Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

1+h - 2 + 1 4+3 4 = lim h→0 h 4 1+h -8+4+h = lim 4 + (4 + h) h→0 h = lim 4 1 + h - (4 - h) h→0 4h(4 + h) = lim 4 1+ h - (4 - h) × 4 1 + h + (4 - h) h→0 4h(4 + h) 4 1 + h(4 - h) = lim (-h + 24) h→0 4(4 + h) 4 1 + h + 4 - h = 16 24 14) = 24 = 3 (4 + 1608 32 ( )f ′ 1 = 3 ‫ ﺤﻴﺙ‬1 ‫ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬ f ‫ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ‬ 32 f (x) = x2 + 9x - 2 ; x0 = 2 : ‫( ﻟﺩﻴﻨﺎ‬7 x -1 f ( 2) = 20 ‫ ؛‬Df = \ - {1} : ‫ﻭ ﻤﻨﻪ‬ f -f (2) (2 + h)2 + 9(2 + h) - 2 - 20 hlim = lim 2+ h-1h→0 h→0 h

4 + 4h + h2 + 18 + 9h - 2 - 20 1 +h = lim h→0 h h2 + 13h + 20 -20 1+ h = lim h→0 h h2 + 13h + 20 - 20(1 + h) h2 - 7h = lim 1+ h = lim 1+ h h→0 h h→0 h = lim h (h - 7) = lim h - 7 = -7 h→0 h (1 + h) h→0 1 + h ( )f ′ 2 = -7 : ‫ ﺤﻴﺙ‬2 ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ‬ . 3‫ﺍﻟﺘﻤﺭﻴﻥ‬ { }D f = x ∈ \ : 9 - x2 ≥ 0 : ‫ ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ‬-1 x −∞ -3 : ‫ﻟﺩﻴﻨﺎ‬ 3 +∞ 9 − x2 - + - Df = [-3 ; 3] : ‫ﻭﻋﻠﻴﻪ‬ lim f (x) : ‫ ﺤﺴﺎﺏ‬-2 x→3 x -3lim f ( x) = lim 9 - x2 = lim 9 - x2 . 9 - x2 < x -3 < x -3 < ( x - 3) 9 - x2x→3 x→3 x→3 = lim 9 - x2 = lim (3 - x) (3 + x) < ( x - 3) 9 - x2 < ( x - 3) 9 - x2 x→3 x→3

‫∞‪= lim -(x -3) (x + 3) = lim -(3 + x) = -‬‬ ‫<‬ ‫)‪( x - 3‬‬ ‫‪9 - x2‬‬ ‫<‬ ‫‪9 - x2‬‬‫‪x→3‬‬ ‫‪x→3‬‬ ‫‪-( x + 3) → -6‬‬ ‫‪‬‬ ‫ﻷﻥ ‪:‬‬ ‫‪‬‬ ‫‪9 - x2‬‬ ‫‪→ 0‬‬‫ﻭﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 3‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻭﻋﻠﻴﻪ ‪( )C f‬‬ ‫ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ‪.‬‬ ‫‪ -3‬ﺘﺒﻴﺎﻥ ﺃﻥ ‪ C f‬ﻫﻭ ﻨﺼﻑ ﺩﺍﺌﺭﺓ ‪( ):‬‬ ‫ﻟﺩﻴﻨﺎ ‪ f ( x ) = 9 - x2 :‬ﻭﻤﻨﻪ ‪y = 9 - x2‬‬ ‫‪2‬‬ ‫‪9 - x2‬‬‫‪y2 = 9 - x2‬‬ ‫= ‪( )y2‬‬‫‪y ≥ 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ :‬‬ ‫‪y ≥ 0‬‬ ‫‪x2 + y2 = 9‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪y‬‬ ‫≥‬ ‫‪0‬‬‫ﺇﺫﻥ ‪ C f :‬ﻤﻥ ﻨﺼﻑ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ ‪ O‬ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪ 3‬ﺤﻴﺙ ‪( ). y ≥ 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪ -1‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪D f = \ : 0‬‬‫‪lim‬‬ ‫)‪f (x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪sin‬‬ ‫‪x‬‬ ‫‪=1=f‬‬ ‫)‪(0‬‬ ‫‪x‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻭﻤﻨﻪ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪. 0‬‬ ‫‪ -‬ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻲ ﺍﻟﻤﻘﻠﻭﺏ ﻭ ‪ sin‬ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ‬ ‫*\ ﻟﻜﻥ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ 0‬ﻭﻤﻨﻪ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ \‬ ‫‪ (2‬ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪: 0‬‬

‫‪f (h) - f (0) = lim‬‬ ‫‪1‬‬ ‫‪sin‬‬ ‫‪h‬‬ ‫‪1‬‬ ‫‪sin‬‬ ‫‪h‬‬ ‫‪h‬‬ ‫‪h‬‬ ‫‪h‬‬‫‪lim‬‬ ‫>‪h‬‬ ‫=‬ ‫‪lim‬‬ ‫×‬ ‫=‬ ‫∞‪+‬‬ ‫>‬ ‫‪h→0‬‬ ‫>‪h‬‬ ‫‪h→0‬‬‫‪h→0‬‬ ‫‪lim‬‬ ‫)‪f (h) - f (0‬‬ ‫‪= lim‬‬ ‫‪1‬‬ ‫‪.‬‬ ‫‪sin h‬‬ ‫∞‪= -‬‬ ‫<‬ ‫<‬ ‫‪h‬‬ ‫‪h‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. O‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪( )x2 x2 + 2x + 1‬‬ ‫‪f ( x) = ( x + 1) (x2 - x + 1) ; x ≠ -1‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪(x‬‬ ‫‪x2 ( x + 1)2‬‬ ‫)‪1‬‬ ‫‪; x ≠ -1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪+ 1) (x2 - x +‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪(x‬‬ ‫‪x.x‬‬ ‫‪+1‬‬ ‫‪+ 1) (x2‬‬ ‫)‪- x + 1‬‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ‪:‬‬ ‫‪{ }Df = x ∈ \ : (x + 1) (x2 - x + 1) ≠ 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ ( x + 1) x2 - x + 1 = 0 :‬ﺘﻜﺎﻓﺊ ‪ x + 1 = 0‬ﺃﻭ) (‬ ‫‪ x2 - x + 1 = 0‬ﻭﺃﻥ ‪ x = -1‬ﺃﻭ ‪x2 - x + 1 = 0‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪x2 - x + 1 = 0 :‬‬ ‫‪ D = −3‬ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ‪.‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪{ }D f = \ - -1 :‬‬ ‫‪ – 2‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪: 0‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪(x‬‬ ‫‪x.x‬‬ ‫‪+1‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪+ 1) (x2‬‬ ‫)‪- x + 1‬‬

x −∞ −1 0 : ‫ﻭﻤﻨﻪ‬ x −x −x +∞ x+1 −( x + 1) x+1 x x( x + 1) − x( x + 1) x ⋅ x+1 x+1 − x( x + 1) : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ f ( x ) = x (x + 1) x ∈ ]-∞ ; -1[ ∪ [0 ; +∞[ (x + 1) (x2 - x + 1) -x (x + 1) f ( x ) = (x + 1) (x2 - x + 1) x ∈ ]-1 ; 0] f ( -1) = 1 3 : ‫ﻭ ﻋﻠﻴﻪ‬  f ( x ) = x , x ∈ ]-∞ ; -1[ ∪ [0 ; +∞[  f ( x ) = x2 - x + 1 , x ∈ ]-1 ; 0]   −x  x2 - x + 1   1  f ( -1) = 3 lim f ( x) = lim f ( x) -x =0 : ‫ﻭ ﻟﺩﻴﻨﺎ‬ << x +1 x→0 x→0 lim f ( x) = lim f ( x) x =0 >> x +1 x→0 x→0

‫‪f‬‬ ‫)‪(0‬‬ ‫=‬ ‫‪(0‬‬ ‫‪0.0‬‬ ‫‪+1‬‬ ‫)‪1‬‬ ‫=‬ ‫‪0‬‬ ‫‪+ 1) (02‬‬ ‫‪-0+‬‬ ‫ﺇﺫﻥ ‪lim f ( x ) = lim f ( x ) = f (0) :‬‬ ‫><‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪. 0‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪: -1‬‬ ‫‪lim f ( x) = lim‬‬ ‫‪x2‬‬ ‫‪x‬‬ ‫‪+1‬‬ ‫=‬ ‫‪-1‬‬ ‫<<‬ ‫‪-x‬‬ ‫‪3‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ – 1‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ‪( ).‬‬ ‫‪f‬‬ ‫‪f‬‬ ‫ﻭﻤﻨﻪ )‪x ≠ f (−1‬‬ ‫ﻭﻋﻠﻴﻪ‬ ‫‪lim‬‬ ‫<‬ ‫‪x → −1‬‬ ‫‪lim f ( x ) = lim‬‬ ‫‪x2‬‬ ‫‪−x‬‬ ‫=‬ ‫‪1‬‬ ‫>‬ ‫‪x→−1‬‬ ‫‪− x+1‬‬ ‫‪3‬‬ ‫‪x → −1‬‬ ‫ﻭﻤﻨﻪ )‪ lim f ( x ) = f ( − 1‬ﻭﻋﻠﻴﻪ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ – 1‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ‬ ‫‪x ;→ −1‬‬ ‫ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪. - 1‬‬ ‫‪ – 3‬ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ ‪: 0‬‬ ‫‪-h‬‬ ‫‪lim f (h) - f (0) = lim h2 - h + 1‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪-h 1‬‬ ‫<‬ ‫‪h2 - h + 1 × h‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪-1‬‬ ‫=‬ ‫‪-1‬‬ ‫<‬ ‫‪h2 - h + 1‬‬ ‫‪h→ 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ‪.‬‬ ‫‪-h‬‬‫‪lim‬‬ ‫‪f (h) - f (0) = lim‬‬ ‫‪h2 - h + 1‬‬ ‫‪= lim‬‬ ‫‪-h 1‬‬ ‫>‬ ‫>‪h‬‬ ‫‪h‬‬ ‫>‬ ‫‪h2 - h + 1 × h‬‬ ‫‪h→0‬‬‫‪h→0‬‬ ‫‪h→0‬‬

‫‪= lim‬‬ ‫‪h2‬‬ ‫‪-1‬‬ ‫=‬ ‫‪1‬‬ ‫>‬ ‫‪-h+1‬‬ ‫‪h→0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. 0‬‬ ‫‪ -‬ﺩﺭﺍﺴـﺔ ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ ‪: - 1‬‬ ‫‪f (1 + h) - f (-1) = lim‬‬ ‫‪(-1‬‬ ‫‪-1 + h‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪+ h)2 - (-1 + h) +1‬‬ ‫‪3‬‬‫‪lim‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h‬‬‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪ -1 + h‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫×‬ ‫‪1‬‬ ‫<‬ ‫‪1 - 2h + h2 + 1 - h + 1‬‬ ‫‪3 ‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪ 3 (-1 + h) - (h2 - 3h + 3) ‬‬ ‫×‬ ‫‪1‬‬ ‫<‬ ‫‪‬‬ ‫‪‬‬ ‫‪h‬‬ ‫‪‬‬ ‫)‪3 (h2 - 3h + 3‬‬ ‫‪‬‬ ‫‪h→ 0‬‬ ‫‪= lim‬‬ ‫‪-3 + 3h - h2 + 3h - 3‬‬ ‫×‬ ‫‪1‬‬ ‫<‬ ‫)‪3 (h2 - 3h + 3‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪-h2 + 6h - 6‬‬ ‫×‬ ‫‪1‬‬ ‫∞‪= +‬‬ ‫<‬ ‫)‪3 (h2 - 3h + 3‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫ﻭﻤﻨﻪ ‪ f‬ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻭﻴﻤﻜﻥ ﺍﻹﺠﺎﺒﺔ ﺃﻴﻀﺎ‬ ‫ﺒﻘﻭﻟﻨﺎ ﺒﻤﺎ ﺃﻥ ‪ f‬ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ – 1‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻓﻬﻲ ﻏﻴﺭ ﻗﺎﺒﻠﺔ‬ ‫ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ -1‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ‪.‬‬ ‫‪f (-1 + h) - f (-1) = lim‬‬ ‫‪(-1‬‬ ‫‪+1 - h‬‬ ‫‪+1‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫)‪+ h)2 - (-1+ h‬‬ ‫‪3‬‬‫‪lim‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h‬‬‫‪h→ 0‬‬ ‫‪h→ 0‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫‪2h‬‬ ‫‪+‬‬ ‫‪1-h‬‬ ‫‪-‬‬ ‫‪h‬‬ ‫‪+1‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪h2 + 1‬‬ ‫‪3‬‬ ‫‪= lim‬‬ ‫>‬ ‫‪h‬‬ ‫‪h→ 0‬‬

