ; -2[ ∪ ]-2 ; -1[ ∪ ]-1 ; 0 -3ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ : 0)g(0 = 1 2lim g ( x) = lim x2 + 2x +1 = 1 = )g(0 >> x2 + 3x +2 2x→0 x→0lim g ( x) = lim x2 + 2x +1 = 1 )= g(0 << x2 + 3x +2 2x→0 x→0 ﺇﺫﻥ gﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ .0 ( )g 0 = 0 -ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ : 0lim g(h) - g(0) = lim h2 + 2h +1 - 1 × 1 > + 3h +2 h >h h 2 2 x→0 x→0 2h2 + 4h + 2 - h2 + 3h - 2 1 2 h2 - 3h + 2 h ( )= lim × > x→0
= lim h2 + 7h × 1 = lim h+7 = 7 >h h2 - 3h + 2 4 x→0 >( ) ( )2x→0 h2 - 3h + 2 2 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﻤﻴﻥ .lim g(h) - g(0) = lim h2 + 2h + 1 - 1 × 1 < + 3h + 2 h <h h 2 2 x→0 x→0 2h2 - 4h + 2 - h2 - 2h - 2 1 ( )= lim × h < x→0 2 h2 + 3h + 2 h2 - 6h 1 ( )= lim × h < 2 h2 + 3h + 2 x→0 h-6 3 ( )= lim × - 2 < 2 h2 + 3h + 2 x→0 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻟﻜﻥ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ.0 -4ﺩﺭﺍﺴﺔ ﺸﻔﻌﻴﺔ ﺍﻟﺩﺍﻟﺔ : g ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ − x ∈ \ : D f )g(−x = ( − x )2 + 2 -x + 1 )= g(x ﻭﻟﺩﻴﻨﺎ : 3 - x+ 2 x2 - ﻭﻤﻨﻪ gﺯﻭﺠﻴﺔ . -5ﺍﺴﺘﻨﺘﺎﺝ ℘ ﻤﻥ )( ): (C ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل x ∈[0 ; 1[ ∪ ]1 ; 2[ ∪ ]2 ; +∞[ : )g(x) = f (xﻭﻤﻨﻪ ℘ ﻴﻨﻁﺒﻕ ﻋﻠﻰ ). (Cﻭ ﺒﺎﻗﻲ ﺍﻟﺒﻴﺎﻥ ﻴﺴﺘﻨﺘﺞ ﺒﺎﻟﺘﻨﺎﻅﺭ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻷﻥ ﺍﻟﺩﺍﻟﺔ ( )g ﺯﻭﺠﻴﺔ. -6ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ :
(m - 1) x2 - (3m + 2) x + 2m - 1 = 0mx2 - x2 - 3mx - 2x + 2m - 1 = 0( )m x2 - 3x + 2 = x2 + 2x + 1=m x2 + 2x + 1 x2 - 3x + 2 ﻭﻋﻠﻴﻪ : =m ( x + 1)2 x2 - 3x + 2 ﻭﻋﻠﻴﻪ : )m = f (x ﻟﻤﺎ m ∈ -∞ ; 0 :ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ] [. ﻟﻤﺎ : m = 0ﻟﻠﻤﻌﺎﺩﻟﺔ ﺜﻼﺙ ﺤﻠﻭل ﺃﺤﺩﻫﻤﺎ ﻤﻀﺎﻋﻑ . ﻟﻤﺎ : m ∈ 0 ; 1ﻟﻠﻤﻌﺎﺩﻟﺔ ﺃﺭﺒﻌﺔ ﺤﻠﻭل] [. ∈ : mﻟﻠﻤﻌﺎﺩﻟﺔ ﺃﺭﺒﻌﺔ ﺤﻠﻭل. ; 1 27 ﻟﻤﺎ 2 :ﻟﻠﻤﻌﺎﺩﻟﺔ ﺜﻼﺙ ﺤﻠﻭل ﺃﺤﺩﻫﻤﺎ ﻤﻀﺎﻋﻑ. =m 27 ﻟﻤﺎ 2 ∈ : mﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ. 27 ; ∞+ ﻟﻤﺎ 2 ﺍﻟﺘﻤﺭﻴﻥ. 20 -1ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ : f [∞Df = ]-∞ ; -1[ ∪ ]-1 ; 1[ ∪ ]1 ; +