‫‪h2‬‬ ‫‪1-h‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪- 3h + 3‬‬ ‫‪3‬‬ ‫=‬ ‫‪lim‬‬ ‫>‬ ‫‪h‬‬ ‫‪h→ 0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪3‬‬ ‫‪- 3h -‬‬ ‫‪h2 + 3h -‬‬ ‫‪3‬‬ ‫×‬ ‫‪1‬‬ ‫>‬ ‫‪3 (h2‬‬ ‫)‪- 3h + 3‬‬ ‫‪h‬‬ ‫‪h→ 0‬‬ ‫‪= lim‬‬ ‫‪-h2‬‬ ‫>‬ ‫)‪3h (h2 - 3h + 3‬‬ ‫‪h→ 0‬‬ ‫‪= Lim‬‬ ‫‪3(h2‬‬ ‫‪−h‬‬ ‫‪+‬‬ ‫)‪3‬‬ ‫=‬ ‫‪0‬‬ ‫‪h ;→ 0‬‬ ‫‪− 3h‬‬ ‫ﻭﻤﻨﻪ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻗﻴﺔ ﻋﻨﺩ ‪ -1‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻗﺎﺒﻠﺔ‬ ‫ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. - 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫ﺤﺴﺎﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤـﺸـﺘﻘـﺔ ‪:‬‬ ‫‪f‬‬ ‫= )‪(x‬‬ ‫‪x2 − 4x + 2‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪x2 + x + 1‬‬ ‫‪{ }Df = x ∈ \ : x2 + x + 1 ≠ 0‬‬ ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ x2 + x + 1 = 0 :‬ﻭﻟﺩﻴﻨﺎ ‪∆ = -3‬‬ ‫ﻭﻤﻨﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ‪D f = \ .‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻭ ﻤﻨﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ D‬ﺤﻴﺙ ‪:‬‬‫)‪f ′( x‬‬ ‫=‬ ‫‪(2x‬‬ ‫‪-‬‬ ‫)‪4‬‬ ‫‪(x2‬‬ ‫‪+‬‬ ‫‪x + 1) - (2x +‬‬ ‫)‪1‬‬ ‫‪( x2 - 4x‬‬ ‫‪+‬‬ ‫)‪2‬‬ ‫‪( x2 + x + 1)2‬‬‫)‪f ′(x‬‬ ‫=‬ ‫‪2x3+‬‬ ‫‪2x2 +‬‬ ‫‪2x‬‬ ‫‪-‬‬ ‫‪4x2- 4x - 4-2x3‬‬ ‫‪+ 8x2-4x-x2‬‬ ‫‪+ 4x-2‬‬ ‫‪(x2 + x + 1)2‬‬

f ′( x) = 5x2 - 2x - 6 (x2 - x - 1)2 f (x) = (x - x+3 2) : ‫( ﻟﺩﻴﻨﺎ‬2 1) ( x + Df = {x ∈ \ : ( x - 1) ( x + 2) ≠ 0} Df = \ − { 1 ; − 2} : ‫ﺇﺫﻥ‬f ′(x) = 1 (x - 1) - [1 (x + 2) + 1(x - 1)] (x + 3) 1)2 (x + 2)2 (x -f ′(x) = (x - 1) (x + 2) - (2x + 1) (x + 3) (x - 1)2 (x + 2)2f ′(x) = x2 + x - (2x2 + 7x + 3) (x - 1)2 (x + 2)2 f ′(x) = - x2 - 6x - 5 : ‫ﺇﺫﻥ‬ (x - 1)2 (x + 2)2 f ( x ) = (2x + 1)2 (x2 + 3)2 : ‫( ﻟﺩﻴﻨﺎ‬3 . D f = \ : ‫ﻭ ﻤﻨﻪ‬f ′( x) = 2.2.(2x + 1) (x2 + 3)2 + 3 (2x) (x2 + 3) . (2x + 1)2f ′( x) = (x + 1) (x2 + 3) 4 (x2 + 3) + 6x (x - 1) f ′( x) = (x + 1) (x2 + 3) (16x2 + 6x + 12) 2  3  5 Df = \ : ‫ﻭ ﻤﻨﻪ‬ f (x) = x3 + 4x + 1 : ‫( ﻟﺩﻴﻨﺎ‬4  6   2  2  5   5 f ′(x) =3 × x 2 + 4 x 3 + 4x + 1

‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪- x2 + 3x -‬‬ ‫‪5‬‬ ‫‪ (5‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪x +1‬‬ ‫ﻭ ﻤﻨﻪ ‪Df = \ - {-1} :‬‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪(-2x‬‬ ‫‪+‬‬ ‫)‪3‬‬ ‫‪(x‬‬ ‫‪+ 1) - 1 (-x2‬‬ ‫‪+‬‬ ‫‪3x‬‬ ‫‪-‬‬ ‫)‪5‬‬ ‫‪(x + 1)2‬‬ ‫)‪f ′( x‬‬ ‫=‬ ‫‪-2x 2‬‬ ‫‪- 2x‬‬ ‫‪+ 3x + 3 + x2‬‬ ‫‪- 3x‬‬ ‫‪+5‬‬ ‫‪(x + 1)2‬‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪- x2 - 2x +‬‬ ‫‪8‬‬ ‫‪( x + 1)2‬‬ ‫‪ (6‬ﻟﺩﻴﻨﺎ ‪f ( x ) = -4x2 + 5 x :‬‬ ‫ﻭ ﻤﻨﻪ ‪. D f = \ :‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ f ( x) = -4x2 + 5x ; x ≥ 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪-4x 2‬‬ ‫‪-‬‬ ‫‪5x‬‬ ‫‪; x≤0‬‬ ‫‪ x‬ﻤﻥ ﺃﺠل ‪f ′( x ) = -8x + 5 : x > 0‬‬ ‫‪ x‬ﻤﻥ ﺃﺠل ‪f ′( x ) = -8x - 5 : x < 0‬‬ ‫ﻨﺩﺭﺱ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪( )f 0 = 0 : 0‬‬‫‪lim f (h) - f (0) = lim -4h2 -5h‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h‬‬‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim h (-4h -5) = -5‬‬ ‫<‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. 0‬‬

( )Df = \ : ‫ ﻭ ﻤﻨﻪ‬f x = - x2 + 8 x - 15 : ‫( ﻟﺩﻴﻨﺎ‬7  f ( x) = - x2 + 8x - 15 ; x ∈ [3 ; 5]   f ( x) = -x 2 + 8x - 15 ; x ∈ [3 ; 5] ∪ [5 ; + ∞] - x2 + 8 x - 15 : ‫ ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ‬x x2 = 3 ‫ ؛‬x1 = 5 : ‫∆ ﻭﻤﻨﻪ‬′ = 1 : ‫ﻟﺩﻴﻨﺎ‬ −∞3 5+∞→ : ‫ﻭ ﻤﻨﻪ ﺍﻹﺸﺎﺭﺓ ﻫﻲ‬ + 0- 0 + f ( x) = - x2 + 8x - 15 ; - x2 + 8 x - 15 ≥ 0 f ( x ) = - x2 + 8x - 15 ; - x2 +8x - 15 ≤ 0 f ′( x) = - 2x + 8 x ∈ ]3 ; 5[ ‫ﻟﻤﺎ‬ f ′( x) = - 2x + 8 : x ∈ ]- ∞ ; 3[ ∪ ]5 ; +∞[ ‫ﻟﻤﺎ‬ ( )f 3 = 0 : 3 ‫ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬lim f (3 + h) - f (h) = lim f (3 + h) - f (h) + 15 < h < hh→0 h→0lim f (3 +h)- f (h) = lim f (3 +h) - 8(3 +h) +15 < h < hh→0 h→0lim h2 - 2h = lim (h - 2) = - 2 < h < h→0h→0 ‫ ﻤﻥ ﺍﻟﻴﺴﺎﺭ‬3 ‫ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬ f ‫ﺇﺫﻥ‬lim f (3+ h)- f (h) = lim f (3+ h)- 8(3+ h) + 15 < h < hh→0 h→0

‫‪= lim -9 - 6h - h2 + 24 + 8h - 15 = lim -h2 + 2h‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim h (-h + 2h) = lim (-h + 2) = 2‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪. 3.......‬‬ ‫ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. 3‬‬ ‫‪ x‬ﻗﺒﻠﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪( )f 5 = 0 : 5‬‬‫‪lim f (5 + h) - f (5) = lim − (5 + h)2 - 8 (5 + h) - 15‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h‬‬‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim -25 - 10h - h2 + 40 + 8h - 15 = lim -h2 - 2h‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim h (-h - 2) = lim (-h - 2) = -2‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 5‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ‪.‬‬‫‪lim f (5 + h) - f (5) = lim (5 + h)2 - 8 (5 + h) + 15‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h‬‬‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim 25 + 10h + h2 - 40 - 8h + 15 = lim h2 + 2h‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim h (h + 2) = lim (h + 2) = 2‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 5‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ‪.‬‬ ‫ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪5‬‬ ‫‪ (8‬ﻟﺩﻴﻨﺎ ‪ f ( x ) = - x + 2 . x + 5 :‬ﻭ ﻤﻨﻪ ‪D f = \ :‬‬ ‫ﻨﻜﺘﺏ ‪ f x‬ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) (‬

x −∞ -5 2 +∞ -x + 2 x+5 -x + 2 -x + 2 -(-x + 2)-x + 2 x + 5 -(x + 5) x +5 x +5 -(-x+2)(x+5) (-x+2)(x+5) -(-x+2)(x+5) : ‫ﺇﺫﻥ‬ f ( x) = -(-x + 2) (x + 5) ; x ∈ ]-∞ ; -5] ∪ [2 ; +∞[ f ( x) = (-x + 2) (x + 5) ; x ∈ [-5 ; 2[ f ′( x) = -1 (x + 5) + 1 (-x + 2) : x ∈ ]-5 ; 2[ ‫* ﻟﻤﺎ‬ f ′( x) = -x - 5 - x + 2 f ′( x) = - (-2x - 3) : x ∈ ]-∞ ; -5[ ∪ ]2 ; +∞[ ‫* ﻟﻤﺎ‬ f ′( x) = 2x + 3 ( )f −5 = 0 : -5 ‫ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬xlim f (-5 + h) - f (-5) = lim -(5 - h + 2) (-5 + h +5) < h < hh→0 h→0 = lim -h (7 - h) = lim - (7 - h) < h < h→0 h→0 = -7 .‫ ﻤﻥ ﺍﻟﻴﺴﺎﺭ‬-5 ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﻭﻋﻠﻴﻪ‬lim f (-5 + h) - f (-5) = lim (5 - h + 2) (-5 + h +5) > h > hh→0 h→0 = lim h (- h + 7) = lim (-h + 7) = 7 > h > h→0 h→0 .-5 ‫ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ‬-5 ‫ﻭﻤﻨﻪ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬

. 2‫ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬xlim f (2 + h) - f (2) = lim (-2 - h + 2) (2 + h +5) < h < hh→0 h→0 = lim -h (7 + h) = lim -(7 + h) = -7 < h < h→0 h→0 . ‫ ﻤﻥ ﺍﻟﻴﺴﺎﺭ‬2 ‫ ﻗﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﺇﺫﻥ‬lim f (2 + h) - f (2) = lim -(-2 - h + 2) (2 + h +5) > h > hh→0 h→0 = lim h (7 + h) = lim (7 + h) = 7 > h > h→0 h→0 .‫ ﻤﻥ ﺍﻟﻴﻤﻴﻥ‬2 ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﺇﺫﻥ‬ . 2 ‫ ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ‬ . 7‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ‬1) f ( x ) = cos3 x , Df = \ f ′( x) = -3 sin x cos2 x2) f ( x) = sin3 x Df = {x ∈ k : cosx ≠ 0} x = π + \π , k ∈ ] : ‫ﻤﻌﻨﺎﻩ‬ cosx = 0 2 Df =\ - π + kπ / k ∈ ]     2  f ′( x) = 3 (1 + tan2 x) (tan2 x) ( )f ′( x) = 3 . tan2g 1 + tan2 x

3) f ( x) = sin x Df = {x ∈ \ : sin x ≥ 0} sin x ≥ 0 : ‫ﻨﺠﺩ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ‬ [ ]S = 2kπ ; (2k + 1) π : ‫ﺤﻠﻭﻟﻬﺎ ﻤﻥ ﺍﻟﺸﻜل‬ k ∈ ] ‫ﺤﻴﺙ‬ Df = [2kπ ; (2k + 1) π] : ‫ﻭﻤﻨﻪ‬ k ∈ ] ‫ﻤﻊ‬ ] [k ∈ ] ‫ ﻤﻊ‬2kπ ; (2k + 1) π ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬f ‫ﻭ ﺍﻟﺩﺍﻟﺔ‬ . f ′(x) = cosx : ‫ﻭ ﻤﻨﻪ‬ 2 sinx4) f ′( x) = cos 2 x 1 - sin x Df = {x ∈ \ : 1 - sin x ≠ 0} sin x = 1 ‫ ﺃﻱ‬1 - sin x = 0 ‫ﻜل ﺍﻟﻤﻌﺎﺩﻟﺔ‬ x = π + 2kπ , k∈] : ‫ﻭﻤﻨﻪ‬ 2 Df =\ - π + 2kπ / k ∈ ]    2 f ′(x) = -2 sin2x (1 - sin) - (-cos x) . cos 2x (1 - sinx)2 f ′(x) = -1 sin x cosx (1 - sin x) + cosx . cos 2x (1 - sinx)2 f ′(x) = cosx [-4 sin x (1 - sin x) + cos 2x] (1 - sinx)2

f ′(x) = ( )cosx -4 sinx + 4 sin2 x + 1 - 2 sin2 x (1 - sinx)2f ′(x) = ( )cosx 2 sin2 x - 4 sinx + 1 (1 - sinx)25) f ( x) = sin x - cos2xDf = {x ∈ \ / sin x - cos2x ≥ 0} ‫ ﺃﻱ‬sin x - cos2x ≥ 0 : ‫ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ‬ sin x - (1 - 2sin2 x) ≥ 0 sin x + 1 + 2sin2 x ≥ 0 2 sin2 x + sinx - 1 ≥ 0 . . . (1) 2z2 + z - 1 ≥ 0 : ‫ ﻨﺠﺩ‬sin x = z ‫ﻨﻀﻊ‬ ∆ = 9 ‫( = ∆ ﻭﻤﻨﻪ‬1)2 - 4 (-1) (2) z2 = -1 +3 = 1 , z1 = -1 +3 = -1 : ‫ﻭﻋﻠﻴﻪ‬ 4 2 4 2z 2 + z - 1 = 2 (z + 1)  z - 1 : ‫ﺇﺫﻥ‬  2 2 sin2 x + sinx - 1 = 2 ( sinx + 1)  sinx - 1 : ‫ﺇﺫﻥ‬  2  2 ( sinx + 1)  sinx - 1 ≥ 0 : ‫( ﺘﻜﺎﻓﺊ‬1) ‫ﻭﻋﻠﻴﻪ‬  2  sin x 1 + ≥ 0 : ‫ﻷﻥ‬ sin x - 1 ≥0 : ‫ﻭﻤﻨﻪ‬ 2x∈ π + 2kπ ; 5π + 2kπ  : ‫ﺇﺫﻥ‬ sin x ≥ 1  6 6  2 : ‫ﻭﻋﻠﻴﻪ‬

‫‪Df‬‬ ‫∈‬ ‫‪π‬‬ ‫; ‪+ 2kπ‬‬ ‫‪5π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪‬‬ ‫‪,‬‬ ‫]∈‪k‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪ 6‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪5π‬‬ ‫‪+ 2kπ‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫‪ 6‬‬ ‫‪6‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪cosx + 2 sin2x‬‬ ‫‪2 sin x - cos2x‬‬‫)‪6‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪2-‬‬ ‫‪sin x‬‬ ‫‪4-‬‬ ‫‪cosx‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ 4 - cosx > 0‬ﻓﺈﻥ ‪D f = \ :‬‬‫)‪f ′(x‬‬ ‫=‬ ‫‪-cosx‬‬ ‫‪(4 - cos) - sin x‬‬ ‫)‪(2 -sin x‬‬ ‫‪(4 - cosx)2‬‬‫)‪f ′(x‬‬ ‫=‬ ‫‪-cosx‬‬ ‫‪(4 - cos) - sin x‬‬ ‫)‪(2 -sin x‬‬ ‫‪(4 - cosx)2‬‬‫)‪f ′(x‬‬ ‫=‬ ‫‪-4 cosx - 2 sin x‬‬ ‫‪+1‬‬ ‫‪(4 - cosx)2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪: f‬‬ ‫‪ -1‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ : -∞ ; -1‬ﻟﺩﻴﻨﺎ ‪ f ′ x > 0‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ‪( ) ] ].‬‬ ‫‪ -2‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ : -1 ; 0‬ﻟﺩﻴﻨﺎ ‪ f ′ x ≥ 0‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ‪( ) [ ].‬‬ ‫‪ -3‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ : 0 ; 2‬ﻟﺩﻴﻨﺎ ‪ f ′ x ≤ 0‬ﻭ ﻤﻨﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ‪( ) [ ].‬‬ ‫‪ -4‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ : 2 ; 3‬ﻟﺩﻴﻨﺎ ‪ f ′ x ≤ 0‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ‪( ) [ ].‬‬ ‫‪ -5‬ﻓﻲ ﺍﻟﻤﺠﺎل ∞‪ f ′ x ≥ 0 : 3 ; +‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ‪( ) [ [.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬

‫ﻓﻲ ﺍﻟﻤﺠﺎل ‪ f2 x < 0 : -1 ; 0‬ﻭﻟﺩﻴﻨﺎ ‪ f1‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ‪( ) [ ].‬‬ ‫ﻭ ﻓﻲ ﺍﻟﻤﺠﺎل ‪ f2 x < 0 : 0 ; 1‬ﻭ ﻟﺩﻴﻨﺎ ‪ f1‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻓﻲ ﺍﻟﻨﻘﻁﺔ] [ ) (‬ ‫)‪ M1(-1 ; 2‬ﻟﺩﻴﻨﺎ ‪ C1‬ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ) (‬‫‪ f2 -1 = 0‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ )‪ M1(1 ; -2‬ﻓﺈﻥ ‪ C1‬ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ) ( ) (‬‫ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ ‪ f2 1 = 0 :‬ﺇﺫﻥ ‪ C1‬ﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ‪ f1‬ﻭ ‪( ) ( ) ( )C2‬‬ ‫ﺍﻟﺘﻤﺜل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪ f1′‬ﺇﺫﻥ ‪f2 = f1′ :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬ ‫‪ -1‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ‪[ [D f -1 ; +∞ :‬‬ ‫ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪( )f 0 = 1 : 0‬‬ ‫‪-2‬‬‫‪lim‬‬ ‫)‪f (h) - f (0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1+h -1‬‬ ‫‪h‬‬ ‫‪h‬‬‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪( 1 + h - 1) ( )1 + h + 1‬‬ ‫‪h→0‬‬ ‫‪( )h 1 + h + 1‬‬ ‫‪= lim 1 + h - 1 = lim‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪h→0 h  1 + h + 1 h→0‬‬ ‫‪+h‬‬ ‫‪2‬‬ ‫‪( )f ′ 0‬‬ ‫=‬ ‫‪1‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﺤﻴﺙ‬ ‫‪2‬‬ ‫‪y=1+‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫ﺃﻱ ‪:‬‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ‪: O‬‬ ‫‪2‬‬ ‫)‪y = f (0) + f (0) × ( x - 0‬‬ ‫‪ -3‬ﺍﻟﺘﻘﺭﻴﺏ ﺍﻟﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ‪: f‬‬ ‫‪( )g‬‬‫‪x‬‬ ‫‪=1+‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫ﺃﺤﺴﻥ ﺘﻘﺭﻴﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ﻋﻨﺩ ‪ 0‬ﻫﻭ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺤﻴﺙ ‪:‬‬ ‫‪2‬‬

‫‪ -4‬ﺤﺴﺎﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺭﺒﺔ ‪:‬‬‫= ‪1,00007‬‬ ‫‪1 + 0,00007‬‬ ‫‬ ‫‪1+‬‬ ‫‪1‬‬ ‫)‪(0,00007‬‬ ‫‪2‬‬ ‫‪ 1 + 0,000035  1,000035‬‬ ‫ﺇﺫﻥ ‪1,00005  1,000035 :‬‬‫= ‪0,999917‬‬ ‫‪1 - 0,000083‬‬ ‫‪=1-‬‬ ‫‪1‬‬ ‫)‪(0,000083‬‬ ‫‪2‬‬ ‫‪= 0,9999585‬‬ ‫‪ -5‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪: f‬‬‫[∞‪Df = [-1 ; +‬‬‫‪lim f ( x) = lim‬‬ ‫‪1+x =0‬‬‫>>‬‫‪x →−1‬‬ ‫‪x →−1‬‬‫‪lim f ( x) = lim‬‬ ‫∞‪1 + x = +‬‬‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫= )‪f ′(x‬‬ ‫‪1‬‬ ‫ﻤﻥ ﺃﺠل ‪: x > -1‬‬ ‫‪1+x‬‬ ‫ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ -1‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ‪( )f −1 = 0 :‬‬‫‪lim f (h) - f ( ) = lim‬‬ ‫‪- 0 = lim h‬‬ ‫>‬ ‫>‬ ‫‪h‬‬ ‫>‪h‬‬‫‪hh→0‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫∞‪= lim 1 = +‬‬ ‫>‪h‬‬ ‫‪h→0‬‬‫ﻭﻋﻠﻴﻪ ‪ f‬ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ -1‬ﻭ ﺒﻴﺎﻥ ‪ C f‬ﻴﻘﺒل ﻨﺼﻑ ﻤﻤﺎﺱ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ) (‬ ‫ﻋﻠﻰ ﻴﻤﻴﻥ ﺍﻟﻌﺩﺩ‪. -1‬‬ ‫ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ‪:‬‬ ‫‪( )lim‬‬ ‫‪fx‬‬ ‫ﻓﺈﻨﻨﺎ ﻨﺤﺴﺏ ‪:‬‬ ‫‪( )lim f‬‬‫‪x‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪= +∞ :‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬

‫ﻟﺩﻴﻨﺎ ‪:‬‬‫‪lim f ( x) = lim 1 + x‬‬‫∞‪x→+‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬‫‪= lim‬‬ ‫‪1+x . 1+x‬‬ ‫‪= lim‬‬ ‫‪1+x‬‬ ‫×‬ ‫‪1 =0‬‬ ‫∞‪x→+‬‬ ‫‪x 1+x‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫‪1+x‬‬ ‫ﺇﺫﻥ ‪ C f‬ﻴﻘﺒل ﻓﺭﻉ ﺘﻘﺎﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞‪( ). +‬‬ ‫ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ‪ :‬ﻤﻥ ﺃﺠل ‪ x = 0 :‬ﻓﺈﻥ ‪ y = 1 :‬ﻤﻥ ﺃﺠل ‪ y = 0‬ﻓﺈﻥ ‪. x = 1 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬ ‫ﺤﺴﺎﺏ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ f x = xn :‬ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ‪( ):‬‬ ‫‪f ′( x ) = nxn-1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f ′‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ‪( )f ′′ x = n (n -1) xn-2 :‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ f ′′‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ‪( )f ′′′ x = n (n -1) (n - 2) xn-3 :‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f ′′′‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ ‪:‬‬ ‫‪f (4) ( x ) = n (n -1) (n - 2) (n - 3) xn-4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬ ‫ﺤﺴﺎﺏ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ ‪:‬‬

f ( x ) = cos (ax + b) ‫ﻟﺩﻴﻨﺎ‬ ( )f ′ x = a sin (ax + b) :‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ \ ﺤﻴﺙ‬f ‫ﺍﻟﺩﺍﻟﺔ‬ f ′(x) = a cos  ax +b + π : ‫ﻭﻤﻨﻪ‬  2 ( )f ′′ x = a2 sin  ax + b + π : ‫\ ﺤﻴﺙ‬ ‫ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ f ′ ‫ﺍﻟﺩﺍﻟﺔ‬  2  f ′′( x ) = a2 cos (ax + b + π) : ‫ﻭﻤﻨﻪ‬ f ′′′( x ) = -a3 sin (ax + b + π) ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬f ′′ ‫ﺍﻟﺩﺍﻟﺔ‬ f ′′′( x) = a3 sin  ax +b+ 3π   2  . 13‫ﺍﻟﺘﻤﺭﻴﻥ‬ y′′ = -  4π 2 y : ‫ﻭﻤﻨﻪ‬ y′′ + 16π2 y = 0 : ‫ﻟﺩﻴﻨﺎ‬  5  25 y = a cos 4π x + sin 4π x : ‫ﻭﻋﻠﻴﻪ ﺤﻠﻬﺎ ﻫﻭ‬ 5 5 1 = a cos0 + b sin0 : ‫ ﻭﻋﻠﻴﻪ‬y = 1 : x = 0 ‫ﻭﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل‬ y′ = 0 : x= 5 : ‫ﻭ ﻤﻥ ﺃﺠل‬ a = 1 : ‫ﻭﻤﻨﻪ‬ 4 4πa 4π 4πb 4πx y′ = 5 sin 5 x + 5 cos 5 : ‫ﻟﻜﻥ‬ 0 = 4πa sinπ + 4πb cosπ : ‫ﻭﻤﻨﻪ‬ 5 5 4πb b = 0 ‫ﻭﻤﻨﻪ‬ 5 cosπ = 0 : ‫ﻭﻋﻠﻴﻪ‬