( )• lim f x = lim x2 - 4x + 4 = lim x2 =1 x→−∞ x→−∞ x2 - 1 x2 x→−∞( )• lim f x = lim x2 - 4x + 4 = lim x2 =1 x→+∞ x→+∞ x2 - 1 x2 x→+∞x −∞ -1 1 +∞x2 -1 + - + : ﻷﻥ : ﻷﻥ( )lim fx = lim ( x - 2)2 = +∞ : ﻷﻥ < < x2 - 1x →−1 x →−1 ( x - 2)2 → 9 ( x2 - 1 >→ 0( )lim fx = lim ( x - 2)2 = -∞ > > x2 - 1x →−1 x →−1 ( x - 2)2 → 9 ( x2 - 1 <→ 0( )lim fx = lim ( x - 2)2 = -∞ < < x2 - 1x →1 x→1 ( x - 2)2 → 1 ( x2 - 1 <→ 0lim f ( x) = lim ( x - 2)2 = +∞ > > x2 - 1x →1 x→1
( x - 2)2 → 1 ﻷﻥ : ( x2 - 1 >→ 0• )f ′(x = 2 (x - 2) (x2 - 1) - 2x (x - 2)2 (x2 - 1)2 )f ′(x = 2 (x )- 2 x2 -1-x (x - 2) (x 2 - 1)2 )f ′(x = 2 (x - 2) (2x )- 1 (x2 - 1)2 ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ : x −∞ -1 1 1 ∞2 + 2f ′(x) + + - - +∞[ [ ] [2 ; + -1 1 ﻭ ; 2 ﻭ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻻﺕ -∞ ; -1 ] ]. 1 ; 1 1;2 ﻭ 2 ﻭﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ
x −∞ -1 1 1 ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : 2 )f ′( x - ∞2 + ++- ∞+ )f (x + ∞+ f 1 = −3 1 2 ∞1 − −∞ f (0) = 0 -ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻫﻨﺎﻙ 6ﻓﺭﻭﻉ ﻻ ﻨﻬﺎﺌﻴﺔ ﻭ ﺜﻼﺙ ﻤﺴﺘﻘﻴﻤﺎﺕ ﻤﻘﺎﺭﺒﺔ ﻤﻌﺎﺩﻟﺘﻬﺎ y = 1 , x = 1 , x = -1 -ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) (Cﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻷﻓﻘﻲ y = 1 :)f (x =-1 (x - 2)2 =-1 x2 - 4x + 4 - x2 +1 x2 - 1 x2 - 1 -4x +5f )(x - 1 = x2 -1 x −∞ -1 1 5 ∞+ 4 )f ′( x + - + +−4x + 5 +++-f (x)−1 +-+- ( )M 5 ; 1 ∆ ) (Cﻴﻘﻁﻊ 4 ﻓﻲ ﺍﻟﻨﻘﻁﺔ ; ] [ ( )15 4 ﻭ -∞ ; -1 ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ∆ ) (Cﻴﻘﻁﻊ ﻓﻭﻕ
] [ ( ) 5 4; ∞+ ﻭ -1 ; 1 ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ∆ ) (Cﻴﻘﻁﻊ ﺘﺤﺕ -ﺃﻨﺸﺄ ) (Cﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ : y 5 4 3 2 1-6 -5 -4 -3 -2 -1 0 1 2 3 4 5x -1 -2 -3 -4 -5 -ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ :(m - 1) x2 + 4x - m - 4 = 0m x2 - x2 + 4x - m - 4 = 0m (x2 - 1) = x2 - 4x + 4m (x2 - 1) = (x - 2)2
m (x 2 )- 1 x2 -1 ﻭﻤﻨﻪ ) . m = f ( x xﻟﻤﺎ : m ∈ -∞ ; -3ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ] [. xﻟﻤﺎ : m = -3ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ. xﻟﻤﺎ : m ∈ -3 ; 0ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل] [. xﻟﻤﺎ : m = 0ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ. xﻟﻤﺎ : m ∈ 0 ; 1ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ] [. xﻟﻤﺎ : m = 1ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻭﺤﻴﺩ . xﻟﻤﺎ ∞ : m ∈ 1 ; +ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ] [. (2ﻜﺘﺎﺒﺔ g xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) ( g ( x ) = (x - 2)2 ;x ∈ [[0 ; 1 ∪ [∞]1 ; + x2 - 1 (-x - 2)2 g ( )g = x2 - 1 ;x ∈ [[-∞ ; -1 ∪ []-1 ; 0 -ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ( )g 0 = -4 : 0lim g ( x) = lim (x - 2)2 )= - 4 = g(0<< x2 - 1x→0 x→0lim g ( x) = lim (x - 2)2 )= - 4 = g(0>> x2 - 1x→0 x→0 ﻭﻤﻨﻪ gﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . 0 -ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ . 0
)lim g(h)- g(0 (-h - 2)2 + 4 h2 +4h+ 4+ 4h2 - 4 h2 -4 )h (4h2 - 1 = lim = lim < h < h <x→0 x→0 x→0 = lim 5h2 - 4h = lim 5h + 4 = -4 < )h (h2 - 1 < h2 - 1 x→0 x→0 ﻭﻤﻨﻪ gﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻴﺴﺎﺭ 0)lim g(h)- g(0 (h - 2)2 + 4 h2 + 4h + 4 + 4h2 -4 > h2 -4 h (4h2 - )1 = lim = limhx → 0 > h > x→0 x→0 = lim 5h2 - 4h = lim 5h + 4 =4 > )h (h2 - 1 > h2 - 1 x→0 x→0 ﻭﻤﻨﻪ gﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻴﻤﻴﻥ . 0 ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ fﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ . 0 -ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ g ( x) = f ( x ) : [0 , 1[ ∪ ] [1 ; +∞ : -ﺩﺭﺍﺴﺔ ﺸﻔﻌﻴﺔ ﺍﻟﺩﺍﻟﺔ : g ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Dgﻟﺩﻴﻨﺎ - x ∈ Dg : ( )( ) x - 2 2 ﻭﻟﺩﻴﻨﺎ g − x = (- x)2 - 1 = g( x) :ﻭﻤﻨﻪ gﺯﻭﺠﻴﺔ . -ﺍﺴﺘﻨﺘﺎﺝ ( ): C′ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ∞ C′ : 0 ; 1 ∪ 1 ; +ﻴﻨﻁﺒﻕ ﻋﻠﻰ ) (Cﻓﻲ ﺍﻟﻤﺠﺎل[ ] [ [ ) ( ℘ : -1 ; 1ﻴﻨﺎﻅﺭ ) (Cﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل[ ] ) ( -4ﺘﻌﻴﻴﻥ : D f{ }Df = x ∈ \ : sin2 x - 1 ≠ 0 ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ sin2 x - 1 = 0 :ﺃﻱ )(sin x - 1) ( sin x + 1
sin x = -1 ﺃﻭsin x = 1 ﻭﻤﻨﻪ k ∈ ... ﻤﻊ x = - π + 2kπ ﺃﻭ x= π + 2kπ : ﻭﻋﻴﻪ 2 2 Dα =\ - π + 2kπ ; - π + 2kπ / k ∈ ] 2 2 : ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥα ﺘﺒﻴﺎﻥ ﺃﻥ- ( )f : x → f x : ﻩ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥα g : x → sinx α( x) = ( fog) ( x) = f ( g ( x)) = f (sin x) : ﺃﻥ α( x) = (sin x - 2 )2 sin2 x - 1 α = fog : ﺇﺫﻥ : α ﺤﺴﺎﺏ ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ-α′( x) = g′( x) . f ′ g( x)α′( x) = 2 (sin x - 2 ) (2sin x -2) (sin2 x - 1)2α′( x) = 2 cosx (sin x - 2 ) (2sin x -1) (sin2 x - 1)2 0=α+ . 21ﺍﻟﺘﻤﺭﻴﻥ : γ ﻭβ ﻭα ﺘﻌﻴﻴﻥ-1 γ : ﻭﻋﻠﻴﻪf (0) = 0 : ﻓﺈﻥO ∈ (Γ) ﺒﻤﺎ ﺃﻥ f (1) = -1 ( ): ﻓﺈﻥA ∈ Γ ﻭﺒﻤﺎ ﺃﻥ -1 = α + β + γ :ﻭﻤﻨﻪ