‫‪y = cos‬‬ ‫‪4πx‬‬ ‫‪x‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﺤل ﻫﻭ ‪:‬‬ ‫‪5‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫‪ -1‬ﻨﺒﻴﻥ ﺃﻥ ‪f ′′( x ) + 4 f ( x ) - 2 = 0 :‬‬‫ﻟﺩﻴﻨﺎ ‪ f ′( x ) = -2sin x cosx‬ﻭﻤﻨﻪ ‪f ′( x ) = -sin2x :‬‬ ‫ﺇﺫﻥ ‪f ′′( x ) = -2 cos2x :‬‬‫ﻭﻋﻠﻴﻪ ‪f ′′( x) + 4 f ( x) - 2 = -2 cos2x + 4 cos2 x - 2 :‬‬ ‫‪= -2 (2cos2 x - 1) + 4 cos2 x - 2‬‬ ‫‪= -4 cos2 x + 2 + 4 cos2 x - 2‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪f ′′( x) + 4 f ( x) - 2 = 0‬‬ ‫‪ -2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪:‬‬ ‫‪y′′ = -4y + 2‬‬ ‫ﻨﻔﺭﺽ ) ‪ y = f ( x‬ﻓﻨﺠﺩ ‪f ′′( x) + 4 f ( x ) - 2 = 0 :‬‬ ‫ﻭﻤﻥ ﺍﻟﺴﺅﺍل )‪( )f x = cos2 x : (1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬ ‫‪ -1‬ﺤﺴﺎﺏ ﺍﻟﻤﺸﺘﻘﺎﺕ ﺍﻟﻤﺘﺘﺎﺒﻌﺔ ‪:‬‬‫‪f ′( x) = 4x3 - 18x2 + 24x + 24‬‬‫‪f ′′( x) = 12x2 - 36x + 24‬‬‫‪f ((3) x ) = 24x - 36‬‬‫‪f (4) ( x ) = 24‬‬‫‪f ((5) x ) = 0‬‬ ‫ﻨﻼﺤﻅ ﺃﻨﻪ ﻤﻥ ﺃﺠل ‪( )f (n) x = 0 : n ≥ 5‬‬ ‫‪ -2‬ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ‪f ′′( x ) = 12x2 - 36x + 24 : ( )f ′′ x‬‬

‫ﻭﻤﻨﻪ ‪( )f ′′( x) = 12 x2 - 3x + 2 :‬‬ ‫‪ f ′′( x ) = 0‬ﺘﻜﺎﻓﺊ ‪x2 - 3x + 2 = 0 :‬‬‫‪x2‬‬ ‫=‬ ‫‪3+1‬‬ ‫‪=2‬‬ ‫‪,‬‬ ‫‪x1‬‬ ‫=‬ ‫‪3-1‬‬ ‫‪=1‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪∆ =1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪−∞ 1‬‬ ‫∞‪2 +‬‬ ‫‪x‬‬ ‫)‪f ′′( x‬‬ ‫‪+‬‬ ‫‪-+‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f ′′‬ﺘﻨﻌﺩﻡ ﻋﻨﺩ ‪ 1‬ﻭ ‪ 2‬ﻤﻐﻴﺭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺇﺸﺎﺭﺘﻬﺎ ﻭﻤﻥ ﻫﻨﺎﻙ ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ‪:‬‬ ‫))‪M2 ( 2 ; f (2)) , M1 (1 ; f (1‬‬ ‫ﺤﻴﺙ ‪f ( 2) = 40 , f (7) :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬ ‫‪ -1‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪: f‬‬‫[∞‪Df = [0 ; +‬‬‫∞‪lim f ( x) = lim x x = 0 ; lim f ( x) = lim x x = +‬‬ ‫>‬ ‫>‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪x+ x‬‬ ‫‪2x‬‬ ‫= ‪] [( )f ′ x‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫∞‪0 ; +‬‬ ‫‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬‫)‪f ′(x‬‬ ‫=‬ ‫‪2x‬‬ ‫‪+x‬‬ ‫‪+‬‬ ‫‪3x‬‬ ‫=‬ ‫‪3‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪2x‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪ f ′ x > 0‬ﻭﻋﻠﻴﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل) (‬ ‫[∞‪[0 ; +‬‬

‫ﺍﻹﻨﺸﺎﺀ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪:‬‬ ‫‪ -2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪2y′ = 3 x :‬‬‫‪y′‬‬ ‫=‬ ‫‪3x‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪2y′ = 3 x‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﺤﺴﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻥ ‪ f x‬ﺤل ﻟﻬﺫﻩ ﺍﻟﻤﻌﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻭﻤﻨﻪ ‪( ) ( )y = f x :‬‬ ‫ﺃﻱ ‪y = x x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫ﺘﻌﻴﻴﻥ ‪ a‬ﻭ ‪ b‬ﻭ‪c‬‬‫‪ f‬ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪y′′ = 12x2 - 24x + 1 :‬‬ ‫ﺃﻱ ‪f ′′( x ) = x2 - 4x + 1 :‬‬ ‫ﻟﻜﻥ ‪f ′( x ) = 4ax3 + 3bx2 + 2cx :‬‬‫‪f ′′( x ) = 12ax2 + 6bx2 + 2cx‬‬‫‪a = 1‬‬ ‫‪12a = 12‬‬‫‪ 6b = -24‬ﺃﻱ ﺃﻥ ‪b = -4 :‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬‫‪c = 5‬‬ ‫‪2c = 10‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫‪ (1‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ‪{ }D f = \ - -1 :‬‬

‫∞‪] [ ] [Df = -∞ ; -1 ∪ -1 ; +‬‬ ‫‪ (2‬ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬‫‪lim f ( x) = lim‬‬ ‫‪1‬‬ ‫‪=0‬‬ ‫;‬ ‫∞‪lim f ( x) = -‬‬‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫‪(1 + x)3‬‬ ‫<‬ ‫‪x →−1‬‬‫‪lim f ( x) = lim‬‬ ‫‪1‬‬ ‫‪=0‬‬ ‫;‬ ‫∞‪lim f ( x) = +‬‬‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪(1 + x)3‬‬ ‫>‬ ‫‪x →−1‬‬‫)‪f (x‬‬ ‫=‬ ‫‪-3 (1 + x)2‬‬ ‫=‬ ‫‪-3‬‬ ‫‪(1 + x)6‬‬ ‫‪(1 + x)4‬‬‫ﻭﻋﻠﻴﻪ ‪ f ′ x < 0 :‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ‪ -∞ ; -1‬ﻭ) ( [ ]‬ ‫[∞‪]-1 ; +‬‬ ‫‪x‬‬ ‫‪−∞ -1‬‬ ‫∞‪+‬‬ ‫)‪f ′(x‬‬ ‫‪--‬‬ ‫)‪f (x‬‬ ‫∞‪0 +‬‬ ‫‪0‬‬ ‫∞‪−‬‬ ‫‪ -3‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ‪y = f (0) × ( x - 0) + f (0) :‬‬ ‫ﺤﻴﺙ ‪f ′(0) = -3 , f (0) = 1 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ y = -3x +1 :‬ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ‪( ).‬‬ ‫‪ -4‬ﺇﻨﺸﺎﺀ ) ∆ ( ﻭ ) ‪: ( γ‬‬ ‫‪y‬‬ ‫‪0,5‬‬ ‫‪x‬‬ ‫‪0 0,5‬‬

‫‪ -5‬ﺃﺤﺴﻥ ﺘﻘﺭﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻭﻫﻭ ﺍﻟﺩﺍﻟﺔ ‪x 6 -3x + 1 :‬‬ ‫‪ -6‬ﺤﺴﺎﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺭﺒﺔ ‪:‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪ - 3 (0,001) + 1  0,997‬‬ ‫‪(1,001)3‬‬ ‫‪(1 + 0,001)3‬‬ ‫‪1‬‬ ‫‪ 0,997‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪(1,001)3‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪ - 3 (-0,001) + 1‬‬ ‫‪(0,999)3‬‬ ‫‪(1 - 0,001)3‬‬ ‫‪ 1,003‬‬ ‫‪1‬‬ ‫‪ 1,003‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪(0,999)3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ‪: D f‬‬‫‪{ }Df = x ∈ \ : x2 - 3x + 2 ≠ 0‬‬ ‫ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ x2 - 3x + 2 = 0 :‬ﻫﻲ ‪. 2 ، 1 :‬‬ ‫}‪Df = \ - {1 ; 2‬‬ ‫‪ -2‬ﺘﻌﻴﻴﻥ ﺍﻷﻋﺩﺍﺩ ‪ a‬ﻭ ‪ b‬ﻭ ‪: c‬‬‫)‪f (x‬‬ ‫‪=a+‬‬ ‫‪b‬‬ ‫‪+‬‬ ‫‪c‬‬ ‫‪x -1‬‬ ‫‪x -2‬‬ ‫‪a‬‬ ‫‪(x‬‬ ‫‪-‬‬ ‫)‪1‬‬ ‫‪(x‬‬ ‫)‪- 2) + b (x - 2‬‬ ‫‪+‬‬ ‫‪c‬‬ ‫‪(x‬‬ ‫‪-‬‬ ‫)‪1‬‬‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫)‪(x - 1) (x - 2‬‬‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪ax 2‬‬ ‫‪-‬‬ ‫‪3ax‬‬ ‫‪+ 2a + bx +‬‬ ‫‪2b‬‬ ‫‪+ cx‬‬ ‫‪-‬‬ ‫‪c‬‬ ‫‪x2 - 3x - 2‬‬‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪a‬‬ ‫‪x2‬‬ ‫‪(b - 3a+c) x +‬‬ ‫‪2b‬‬ ‫‪-c‬‬ ‫‪x2 - 3x + 2‬‬

f (x) = x2 + 2x + 1 a = 1 x2 - 3x + 2 : ‫ ﻷﻥ‬b - 3a + c = 2 : ‫ﻭﻤﻨﻪ‬ 2a - 2b -c = 1 a = 1 a = 1 b = -4 : ‫ ﺃﻱ‬b + c = 5 : ‫ﻭﻋﻠﻴﻪ‬ b = 9 2b - c = -1 f (x) =1- 4 + 9 : ‫ﻭﻋﻠﻴﻪ‬ x -1 x -2 : f ‫ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ‬-2• Df = ]-∞ ; 1[ ∪ ]1 ; 2[ ∪lim f ( x) lim 1- 4 + 9 =1 x -1 x -2x→−∞ x→−∞lim f ( x) lim 1- 4 + 9 = +∞ < < x -1 x -2x →1 x→1lim f ( x) lim 1- 4 + 9 = -∞ > > x -1 x -2x →1 x→1lim f ( x) lim 1- 4 + 9 = -∞ < < x -1 x -2x→2 x→2lim f ( x) lim 1- 4 + 9 = +∞ > > x -1 x -2x→2 x→2lim f ( x) lim 1- 4 + 9 =1 x -1 x -2x→+∞ x→+∞ f ′(x) = 4 - 9 ( x - 1)2 ( x - 2)2