α + γ = 0 ﺇﺫﻥ : α + β + γ = -1( )f ′ 0 = - 3 ﻭﻋﻠﻴﻪ - 3 ﻭﻟﺩﻴﻨﺎ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ 0ﻴﺴﺎﻭﻱ 4 4)f ′(0 = β f ′( x ) = 2ﻭﻤﻨﻪ β ﻟﺩﻴﻨﺎ 2γ βx + γ ﻭﻋﻠﻴﻪ -6 γ = 4β : β = - 3 ﺇﺫﻥ : 2γ 4 ﺃﻱ 4β + 6 γ = 0 : )α + γ = 0 . . . (1 ﺇﺫﻥ : )α + β + γ = -1 . . . (2 )2β + 3 γ = 0 . . . (3ﻤﻥ ) γ = -α (1ﻭﻋﻠﻴﻪ γ = α2 :ﻤﻊ α < 0ﻤﻥ ) β + γ = -α - 1 (2ﺃﻱ β + γ + 1= -α ﻭﻤﻨﻪ β + γ + 1 2 = α2 :ﻷﻥ ( )α < 0 : ﻭﻋﻠﻴﻪ β + γ + 2 β + γ + 1 = α2 : ﻭﻤﻨﻪ β + α2 + 2 β + γ + 1 = α2 : ﻭﺒﺎﻟﺘﺎﻟﻲ 2 β + γ = -β - 1 :ﻭﺒﺎﻟﺘﺭﺒﻴﻊ 4(β + γ ) = β2 + 2β + 1 :ﻤﻊ β < -1 ﺇﺫﻥ β2 - 2β + 1 = 4γ . . .(4) :ﻤﻥ ) 3 γ = -2β (3ﻭﻤﻨﻪ (β < 0) 9γ = 4β2 :
ﺇﺫﻥ : β2 - 2β +1 = 16 β2 ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (4ﻨﺠﺩ : γ = 4 β2 ﻭﻋﻠﻴﻪ : 9 9 9β2 - 18β + 9 = 162β2 ﻭﻋﻠﻴﻪ 7β2 + 18β - 9 = 0 :ﻟﺩﻴﻨﺎ ∆′ = 144 : = β2 -9 - 12 = -3 = β1؛ -9 - 12 = -3 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ 7 7 γ = 4 (-3)2 =4 ﻭﻋﻠﻴﻪ: ) β = -3ﻷﻥ (β < - 1 ﻭﻤﻨﻪ: 9 ﻭ ﻋﻠﻴﻪ α = - 4 = -2 :ﺇﺫﻥ . f ( x ) = -2 + -3x + 4 : -2ﺃ -ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ : g• g ( x) = -2 + 4 - 3x , x < 1 } x < 1و D1 = {x ∈ \ : 4 - 3x ≥ 0 D1 = x ∈ \ :x ≤ 3 و x < 1 4 [D1 = ]-∞ ; 1• g(x) = x - 3 + x - 1 } x ≥ 1و D2 = {x ∈ \ : x - 1 ≥ 0 ﻭﻋﻠﻴﻪ D2 = 1 ; +∞ :ﻭﻤﻨﻪ [ [Dg = D1 ∪ D2 = \ : ﺏ -ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ : 1g(1) = 1 - 3 + 1 - 1 = -2)lim g ( x) = lim x - 3 + x - 1 = -2 = g(1>>x →1 x→1 ﺇﺫﻥ gﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 1ﻤﻥ ﺍﻟﻴﻤﻴﻥlim g ( x) = lim - 2 + 4 - 3x = -1<<x →1 x→1
ﻭﻋﻠﻴﻪ lim g x ≠ g 1 :ﻭ ﻋﻠﻴﻪ gﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 1ﻤﻥ ﺍﻟﻴﺴﺎﺭ ؛ ﻭ ﻋﻠﻴﻪ ( ) ( )g < x →1 ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . 1 -ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ : 1• lim g(1 + h) - g(1) = lim 1+h-3+ 1+h-1 +2 > >h h h→0 h→0 = lim h + h = lim 1 ∞+ 1 = + > >h h h→0 h→0 ﻭﻋﻠﻴﻪ gﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 1ﻤﻥ ﺍﻟﻴﻤﻴﻥ• lim g(1 + h) - g(1) = lim -2 + 4 - 3 (1 + h) + 2 < <h h h→0 h→0 = lim 1 - 3h ∞= - < h h→0 ﻭﻤﻨﻪ fﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 1ﻤﻥ ﺍﻟﻴﺴﺎﺭ . ﺠـ -ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : glim = )g(x lim -2 + ∞4 - 3x = +∞h→− ∞h→−lim g( x) = lim x - 3 + ∞x - 1 = +∞h→+ ∞h→+ g′( x) = 2 -3 ﻤﻥ ﺃﺠل : x < 1 1 - 3x ﺇﺫﻥ g′ x < 0ﻭﻋﻠﻴﻪ gﻤﺘﻨﺎﻗﺹ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] ] ( ). -∞ ; 1 g′( x) = 1 + 2 -3 xﻤﻥ ﺃﺠل : x > 1 x -1 ﻭﻤﻨﻪ g′ x > 0ﻭﻋﻠﻴﻪ gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞[ [ ( )1 ; +
x −∞ 1 ∞+)g′( x - ∞−∞ + +∞g( x) + 2- ∞+ -5ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : ﻫﻨﺎﻙ ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ .( )limg x = lim -2 + 4 - 3x = lim -2 + 4 - 3x x ∞x→− x ∞x→− x x∞x→− = lim -2 + 4 - 3x . 4 - 3x ∞x→− x x 4 - 3x = lim -2 + 4 - 3x × 1 =0 ∞x→− x x 4 - 3x 1 ﻭ→0 4 - 3x → -3 ﻭ −2 ﻷﻥ → 0 : 4 - 3x x x ﺇﺫﻥ ) (Cﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﻓﻲ ﺍﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞−( )limg x = lim x -3+ x -1 x ∞x→+ x∞x→+ = lim x- 3 + x -1 x -1 ∞x→+ x ×x x -1 = lim x -3 + x -1 × 1 =1 ∞x→+ x x x -1 1 → 0 ﻭ x - 1 → 1 ﻭ x - 3 → 1 ﻷﻥ : x- x x 1lim )g( x - x = lim -3 + ∞x - 1 = +∞x→+ ∞x→+
ﻭﻤﻨﻪ ) (Cﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = x :ﻋﻨﺩ ∞. + ﻫـ -ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Cﻭ ∆ ( ): xﻤﻥ ﺃﺠل g ( x ) = x : x < 1ﺇﺫﻥ -2 + 4 - 3x = x : 4 - 3x = (x +2)2 ﻭﻋﻠﻴﻪ 4 - 3x = x + 2 : ﻭﻤﻨﻪ : x ≥ -2 ﻭﻋﻠﻴﻪ 4 - 3x = x2 + 4x + 4 :ﻭ x ≥ -2 ﺇﺫﻥ x2 + 7x = 0 :ﻭﻤﻨﻪ x = 0ﺃﻭ x = -7 ﺇﺫﻥ x = 0 :ﻷﻥ x ≥ -2ﻭ x < 1 ﻭﻤﻨﻪ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ )O (0 ; 0 xﻤﻥ ﺃﺠل g ( x ) = x : x ≥ 1 ﺇﺫﻥ x - 3 + x - 1 = x :ﻭﻤﻨﻪ x - 1 = 3 : ﺇﺫﻥ x - 1 = 9 :ﻭﻤﻨﻪ x = 10 : ﻭﻋﻠﻴﻪ . g(10) = 10 :ﺇﺫﻥ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ )B (10 ; 10 ﻭﻤﻨﻪ . (C) ∩ ( D) = {O ; B} : ﻭ -ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﻤﺎﺴﺎﺕ : y = - 3 x ﻋﻨﺩ y = g′(0) . (x - 0) + g(0) : Oﻭ ﻤﻨﻪ : 2 3 ) g′ ( 0 = - 2 ﻷﻥ ﻋﻨﺩ y = g′( x1 ) ( x - x1 ) + g( x1 ) : B=y 7 )( x - 10 + 10 ) y = g′(10) ( x - 10) + g(10؛ 6 =y 7 x - 35 + 10 ﻭ ﻤﻨﻪ : g′ )(10 = 7 ﻷن 6 3 6
y = 7 x - 5 ﺇﺫﻥ : 6 3 ﻱ -ﺇﻨﺸﺎﺀ ): (Cy1413121110987654321-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 x -1 -2