‫)‪f ′(x‬‬ ‫=‬ ‫‪4‬‬ ‫‪( x - 2)2 - 9 ( x - 1)2‬‬ ‫‪( x - 1)2 ( x - 2)2‬‬‫)‪f ′(x‬‬ ‫‪[2 (x‬‬ ‫])‪- 2) - 3 ( x - 1‬‬ ‫‪[2 ( x - 2) + 3 ( x‬‬ ‫])‪- 1‬‬ ‫‪( x - 1)2‬‬ ‫‪( x - 2)2‬‬‫)‪f ′(x‬‬ ‫=‬ ‫)‪(− x - 1) - (5x - 7‬‬ ‫‪( x - 1)2 ( x - 2)2‬‬ ‫ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ ‪:‬‬ ‫‪x‬‬ ‫‪−∞ -1‬‬ ‫‪1‬‬ ‫‪7‬‬ ‫∞‪2 +‬‬ ‫‪+‬‬ ‫‪5‬‬ ‫)‪f ′(x‬‬ ‫‪-‬‬ ‫‪-‬‬ ‫‪--‬‬ ‫; ‪[ [1‬‬‫‪7‬‬ ‫‪5 ‬‬ ‫ﻭ‬ ‫‪-1 ; 1‬‬ ‫ﺇﺫﻥ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬ ‫∞‪] [ ] ]2 ; +‬‬‫‪7‬‬ ‫‪2‬‬ ‫ﻭ‬ ‫‪ 5‬‬ ‫;‬ ‫ﻭ‬ ‫‪-∞ ; -1‬‬ ‫ﻭﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻻﺕ‬ ‫ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫‪x −∞ -1‬‬ ‫‪1‬‬ ‫‪7‬‬ ‫∞‪2 +‬‬ ‫‪5‬‬‫‪f ′(x) - - + - -‬‬‫‪f (x) 1‬‬ ‫∞‪+‬‬ ‫‪f‬‬ ‫‪‬‬ ‫‪7‬‬ ‫‪‬‬ ‫∞‪+‬‬ ‫‪‬‬ ‫‪5‬‬ ‫‪‬‬ ‫)‪f (-1‬‬ ‫∞‪−‬‬ ‫∞‪−‬‬ ‫‪1‬‬‫‪f‬‬ ‫)‪(1‬‬ ‫‪=1‬‬ ‫‪-‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫=‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫=‪-3‬‬ ‫‪0‬‬ ‫‪-1 -‬‬ ‫‪-1 -‬‬

‫‪f‬‬ ‫‪‬‬ ‫‪7‬‬ ‫‪‬‬ ‫‪=1 -‬‬ ‫‪4‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫‪=1-‬‬ ‫‪4‬‬ ‫‪9‬‬ ‫‪‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪2+‬‬ ‫‪-3‬‬ ‫‪7‬‬ ‫‪-1‬‬ ‫‪7‬‬ ‫‪-‬‬ ‫‪2‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬‫‪f‬‬ ‫‪‬‬ ‫‪7‬‬ ‫‪=1‬‬ ‫‪-‬‬ ‫‪4‬‬ ‫×‬ ‫‪5‬‬ ‫‪+9‬‬ ‫×‬ ‫‪5‬‬ ‫‪= 1 - 10 -15 = -24‬‬ ‫‪‬‬ ‫‪5 ‬‬ ‫‪2‬‬ ‫‪-3‬‬ ‫‪ – 3‬ﺘﻌﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ‪:‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ lim f (x) = 1 :‬ﻓﺈﻥ ‪ y = 1‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ‪( ). y′y‬‬ ‫∞‪x→ +‬‬‫‪( ) ( ).‬‬ ‫‪x′x‬‬ ‫ﻓﺈﻥ ‪ x = 1 :‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ‬ ‫‪lim f‬‬ ‫‪x‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ∞‪= +‬‬ ‫‪x→1‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ)‪ (C‬ﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( ).y = 1 :‬‬‫)‪f (x‬‬ ‫=‪-1‬‬ ‫‪-4‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫=‬ ‫)‪-4(x - 2) + 9 (x - 1‬‬ ‫‪x -1‬‬ ‫‪x -2‬‬ ‫)‪(x - 1) (x - 2‬‬‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪(x‬‬ ‫‪-‬‬ ‫‪x -1‬‬ ‫‪-‬‬ ‫)‪2‬‬ ‫‪1) (x‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪1‬‬ ‫∞‪1 2 +‬‬ ‫‪5‬‬ ‫‪++‬‬ ‫‪5x - 1‬‬‫)‪( x - 1) (x - 2‬‬ ‫‪-+‬‬ ‫‪f (x) - y‬‬ ‫‪++ - +‬‬ ‫‪-+-+‬‬ ‫‪( )M1‬‬‫‪‬‬ ‫‪1‬‬ ‫;‬ ‫‪1‬‬ ‫‪‬‬ ‫∆‬ ‫ﻭﻋﻠﻴﻪ )‪ (C‬ﻭ‬ ‫‪‬‬ ‫‪5‬‬ ‫‪‬‬ ‫ﺘﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ ﺍﻟﻨﻘﻁﺔ‬ ‫∞‪] [ ( )2 ; +‬‬ ‫ﻭ‬ ‫‪1‬‬ ‫‪; 1‬‬ ‫∆‬ ‫)‪ (C‬ﻓﻭﻕ‬ ‫‪ 5‬‬ ‫ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬

‫‪] [ ( )1 ; 2‬‬‫‪‬‬ ‫∞‪-‬‬ ‫;‬ ‫‪1‬‬ ‫∆‬ ‫)‪ (C‬ﻴﻘﻊ ﺘﺤﺕ‬ ‫ﻭ‬ ‫‪‬‬ ‫‪5 ‬‬ ‫ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬ ‫‪ -4‬ﺍﻟﺘﻘﺭﻴﺏ ﺍﻟﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ‪: 0‬‬ ‫ﻟﻨﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ‪y = f ( 0) . ( x - 0) + f (0) :‬‬‫‪y‬‬ ‫=‬ ‫‪7‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪f ′(0‬‬ ‫=‬ ‫‪7‬‬ ‫‪,‬‬ ‫‪f‬‬ ‫)‪(0‬‬ ‫=‬ ‫‪1‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ﺃﺤﺴﺏ ﺘﻘﺭﻴﺏ ﺘﺂﻟﻔﻲ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻫﻭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ ‪:‬‬ ‫‪ -5‬ﺇﻨﺸﺎﺀ )‪(C‬‬ ‫‪y‬‬ ‫‪25‬‬ ‫‪20‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬‫‪-5 -4 -3 -2 -1 0‬‬ ‫‪1 2 3 4 5x‬‬ ‫‪-5‬‬ ‫‪-10‬‬ ‫‪-15‬‬ ‫‪-20‬‬ ‫‪-25‬‬ ‫‪-30‬‬ ‫‪ (1 (II‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ‪: g‬‬‫‪{ }Dg = x ∈ \ : x2 - 3 x + 2= 0‬‬

‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ x2 - 3 x + 2 = 0 :‬ﺃﻱ ‪x 2 - 3 x + 2 = 0 :‬‬ ‫ﻨﻭﻀﻊ ‪ x = z :‬ﻨﺠﺩ ‪ z2 -3z + 2 =0 :‬ﻭ ﺤﻠﻴﻬﺎ‬ ‫‪ z = 1‬ﺃﻭ ‪ z = 2‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪ x = 1 :‬ﺃﻭ ‪x = 2‬‬ ‫ﻭﻤﻨﻪ ‪ x = 1 :‬ﺃﻭ ‪ x = -1‬ﺃﻭ ‪ x = -2‬ﺃﻭ ‪x = 2‬‬ ‫}‪Df = \ - {-2 ; -1 ; 1 ; 2‬‬ ‫‪ -2‬ﻜﺘﺎﺒﺔ ‪ g x‬ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) (‬‫‪‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x2+ 2 x + 1‬‬ ‫;‬ ‫[∞‪x ∈ ]0 ; +1[ ∪ ]1 ; 2[ ∪ ].... ; +‬‬‫‪‬‬ ‫‪x2- 3x + 2‬‬‫‪‬‬‫‪‬‬ ‫‪x2‬‬ ‫‪-2x +1‬‬‫‪‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪+ 3x + 2‬‬ ‫;‬ ‫[‪x ∈ ]-∞ ; -2[ ∪ ]-2 ; -1[ ∪ ]-1 ; 0‬‬ ‫‪ -3‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪: 0‬‬‫)‪g(0‬‬ ‫=‬ ‫‪1‬‬ ‫‪2‬‬‫‪lim g ( x) = lim‬‬ ‫‪x2‬‬ ‫‪+ 2x‬‬ ‫‪+1‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫)‪g(0‬‬ ‫>>‬ ‫‪x2‬‬ ‫‪+ 3x‬‬ ‫‪+2‬‬ ‫‪2‬‬‫‪x→0‬‬ ‫‪x→0‬‬‫‪lim g ( x) = lim‬‬ ‫‪x2‬‬ ‫‪+ 2x‬‬ ‫‪+1‬‬ ‫=‬ ‫‪1‬‬ ‫)‪= g(0‬‬ ‫<<‬ ‫‪x2‬‬ ‫‪+ 3x‬‬ ‫‪+2‬‬ ‫‪2‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﺇﺫﻥ ‪ g‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪.0‬‬ ‫‪( )g 0 = 0‬‬ ‫‪ -‬ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪: 0‬‬‫‪lim‬‬ ‫‪g(h) - g(0) = lim‬‬ ‫‪ h2‬‬ ‫‪+ 2h‬‬ ‫‪+1‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫×‬ ‫‪1‬‬ ‫>‬ ‫‪‬‬ ‫‪+ 3h‬‬ ‫‪+2‬‬ ‫‪‬‬ ‫‪h‬‬ ‫>‪h‬‬ ‫‪‬‬ ‫‪h‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪2h2 + 4h + 2 - h2 + 3h - 2‬‬ ‫‪1‬‬ ‫‪2 h2 - 3h + 2‬‬ ‫‪h‬‬ ‫‪( )= lim‬‬ ‫×‬ ‫>‬ ‫‪x→0‬‬

‫‪= lim‬‬ ‫‪h2 + 7h‬‬ ‫×‬ ‫‪1 = lim‬‬ ‫‪h+7‬‬ ‫=‬ ‫‪7‬‬ ‫>‪h‬‬ ‫‪h2 - 3h + 2‬‬ ‫‪4‬‬ ‫‪x→0‬‬ ‫>‪( ) ( )2‬‬‫‪x→0‬‬ ‫‪h2 - 3h + 2‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ ‪.‬‬‫‪lim‬‬ ‫‪g(h) - g(0) = lim‬‬ ‫‪ h2‬‬ ‫‪+‬‬ ‫‪2h‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫×‬ ‫‪1‬‬ ‫<‬ ‫‪‬‬ ‫‪+‬‬ ‫‪3h‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪h‬‬ ‫<‪h‬‬ ‫‪‬‬ ‫‪h‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪ 2h2 - 4h + 2 - h2 - 2h - 2 ‬‬ ‫‪1‬‬ ‫‪‬‬‫‪( )= lim‬‬ ‫‪‬‬ ‫×‬ ‫‪h‬‬ ‫‪‬‬ ‫<‬ ‫‪‬‬ ‫‪x→0‬‬ ‫‪2 h2 + 3h + 2‬‬ ‫‪h2 - 6h‬‬ ‫‪1‬‬ ‫‪( )= lim‬‬ ‫×‬ ‫‪h‬‬ ‫<‬ ‫‪2‬‬ ‫‪h2 + 3h + 2‬‬ ‫‪x→0‬‬ ‫‪h-6‬‬ ‫‪3‬‬ ‫‪( )= lim‬‬ ‫×‬ ‫‪-‬‬ ‫‪2‬‬ ‫<‬ ‫‪2‬‬ ‫‪h2 + 3h + 2‬‬ ‫‪x→0‬‬ ‫ﺇﺫﻥ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻟﻜﻥ ‪ f‬ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ‪.0‬‬ ‫‪ -4‬ﺩﺭﺍﺴﺔ ﺸﻔﻌﻴﺔ ﺍﻟﺩﺍﻟﺔ ‪: g‬‬ ‫ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ‪ x‬ﻤﻥ ‪− x ∈ \ : D f‬‬ ‫)‪g(−x‬‬ ‫=‬ ‫‪( − x )2‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪-x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫)‪= g(x‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪-‬‬ ‫‪x+‬‬ ‫‪2‬‬ ‫‪x2 -‬‬ ‫ﻭﻤﻨﻪ ‪ g‬ﺯﻭﺠﻴﺔ ‪.‬‬ ‫‪ -5‬ﺍﺴﺘﻨﺘﺎﺝ ℘ ﻤﻥ )‪( ): (C‬‬ ‫ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ‪x ∈[0 ; 1[ ∪ ]1 ; 2[ ∪ ]2 ; +∞[ :‬‬ ‫)‪g(x) = f (x‬‬‫ﻭﻤﻨﻪ ℘ ﻴﻨﻁﺒﻕ ﻋﻠﻰ )‪. (C‬ﻭ ﺒﺎﻗﻲ ﺍﻟﺒﻴﺎﻥ ﻴﺴﺘﻨﺘﺞ ﺒﺎﻟﺘﻨﺎﻅﺭ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻷﻥ ﺍﻟﺩﺍﻟﺔ ‪( )g‬‬ ‫ﺯﻭﺠﻴﺔ‪.‬‬ ‫‪ -6‬ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪:‬‬

‫‪(m - 1) x2 - (3m + 2) x + 2m - 1 = 0‬‬‫‪mx2 - x2 - 3mx - 2x + 2m - 1 = 0‬‬‫‪( )m x2 - 3x + 2 = x2 + 2x + 1‬‬‫=‪m‬‬ ‫‪x2 + 2x + 1‬‬ ‫‪x2 - 3x + 2‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫=‪m‬‬ ‫‪( x + 1)2‬‬ ‫‪x2 - 3x + 2‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫)‪m = f (x‬‬ ‫ﻟﻤﺎ ‪ m ∈ -∞ ; 0 :‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪] [.‬‬ ‫ﻟﻤﺎ ‪ : m = 0‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺜﻼﺙ ﺤﻠﻭل ﺃﺤﺩﻫﻤﺎ ﻤﻀﺎﻋﻑ ‪.‬‬ ‫ﻟﻤﺎ ‪ : m ∈ 0 ; 1‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺃﺭﺒﻌﺔ ﺤﻠﻭل‪] [.‬‬ ‫∈ ‪ : m‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺃﺭﺒﻌﺔ ﺤﻠﻭل‪.‬‬ ‫; ‪1‬‬ ‫‪27 ‬‬ ‫ﻟﻤﺎ ‪2 ‬‬ ‫‪ :‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺜﻼﺙ ﺤﻠﻭل ﺃﺤﺩﻫﻤﺎ ﻤﻀﺎﻋﻑ‪.‬‬ ‫=‪m‬‬ ‫‪27‬‬ ‫ﻟﻤﺎ‬ ‫‪2‬‬ ‫∈ ‪ : m‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ‪.‬‬ ‫‪ 27‬‬ ‫;‬ ‫∞‪+‬‬ ‫‪‬‬ ‫ﻟﻤﺎ‬ ‫‪ 2‬‬ ‫‪‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫‪ -1‬ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ‪: f‬‬ ‫[∞‪Df = ]-∞ ; -1[ ∪ ]-1 ; 1[ ∪ ]1 ; +‬‬

( )• lim f x = lim x2 - 4x + 4 = lim x2 =1 x→−∞ x→−∞ x2 - 1 x2 x→−∞( )• lim f x = lim x2 - 4x + 4 = lim x2 =1 x→+∞ x→+∞ x2 - 1 x2 x→+∞x −∞ -1 1 +∞x2 -1 + - + : ‫ﻷﻥ‬ : ‫ﻷﻥ‬( )lim fx = lim ( x - 2)2 = +∞ : ‫ﻷﻥ‬ < < x2 - 1x →−1 x →−1 ( x - 2)2 → 9 ( x2 - 1 >→ 0( )lim fx = lim ( x - 2)2 = -∞ > > x2 - 1x →−1 x →−1 ( x - 2)2 → 9 ( x2 - 1 <→ 0( )lim fx = lim ( x - 2)2 = -∞ < < x2 - 1x →1 x→1 ( x - 2)2 → 1 ( x2 - 1 <→ 0lim f ( x) = lim ( x - 2)2 = +∞ > > x2 - 1x →1 x→1

‫‪( x - 2)2 → 1‬‬ ‫ﻷﻥ ‪:‬‬ ‫‪( x2 - 1 >→ 0‬‬‫•‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪2 (x‬‬ ‫‪- 2) (x2 - 1) - 2x‬‬ ‫‪(x‬‬ ‫‪- 2)2‬‬ ‫‪(x2 - 1)2‬‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪2 (x‬‬ ‫)‪- 2‬‬ ‫‪ x2‬‬ ‫‪-1-x‬‬ ‫‪(x‬‬ ‫‪- 2)‬‬ ‫‪(x 2‬‬ ‫‪- 1)2‬‬ ‫)‪f ′(x‬‬ ‫=‬ ‫‪2 (x - 2) (2x‬‬ ‫)‪- 1‬‬ ‫‪(x2 - 1)2‬‬ ‫ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ ‪:‬‬ ‫‪x −∞ -1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫∞‪2 +‬‬ ‫‪2‬‬‫‪f ′(x) + + - - +‬‬‫∞‪[ [ ] [2 ; +‬‬ ‫‪ -1‬‬ ‫‪1‬‬ ‫ﻭ‬ ‫;‬ ‫‪2 ‬‬ ‫ﻭ‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻻﺕ ‪-∞ ; -1‬‬ ‫‪] ].‬‬ ‫‪1‬‬ ‫‪; 1‬‬ ‫‪1;2‬‬ ‫ﻭ‬ ‫‪ 2‬‬ ‫ﻭﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬

‫‪x‬‬ ‫‪−∞ -1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫‪2‬‬ ‫)‪f ′( x‬‬ ‫‪-‬‬ ‫∞‪2 +‬‬ ‫‪++-‬‬ ‫∞‪+‬‬ ‫)‪f (x‬‬ ‫‪+‬‬ ‫∞‪+‬‬ ‫‪f‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫=‬ ‫‪−3‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫∞‪1 −‬‬ ‫‪−∞ f (0) = 0‬‬ ‫‪ -‬ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ‬ ‫ﻫﻨﺎﻙ ‪ 6‬ﻓﺭﻭﻉ ﻻ ﻨﻬﺎﺌﻴﺔ ﻭ ﺜﻼﺙ ﻤﺴﺘﻘﻴﻤﺎﺕ ﻤﻘﺎﺭﺒﺔ ﻤﻌﺎﺩﻟﺘﻬﺎ ‪y = 1 , x = 1 , x = -1‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ )‪ (C‬ﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻷﻓﻘﻲ ‪y = 1 :‬‬‫)‪f (x‬‬ ‫=‪-1‬‬ ‫‪(x - 2)2‬‬ ‫=‪-1‬‬ ‫‪x2‬‬ ‫‪- 4x + 4 - x2‬‬ ‫‪+1‬‬ ‫‪x2 - 1‬‬ ‫‪x2 - 1‬‬ ‫‪-4x‬‬ ‫‪+5‬‬‫‪f‬‬ ‫)‪(x‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫=‬ ‫‪x2‬‬ ‫‪-1‬‬ ‫‪x‬‬ ‫‪−∞ -1‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫∞‪+‬‬ ‫‪4‬‬ ‫)‪f ′( x‬‬ ‫‪+‬‬ ‫‪-‬‬ ‫‪+‬‬ ‫‪+‬‬‫‪−4x + 5‬‬ ‫‪+++-‬‬‫‪f (x)−1‬‬ ‫‪+-+-‬‬ ‫‪( )M‬‬ ‫‪5‬‬ ‫‪; 1‬‬ ‫∆‬ ‫)‪ (C‬ﻴﻘﻁﻊ‬ ‫‪ 4‬‬ ‫ﻓﻲ ﺍﻟﻨﻘﻁﺔ‬ ‫; ‪] [ ( )1‬‬‫‪5‬‬ ‫‪4 ‬‬ ‫ﻭ‬ ‫‪-∞ ; -1‬‬ ‫ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬ ‫∆‬ ‫)‪ (C‬ﻴﻘﻁﻊ ﻓﻭﻕ‬

‫‪] [ ( ) 5‬‬‫‪‬‬ ‫‪‬‬‫‪ 4‬‬‫;‬ ‫∞‪+‬‬ ‫ﻭ‬ ‫‪-1 ; 1‬‬ ‫ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬ ‫∆‬ ‫)‪ (C‬ﻴﻘﻁﻊ ﺘﺤﺕ‬ ‫‪ -‬ﺃﻨﺸﺄ )‪ (C‬ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪:‬‬ ‫‪y‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬‫‪-6 -5 -4 -3 -2 -1 0‬‬ ‫‪1 2 3 4 5x‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬ ‫‪-4‬‬ ‫‪-5‬‬ ‫‪ -‬ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪:‬‬‫‪(m - 1) x2 + 4x - m - 4 = 0‬‬‫‪m x2 - x2 + 4x - m - 4 = 0‬‬‫‪m (x2 - 1) = x2 - 4x + 4‬‬‫‪m (x2 - 1) = (x - 2)2‬‬

‫‪m‬‬ ‫‪(x 2‬‬ ‫)‪- 1‬‬ ‫‪x2‬‬ ‫‪-1‬‬ ‫ﻭﻤﻨﻪ ) ‪. m = f ( x‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m ∈ -∞ ; -3‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ‪] [.‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m = -3‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ‪.‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m ∈ -3 ; 0‬ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل‪] [.‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m = 0‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ‪.‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m ∈ 0 ; 1‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪] [.‬‬ ‫‪ x‬ﻟﻤﺎ ‪ : m = 1‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻭﺤﻴﺩ ‪.‬‬ ‫‪ x‬ﻟﻤﺎ ∞‪ : m ∈ 1 ; +‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ‪] [.‬‬ ‫‪ (2‬ﻜﺘﺎﺒﺔ ‪ g x‬ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ) (‬ ‫‪‬‬ ‫‪g‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪(x - 2)2‬‬ ‫‪;x‬‬ ‫∈‬ ‫[‪[0 ; 1‬‬ ‫∪‬ ‫[∞‪]1 ; +‬‬ ‫‪‬‬ ‫‪x2 - 1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪(-x - 2)2‬‬ ‫‪‬‬ ‫‪g‬‬ ‫(‬ ‫)‪g‬‬ ‫=‬ ‫‪x2 - 1‬‬ ‫‪;x‬‬ ‫∈‬ ‫[‪[-∞ ; -1‬‬ ‫∪‬ ‫[‪]-1 ; 0‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪( )g 0 = -4 : 0‬‬‫‪lim g ( x) = lim‬‬ ‫‪(x - 2)2‬‬ ‫)‪= - 4 = g(0‬‬‫<<‬ ‫‪x2 - 1‬‬‫‪x→0‬‬ ‫‪x→0‬‬‫‪lim g ( x) = lim‬‬ ‫‪(x - 2)2‬‬ ‫)‪= - 4 = g(0‬‬‫>>‬ ‫‪x2 - 1‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻭﻤﻨﻪ ‪ g‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪. 0‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. 0‬‬