– 3ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل . - 2ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺄﻟﻭﻓﺔ . -3ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﻗﻴﻤﺔ γ 0ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ x0ﻟﻠﻤﺘﻐﻴﺭ ﺗﺼﻤﻴﻢ اﻟﺪرس ﺃﻨﺸﻁﺔ – 1ﺘﻌﺭﻴﻑ – 2ﻭﺠﻭﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ – 3ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل – 4ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ y0ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ x0ﻟﻠﻤﺘﻐﻴﺭ – 5ﺠﺩﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﺄﻟﻭﻓﺔ – 6ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ x2 + 2x ﺍﻟﻨﺸﺎﻁ : 1 ﻜﻤﺎ ﻴﻠﻲ x2 + x + 1 2 :f( )( )،=x αﻭ βﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ fﻭ gﺩﺍﻟﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ )g( x = αx +β 1 x2 + x+ ﻋﻴﻥ αﻭ βﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ : x ) g′( x ) = f ( x؛ ﻤﺎﺫﺍ ﻨﺴﺘﻨﺘﺞ ؟ ﺍﻟﺤل : ﺘﻌﻴﻴﻥ αﻭ : β (g′ )x = α ( x2 + x + )1 − (α x + β ) ( 2x + )1 ( x2 )+ x + 1 2 ) α x2 + α x + α − 2α x2 − α x − 2β x − β x2 + x + 1 2 (( )g′x = )x −α x2 − 2β x + α − β x2 + x+1 2 (( )g′ = −α = 1 ﻭ ﺒﻤﺎ ﺃﻥ ) g′( x ) = f ( xﻓﺈﻥ −2β = 2 : α − β = 0 ﻭ ﻋﻠﻴﻪ α = −1 :ﻭ β = −1
= )g(x −x −1 : ﻤﻨﻪ ﻭ x2 + x + 1 ﻨﺴﺘﻨﺘﺞ ﺃﻥ g :ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . f ﻜﻤﺎ ﻴﻠﻲ : ﺍﻟﻨﺸﺎﻁ : 2 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﺎﻥ gﻭ hﺍﻟﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ )h( x = 4x2 − 5x + 10 ، )g( x = 2x2 x 5 2x2 − 3x + 5 − 3x + ﻋﻴﻥ ﻜل ﻤﻥ g′ﻭ h′؛ ﻤﺎﺫﺍ ﻨﻼﺤﻅ ؟ ﺤﻴﺙ : ﺍﻟﺤل : ﺍﻟﺩﺍﻟﺔ gﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ×( ( ) )g′( x) = 1 2x2 − 3x + 5 − (4x − 3)× x 2x2 − 3x + 5 2 )x 2x2 − 3x + 5 − 4x2 + 3x 2x2 − 3x + 5 2 (( )g′ = −2x2 + 5 2x2 − 3x + 5 2 = )( )g′( x ﺇﺫﻥ : ﺍﻟﺩﺍﻟﺔ hﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ :( h′ x ) = )( 8 x-5 ( ()2x2-3x + 5)-(4x-3 4 x 2 -5 x + )10 ( )2x2-3x + 5 2 16 x3 -24 x2 + 40x-10x2 + 15 x-25-16 x 3 2x2-3x + 5(( )h′)x = 2 +
20x2 − 40x + 12 x2 − 15x + 30 ( )2x2-3x + 5 2 −2x2 + 52x2 − 3x + 5 2= )( )h′( x ﻭ ﻤﻨﻪ : ﺍﻻﺴﺘﻨﺘﺎﺝ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ : x)g′( x) = h′( x) = f ( x −2x2 + 5ﺤﻴﺙ 2 x2 − 3 x + 5 2 := )( )f ( xﻭ ﻨﻘﻭل ﺃﻥ gﻭ hﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻨﻔﺱ ﺍﻟﺩﺍﻟﺔ . f
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427