‫)‪lim g(h)- g(0‬‬ ‫‪(-h‬‬ ‫‪- 2)2‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪h2‬‬ ‫‪+4h+ 4+ 4h2‬‬ ‫‪-‬‬ ‫‪4‬‬ ‫‪h2‬‬ ‫‪-4‬‬ ‫)‪h (4h2 - 1‬‬ ‫=‬ ‫‪lim‬‬ ‫=‬ ‫‪lim‬‬ ‫<‬ ‫‪h‬‬ ‫<‬ ‫‪h‬‬ ‫<‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪= lim‬‬ ‫‪5h2 - 4h‬‬ ‫‪= lim‬‬ ‫‪5h + 4‬‬ ‫‪= -4‬‬ ‫<‬ ‫)‪h (h2 - 1‬‬ ‫<‬ ‫‪h2 - 1‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻭﻤﻨﻪ ‪ g‬ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻴﺴﺎﺭ ‪0‬‬‫)‪lim g(h)- g(0‬‬ ‫‪(h -‬‬ ‫‪2)2‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪h2‬‬ ‫‪+‬‬ ‫‪4h + 4‬‬ ‫‪+‬‬ ‫‪4h2‬‬ ‫‪-4‬‬ ‫>‬ ‫‪h2‬‬ ‫‪-4‬‬ ‫‪h (4h2‬‬ ‫‪-‬‬ ‫)‪1‬‬ ‫=‬ ‫‪lim‬‬ ‫=‬ ‫‪lim‬‬‫‪hx → 0‬‬ ‫>‬ ‫‪h‬‬ ‫>‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪= lim‬‬ ‫‪5h2 - 4h‬‬ ‫‪= lim‬‬ ‫‪5h + 4‬‬ ‫‪=4‬‬ ‫>‬ ‫)‪h (h2 - 1‬‬ ‫>‬ ‫‪h2 - 1‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫ﻭﻤﻨﻪ ‪ g‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻴﻤﻴﻥ ‪. 0‬‬ ‫ﻟﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪. 0‬‬ ‫‪ -‬ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ‪g ( x) = f ( x ) : [0 , 1[ ∪ ] [1 ; +∞ :‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺸﻔﻌﻴﺔ ﺍﻟﺩﺍﻟﺔ ‪: g‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻤﻥ ‪ Dg‬ﻟﺩﻴﻨﺎ ‪- x ∈ Dg :‬‬ ‫‪( )( ) x - 2 2‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪ g − x = (- x)2 - 1 = g( x) :‬ﻭﻤﻨﻪ ‪ g‬ﺯﻭﺠﻴﺔ ‪.‬‬ ‫‪ -‬ﺍﺴﺘﻨﺘﺎﺝ ‪( ): C′‬‬ ‫ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ∞‪ C′ : 0 ; 1 ∪ 1 ; +‬ﻴﻨﻁﺒﻕ ﻋﻠﻰ )‪ (C‬ﻓﻲ ﺍﻟﻤﺠﺎل[ ] [ [ ) (‬ ‫‪ ℘ : -1 ; 1‬ﻴﻨﺎﻅﺭ )‪ (C‬ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل[ ] ) (‬ ‫‪ -4‬ﺘﻌﻴﻴﻥ ‪: D f‬‬‫‪{ }Df = x ∈ \ : sin2 x - 1 ≠ 0‬‬ ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ sin2 x - 1 = 0 :‬ﺃﻱ )‪(sin x - 1) ( sin x + 1‬‬

sin x = -1 ‫ ﺃﻭ‬sin x = 1 ‫ﻭﻤﻨﻪ‬ k ∈ ... ‫ﻤﻊ‬ x = - π + 2kπ ‫ﺃﻭ‬ x= π + 2kπ : ‫ﻭﻋﻴﻪ‬ 2 2 Dα =\ - π + 2kπ ; - π + 2kπ / k ∈ ]   2   2  : ‫ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ‬α ‫ ﺘﺒﻴﺎﻥ ﺃﻥ‬- ( )f : x → f x : ‫ ﻩ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥ‬α g : x → sinx α( x) = ( fog) ( x) = f ( g ( x)) = f (sin x) : ‫ﺃﻥ‬ α( x) = (sin x - 2 )2 sin2 x - 1 α = fog : ‫ﺇﺫﻥ‬ : α ‫ ﺤﺴﺎﺏ ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬-α′( x) = g′( x) . f ′ g( x)α′( x) = 2 (sin x - 2 ) (2sin x -2) (sin2 x - 1)2α′( x) = 2 cosx (sin x - 2 ) (2sin x -1) (sin2 x - 1)2 0=α+ . 21‫ﺍﻟﺘﻤﺭﻴﻥ‬ : γ ‫ ﻭ‬β ‫ ﻭ‬α ‫ ﺘﻌﻴﻴﻥ‬-1 γ : ‫ ﻭﻋﻠﻴﻪ‬f (0) = 0 : ‫ ﻓﺈﻥ‬O ∈ (Γ) ‫ﺒﻤﺎ ﺃﻥ‬ f (1) = -1 ( ): ‫ ﻓﺈﻥ‬A ∈ Γ ‫ﻭﺒﻤﺎ ﺃﻥ‬ -1 = α + β + γ :‫ﻭﻤﻨﻪ‬

‫‪α + γ = 0‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪α‬‬ ‫‪+‬‬ ‫‪β + γ = -1‬‬‫‪( )f ′ 0‬‬ ‫=‬ ‫‪-‬‬ ‫‪3‬‬ ‫ﻭﻋﻠﻴﻪ‬ ‫‪-‬‬ ‫‪3‬‬ ‫ﻭﻟﺩﻴﻨﺎ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ‪ 0‬ﻴﺴﺎﻭﻱ‬ ‫‪4‬‬ ‫‪4‬‬‫)‪f ′(0‬‬ ‫=‬ ‫‪β‬‬ ‫‪ f ′( x ) = 2‬ﻭﻤﻨﻪ‬ ‫‪β‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪2γ‬‬ ‫‪βx + γ‬‬ ‫ﻭﻋﻠﻴﻪ ‪-6 γ = 4β :‬‬ ‫‪β‬‬ ‫=‬ ‫‪-‬‬ ‫‪3‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪2γ‬‬ ‫‪4‬‬ ‫ﺃﻱ ‪4β + 6 γ = 0 :‬‬ ‫)‪α + γ = 0 . . . (1‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪α + β + γ = -1 . . . (2‬‬ ‫)‪2β + 3 γ = 0 . . . (3‬‬‫ﻤﻥ )‪ γ = -α (1‬ﻭﻋﻠﻴﻪ ‪ γ = α2 :‬ﻤﻊ ‪α < 0‬‬‫ﻤﻥ )‪ β + γ = -α - 1 (2‬ﺃﻱ ‪β + γ + 1= -α‬‬ ‫ﻭﻤﻨﻪ‪ β + γ + 1 2 = α2 :‬ﻷﻥ ‪( )α < 0 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪β + γ + 2 β + γ + 1 = α2 :‬‬ ‫ﻭﻤﻨﻪ ‪β + α2 + 2 β + γ + 1 = α2 :‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪2 β + γ = -β - 1 :‬‬‫ﻭﺒﺎﻟﺘﺭﺒﻴﻊ ‪ 4(β + γ ) = β2 + 2β + 1 :‬ﻤﻊ ‪β < -1‬‬ ‫ﺇﺫﻥ ‪β2 - 2β + 1 = 4γ . . .(4) :‬‬‫ﻤﻥ )‪ 3 γ = -2β (3‬ﻭﻤﻨﻪ ‪(β < 0) 9γ = 4β2 :‬‬

‫ﺇﺫﻥ ‪:‬‬ ‫‪β2‬‬ ‫‪-‬‬ ‫‪2β‬‬ ‫‪+1‬‬ ‫=‬ ‫‪16‬‬ ‫‪β2‬‬ ‫ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪ (4‬ﻨﺠﺩ ‪:‬‬ ‫‪γ‬‬ ‫=‬ ‫‪4‬‬ ‫‪β2‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪9‬‬ ‫‪9‬‬ ‫‪9β2 - 18β + 9 = 162β2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ 7β2 + 18β - 9 = 0 :‬ﻟﺩﻴﻨﺎ ‪∆′ = 144 :‬‬ ‫= ‪β2‬‬ ‫‪-9 - 12‬‬ ‫‪= -3‬‬ ‫= ‪ β1‬؛‬ ‫‪-9 - 12‬‬ ‫‪= -3‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪γ‬‬ ‫=‬ ‫‪4 (-3)2‬‬ ‫‪=4‬‬ ‫ﻭﻋﻠﻴﻪ‪:‬‬ ‫‪) β = -3‬ﻷﻥ ‪(β < - 1‬‬ ‫ﻭﻤﻨﻪ‪:‬‬ ‫‪9‬‬ ‫ﻭ ﻋﻠﻴﻪ‪ α = - 4 = -2 :‬ﺇﺫﻥ ‪. f ( x ) = -2 + -3x + 4 :‬‬ ‫‪ -2‬ﺃ‪ -‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ‪: g‬‬‫‪• g ( x) = -2 + 4 - 3x , x < 1‬‬ ‫}‪ x < 1‬و ‪D1 = {x ∈ \ : 4 - 3x ≥ 0‬‬ ‫‪D1‬‬ ‫=‬ ‫‪‬‬ ‫‪x‬‬ ‫∈‬ ‫\‬ ‫‪:x‬‬ ‫≤‬ ‫‪3‬‬ ‫و‬ ‫‪x < 1‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪‬‬ ‫[‪D1 = ]-∞ ; 1‬‬‫‪• g(x) = x - 3 + x - 1‬‬ ‫}‪ x ≥ 1‬و ‪D2 = {x ∈ \ : x - 1 ≥ 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ D2 = 1 ; +∞ :‬ﻭﻤﻨﻪ ‪[ [Dg = D1 ∪ D2 = \ :‬‬ ‫ﺏ‪ -‬ﺩﺭﺍﺴﺔ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻋﻨﺩ ‪: 1‬‬‫‪g(1) = 1 - 3 + 1 - 1 = -2‬‬‫)‪lim g ( x) = lim x - 3 + x - 1 = -2 = g(1‬‬‫>>‬‫‪x →1‬‬ ‫‪x→1‬‬ ‫ﺇﺫﻥ ‪ g‬ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ 1‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ‬‫‪lim g ( x) = lim - 2 + 4 - 3x = -1‬‬‫<<‬‫‪x →1‬‬ ‫‪x→1‬‬

‫ﻭﻋﻠﻴﻪ ‪ lim g x ≠ g 1 :‬ﻭ ﻋﻠﻴﻪ ‪ g‬ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ 1‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ؛ ﻭ ﻋﻠﻴﻪ ‪( ) ( )g‬‬ ‫<‬ ‫‪x →1‬‬ ‫ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪. 1‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪: 1‬‬‫•‬ ‫‪lim‬‬ ‫‪g(1 + h) - g(1) = lim‬‬ ‫‪1+h-3+‬‬ ‫‪1+h-1 +2‬‬ ‫>‬ ‫>‪h‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪h + h = lim‬‬ ‫‪1‬‬ ‫∞‪+ 1 = +‬‬ ‫>‬ ‫>‪h‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ g‬ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 1‬ﻤﻥ ﺍﻟﻴﻤﻴﻥ‬‫‪• lim‬‬ ‫‪g(1 + h) - g(1) = lim‬‬ ‫‪-2 +‬‬ ‫‪4 - 3 (1 + h) + 2‬‬ ‫<‬ ‫<‪h‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪h→0‬‬ ‫‪= lim‬‬ ‫‪1 - 3h‬‬ ‫∞‪= -‬‬ ‫<‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫ﻭﻤﻨﻪ ‪ f‬ﻻ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 1‬ﻤﻥ ﺍﻟﻴﺴﺎﺭ ‪.‬‬ ‫ﺠـ ‪ -‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪: g‬‬‫‪lim‬‬ ‫= )‪g(x‬‬ ‫‪lim‬‬ ‫‪-2 +‬‬ ‫∞‪4 - 3x  = +‬‬‫∞‪h→−‬‬ ‫∞‪h→−‬‬‫‪lim g( x) = lim x - 3 +‬‬ ‫∞‪x - 1 = +‬‬‫∞‪h→+‬‬ ‫∞‪h→+‬‬ ‫‪g′( x) = 2‬‬ ‫‪-3‬‬ ‫ﻤﻥ ﺃﺠل ‪: x < 1‬‬ ‫‪1 - 3x‬‬ ‫ﺇﺫﻥ ‪ g′ x < 0‬ﻭﻋﻠﻴﻪ ‪ g‬ﻤﺘﻨﺎﻗﺹ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪] ] ( ). -∞ ; 1‬‬ ‫‪g′( x) = 1 + 2‬‬ ‫‪-3‬‬ ‫‪ x‬ﻤﻥ ﺃﺠل ‪: x > 1‬‬ ‫‪x -1‬‬ ‫ﻭﻤﻨﻪ ‪ g′ x > 0‬ﻭﻋﻠﻴﻪ ‪ g‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞‪[ [ ( )1 ; +‬‬

‫‪x‬‬ ‫‪−∞ 1‬‬ ‫∞‪+‬‬‫)‪g′( x‬‬ ‫‪-‬‬ ‫∞‪−∞ +‬‬ ‫‪+‬‬‫∞‪g( x) +‬‬ ‫‪2-‬‬ ‫∞‪+‬‬ ‫‪ -5‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ‪:‬‬ ‫ﻫﻨﺎﻙ ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ‪.‬‬‫‪( )lim‬‬‫‪g‬‬ ‫‪x‬‬ ‫‪= lim‬‬ ‫‪-2 +‬‬ ‫‪4 - 3x‬‬ ‫‪= lim‬‬ ‫‪-2‬‬ ‫‪+‬‬ ‫‪4 - 3x‬‬ ‫‪x‬‬ ‫∞‪x→−‬‬ ‫‪x‬‬ ‫∞‪x→−‬‬ ‫‪x‬‬ ‫‪x‬‬‫∞‪x→−‬‬ ‫‪= lim‬‬ ‫‪-2‬‬ ‫‪+‬‬ ‫‪4 - 3x . 4 - 3x‬‬ ‫∞‪x→−‬‬ ‫‪x‬‬ ‫‪x 4 - 3x‬‬ ‫‪= lim‬‬ ‫‪-2‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪- 3x‬‬ ‫×‬ ‫‪1 =0‬‬ ‫∞‪x→−‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪4 - 3x‬‬ ‫‪1‬‬ ‫ﻭ‪→0‬‬ ‫‪4 - 3x‬‬ ‫‪→ -3‬‬ ‫ﻭ‬ ‫‪−2‬‬ ‫ﻷﻥ ‪→ 0 :‬‬ ‫‪4 - 3x‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫ﺇﺫﻥ )‪ (C‬ﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﻓﻲ ﺍﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞‪−‬‬‫‪( )lim‬‬‫‪g‬‬ ‫‪x‬‬ ‫‪= lim‬‬ ‫‪x -3+‬‬ ‫‪x -1‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬‫∞‪x→+‬‬ ‫‪= lim‬‬ ‫‪x-‬‬ ‫‪3‬‬ ‫‪+‬‬ ‫‪x -1‬‬ ‫‪x -1‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫×‪x‬‬ ‫‪x -1‬‬ ‫‪= lim‬‬ ‫‪x -3‬‬ ‫‪+‬‬ ‫‪x -1‬‬ ‫×‬ ‫‪1 =1‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x -1‬‬ ‫‪1‬‬ ‫→‬ ‫‪0‬‬ ‫ﻭ‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫→‬ ‫‪1‬‬ ‫ﻭ‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫→‬ ‫‪1‬‬ ‫ﻷﻥ ‪:‬‬ ‫‪x-‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬‫‪lim‬‬ ‫)‪g( x‬‬ ‫‪-‬‬ ‫‪x ‬‬ ‫=‬ ‫‪lim‬‬ ‫‪-3 +‬‬ ‫∞‪x - 1 = +‬‬‫∞‪x→+‬‬ ‫∞‪x→+‬‬

‫ﻭﻤﻨﻪ )‪ (C‬ﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ‬ ‫ﻤﻌﺎﺩﻟﺘﻪ‪ y = x :‬ﻋﻨﺩ ∞‪. +‬‬ ‫ﻫـ ‪ -‬ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ )‪ (C‬ﻭ ∆ ‪( ):‬‬ ‫‪ x‬ﻤﻥ ﺃﺠل ‪ g ( x ) = x : x < 1‬ﺇﺫﻥ ‪-2 + 4 - 3x = x :‬‬ ‫‪4 - 3x = (x +2)2‬‬ ‫ﻭﻋﻠﻴﻪ ‪4 - 3x = x + 2 :‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪x ≥ -2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ 4 - 3x = x2 + 4x + 4 :‬ﻭ ‪x ≥ -2‬‬ ‫ﺇﺫﻥ ‪ x2 + 7x = 0 :‬ﻭﻤﻨﻪ ‪ x = 0‬ﺃﻭ ‪x = -7‬‬ ‫ﺇﺫﻥ ‪ x = 0 :‬ﻷﻥ ‪ x ≥ -2‬ﻭ ‪x < 1‬‬ ‫ﻭﻤﻨﻪ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ )‪O (0 ; 0‬‬ ‫‪ x‬ﻤﻥ ﺃﺠل ‪g ( x ) = x : x ≥ 1‬‬ ‫ﺇﺫﻥ ‪ x - 3 + x - 1 = x :‬ﻭﻤﻨﻪ ‪x - 1 = 3 :‬‬ ‫ﺇﺫﻥ ‪ x - 1 = 9 :‬ﻭﻤﻨﻪ ‪x = 10 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ . g(10) = 10 :‬ﺇﺫﻥ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ )‪B (10 ; 10‬‬ ‫ﻭﻤﻨﻪ ‪. (C) ∩ ( D) = {O ; B} :‬‬ ‫ﻭ‪ -‬ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﻤﺎﺴﺎﺕ ‪:‬‬ ‫‪y‬‬ ‫=‬ ‫‪-‬‬ ‫‪3‬‬ ‫‪x‬‬ ‫ﻋﻨﺩ ‪ y = g′(0) . (x - 0) + g(0) : O‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫) ‪g′ ( 0‬‬ ‫=‬ ‫‪-‬‬ ‫‪2‬‬ ‫ﻷﻥ‬ ‫ﻋﻨﺩ ‪y = g′( x1 ) ( x - x1 ) + g( x1 ) : B‬‬‫=‪y‬‬ ‫‪7‬‬ ‫)‪( x - 10‬‬ ‫‪+ 10‬‬ ‫)‪ y = g′(10) ( x - 10) + g(10‬؛‬ ‫‪6‬‬ ‫=‪y‬‬ ‫‪7‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪35‬‬ ‫‪+ 10‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪g′‬‬ ‫)‪(10‬‬ ‫=‬ ‫‪7‬‬ ‫ﻷن‬ ‫‪‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪‬‬

‫‪y‬‬ ‫=‬ ‫‪7‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫ﻱ‪ -‬ﺇﻨﺸﺎﺀ )‪: (C‬‬‫‪y‬‬‫‪14‬‬‫‪13‬‬‫‪12‬‬‫‪11‬‬‫‪10‬‬‫‪9‬‬‫‪8‬‬‫‪7‬‬‫‪6‬‬‫‪5‬‬‫‪4‬‬‫‪3‬‬‫‪2‬‬‫‪1‬‬‫‪-4 -3 -2 -1 0‬‬ ‫‪1 2 3 4 5 6 7 8 9 10 11 12 x‬‬ ‫‪-1‬‬ ‫‪-2‬‬

‫‪ – 3‬ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬ ‫ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ‪.‬‬ ‫‪ - 2‬ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺄﻟﻭﻓﺔ ‪.‬‬ ‫‪ -3‬ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﻗﻴﻤﺔ ‪ γ 0‬ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ ‪ x0‬ﻟﻠﻤﺘﻐﻴﺭ‬ ‫ﺗﺼﻤﻴﻢ اﻟﺪرس‬ ‫ﺃﻨﺸﻁﺔ‬ ‫‪ – 1‬ﺘﻌﺭﻴﻑ‬ ‫‪ – 2‬ﻭﺠﻭﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬ ‫‪ – 3‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل‬‫‪ – 4‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ y0‬ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ ‪ x0‬ﻟﻠﻤﺘﻐﻴﺭ‬ ‫‪ – 5‬ﺠﺩﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﺄﻟﻭﻓﺔ‬ ‫‪ – 6‬ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬ ‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺤـﻠــــــﻭل‬

‫ﺃﻨﺸﻁﺔ‬ ‫‪x2 + 2x‬‬ ‫ﺍﻟﻨﺸﺎﻁ ‪: 1‬‬ ‫ﻜﻤﺎ ﻴﻠﻲ ‪x2 + x + 1 2 :‬‬‫‪f‬‬‫‪( )( )،‬‬‫=‪x‬‬ ‫‪ α‬ﻭ ‪ β‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ‬ ‫‪ f‬ﻭ ‪ g‬ﺩﺍﻟﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ‬ ‫)‪g( x‬‬ ‫=‬ ‫‪αx‬‬ ‫‪+β‬‬ ‫‪1‬‬ ‫‪x2 +‬‬ ‫‪x+‬‬ ‫ﻋﻴﻥ ‪ α‬ﻭ ‪ β‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪: x‬‬ ‫) ‪ g′( x ) = f ( x‬؛ ﻤﺎﺫﺍ ﻨﺴﺘﻨﺘﺞ ؟‬ ‫ﺍﻟﺤل ‪:‬‬ ‫ﺘﻌﻴﻴﻥ ‪ α‬ﻭ ‪: β‬‬ ‫(‪g′‬‬ ‫)‪x‬‬ ‫=‬ ‫‪α‬‬ ‫(‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪− (α x + β‬‬ ‫)‬ ‫(‬ ‫‪2x‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫(‬ ‫‪x2‬‬ ‫‪)+ x + 1 2‬‬ ‫)‬ ‫‪α‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪α‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪α‬‬ ‫‪− 2α x2 − α‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪2β‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪β‬‬ ‫‪x2 + x + 1 2‬‬ ‫(‪( )g′‬‬‫‪x‬‬ ‫=‬ ‫)‪x‬‬ ‫‪−α‬‬ ‫‪x2 −‬‬ ‫‪2β x + α‬‬ ‫‪−‬‬ ‫‪β‬‬ ‫‪x2‬‬ ‫‪+ x+1 2‬‬ ‫(‪( )g′‬‬ ‫=‬ ‫‪ −α = 1‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ) ‪ g′( x ) = f ( x‬ﻓﺈﻥ ‪−2β = 2 :‬‬ ‫‪α − β = 0‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ α = −1 :‬ﻭ ‪β = −1‬‬

‫= )‪g(x‬‬ ‫‪−x −1‬‬ ‫‪:‬‬ ‫ﻤﻨﻪ‬ ‫ﻭ‬ ‫‪x2 + x + 1‬‬ ‫ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪ g :‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫ﺍﻟﻨﺸﺎﻁ ‪: 2‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﺎﻥ ‪ g‬ﻭ ‪ h‬ﺍﻟﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ‬ ‫)‪h( x‬‬ ‫=‬ ‫‪4x2 − 5x + 10‬‬ ‫‪،‬‬ ‫)‪g( x‬‬ ‫=‬ ‫‪2x2‬‬ ‫‪x‬‬ ‫‪5‬‬ ‫‪2x2 − 3x + 5‬‬ ‫‪− 3x +‬‬ ‫ﻋﻴﻥ ﻜل ﻤﻥ ‪ g′‬ﻭ ‪ h′‬؛ ﻤﺎﺫﺍ ﻨﻼﺤﻅ ؟‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫×‪( ( ) )g′( x) = 1‬‬ ‫‪2x2 − 3x + 5 − (4x − 3)× x‬‬ ‫‪2x2 − 3x + 5 2‬‬ ‫)‪x‬‬ ‫‪2x2‬‬ ‫‪− 3x‬‬ ‫‪+‬‬ ‫‪5 − 4x2 +‬‬ ‫‪3x‬‬ ‫‪2x2‬‬ ‫‪−‬‬ ‫‪3x + 5 2‬‬ ‫(‪( )g′‬‬ ‫=‬ ‫‪−2x2 + 5‬‬ ‫‪2x2 − 3x + 5 2‬‬ ‫= )‪( )g′( x‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ h‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ‪:‬‬‫( ‪h′‬‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫)‪( 8 x-5‬‬ ‫(‬ ‫()‪2x2-3x + 5)-(4x-3‬‬ ‫‪4 x 2 -5‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫)‪10‬‬ ‫‪( )2x2-3x + 5 2‬‬ ‫‪16 x3 -24 x2‬‬ ‫‪+‬‬ ‫‪40x-10x2 +‬‬ ‫‪15 x-25-16 x 3‬‬ ‫‪2x2-3x + 5‬‬‫(‪( )h′‬‬‫)‪x‬‬ ‫=‬ ‫‪2‬‬ ‫‪+‬‬

‫‪20x2 − 40x + 12 x2 − 15x + 30‬‬ ‫‪( )2x2-3x + 5 2‬‬ ‫‪−2x2 + 5‬‬‫‪2x2 − 3x + 5 2‬‬‫= )‪( )h′( x‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫ﺍﻻﺴﺘﻨﺘﺎﺝ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪: x‬‬‫)‪g′( x) = h′( x) = f ( x‬‬ ‫‪−2x2 + 5‬‬‫ﺤﻴﺙ ‪2 x2 − 3 x + 5 2 :‬‬‫= )‪( )f ( x‬‬‫ﻭ ﻨﻘﻭل ﺃﻥ ‪ g‬ﻭ ‪ h‬ﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻨﻔﺱ ﺍﻟﺩﺍﻟﺔ ‪. f‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook