Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

‫ﺤﻴﺙ )‪R′ = k.k ، F = S ( R‬‬ ‫‪ -12‬ﺩﺭﺍﺴﺔ ﺍﻟﺘﺤﻭﻴﻼﺕ ﺍﻟﻨﻘﻁﻴﺔ ‪: f‬‬ ‫‪ M → M ′‬ﺤﻴﺙ ‪Z′ = aZ + b‬‬ ‫‪ Z‬ﻭ ‪ Z ′‬ﻫﻤﺎ ﻻﺤﻘﺘﻲ ‪ M‬ﻭ ‪ M ′‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ ‪. a ≠ 0‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪Z′ = Z G+ b : a = 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ ‪ v‬ﺫﻭ ﺍﻟﻼﺤﻘﺔ ‪b‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ f : a ∈ R* − 1‬ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ} {‬ ‫‪b‬‬ ‫‪. 1−a‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ a = 1‬ﻭ ‪ a‬ﻏﻴﺭ ﺤﻘﻴﻘﻲ ‪ f :‬ﺩﻭﺭﺍﻥ ﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ ‪ a‬ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺫﺍﺕ‬ ‫‪b‬‬ ‫ﺍﻟﻼﺤﻘﺔ ‪. 1 − a‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ a = k‬ﻭ ‪ a‬ﻏﻴﺭ ﺤﻘﻴﻘﻲ ‪ f :‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪k‬‬‫‪.‬‬ ‫‪b‬‬ ‫ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪ω‬‬ ‫ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬ ‫‪a‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ‬ ‫‪1−a‬‬

‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬‫ﻀﻊ ﺍﻟﻌﻼﻤﺔ√ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ ‪:‬‬ ‫‪ (1‬ﺇﺫﺍ ﻜﺎﻨ‪JG‬ﺕ‪ MJ′JJ‬ﺼﻭ‪JG‬ﺭﺓ‪ MJJJ‬ﺒﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﻤﺭﻜﺯﻩ ‪ω‬‬ ‫ﻓﺈﻥ ‪. ωM ′ = kωM‬‬ ‫‪ (2‬ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ‪. .‬‬ ‫‪ (3‬ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﺯﺍﻭﻴﺔ ﺘﻘﺎﻴﺴﻬﺎ ‪.‬‬‫‪ (4‬ﺼﻭﺭﺓ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺘﻘﺎﻴﺴﻬﺎ ‪.‬‬‫‪( )JJJG JJJG‬‬ ‫‪AB , AC‬‬ ‫=‬ ‫‪π‬‬ ‫ﻤﺜﻠﺙ ﺒﺤﻴﺙ‬ ‫‪ABC‬‬ ‫‪ (5‬ﺇﺫﺍ ﻜﺎﻥ‬ ‫‪2‬‬ ‫ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﺘﺸﺎﺒﻪ ﻴﺤﻭل ‪ B‬ﺇﻟﻰ ‪. C‬‬‫‪ (6‬ﺍﻟﻌﺒﺎﺭﺓ ‪ Z′ = aZ + b‬ﻫﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ‪.‬‬‫‪ (7‬ﻜل ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ‪ O‬ﻟﻪ ﻋﺒﺎﺭﺓ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫‪ Z′ = aZ‬ﺤﻴﺙ ‪. a ≠ 1 :‬‬‫‪ (8‬ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻟﻴﺱ ﻟﻬﺎ ﺼﻭﺭﺓ ﺒﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ‪.‬‬‫‪ (9‬ﺼﻭﺭﺓ ﺃﻴﺔ ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻫﻲ ﻨﻘﻁﺔ ﺘﺨﺘﻠﻑ ﻋﻨﻬﺎ ‪.‬‬‫ﻭﻨﺴﺒﺘﻪ ‪2‬‬ ‫‪O‬‬ ‫‪Z′‬‬ ‫=‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z‬‬ ‫‪ (10‬ﺍﻟﻌﺒﺎﺭﺓ‬ ‫‪2‬‬ ‫ﻫﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ‬ ‫‪π‬‬ ‫ﻭ ﺯﺍﻭﻴﺘﻪ ‪. 2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬‫ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل ‪ f‬ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺍﻟﻨﻘﻁﺔ ‪ M ′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪ Z ′‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬

‫‪1) Z′ = 2iZ‬‬ ‫‪2) Z′ = (−i + 1) Z + 2‬‬ ‫‪( )3) Z′ = −2 3 − 2 Z‬‬ ‫‪( )4) Z′ = 1 − 3i Z − 3 − i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ‪ S‬ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ M x ; y‬ﺍﻟﻨﻘﻁﺔ ‪( ) ( )M′ x′; y′‬‬ ‫‪ x′ = x + y + 1‬‬ ‫‪‬‬ ‫ﺒﺤﻴﺙ ‪:‬‬ ‫‪‬‬ ‫‪y′‬‬ ‫=‬ ‫‪−‬‬ ‫‪x+‬‬ ‫‪y+1‬‬ ‫‪ -‬ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل ‪. S‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺒﺎﺸﺭ ‪ S‬ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ A‬ﺫﺍﺕ‬ ‫ﺍﻟﻼﺤﻘﺔ ‪. 1 + 2i‬‬‫ﺍﻟﻨﻘﻁﺔ ‪ A′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ −4 + 2i‬ﻭﺒﺎﻟﻨﻘﻁﺔ ‪ B‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ 3 + i‬ﺍﻟﻨﻘﻁﺔ ‪ B′‬ﺫﺍﺕ‬ ‫ﺍﻟﻼﺤﻘﺔ ‪. −2 + 2i 3‬‬ ‫‪ -1‬ﻋﺭﻑ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫‪ -2‬ﻋﻴﻥ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺸﻜل ﺍﻷﺴﻲ ‪.‬‬ ‫‪ -3‬ﺍﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻬﺫﺍ ﺍﻟﺘﺸﺎﺒﻪ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ ‪ S1‬ﻭ ‪ S2‬ﺤﻴﺙ ‪:‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫ﻭﻨﺴﺒﺘﻪ ‪ 2‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪O‬‬ ‫ﻫﻭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ‬ ‫‪S1‬‬ ‫‪3‬‬ ‫‪2π‬‬ ‫‪1‬‬‫‪.‬‬ ‫‪3‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪2‬‬ ‫ﻭﻨﺴﺒﺘﻪ‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪2i‬‬ ‫ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪A‬‬ ‫ﻫﻭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬ ‫‪S2‬‬ ‫‪ -1‬ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻟﻤﺭﻜﺏ ﻟﻜل ﻤﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ ‪.‬‬ ‫‪ -2‬ﻋﻴﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻤﺭﻜﺏ ‪ S2oS1‬ﻤﻊ ﺇﻋﻁﺎﺀ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫‪ -1‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪2Z 2 − (1 + 5i ) Z + 2( i − 1) = 0‬‬

‫‪،‬‬ ‫‪Z2‬‬ ‫=‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪،‬‬ ‫‪Z1‬‬ ‫=‬ ‫ﺫﺍﺕ ﺍﻟﻠﻭﺍﺤﻕ ‪2i‬‬ ‫‪ -2‬ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪C ، B ، A‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫= ‪ Z3‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪2‬‬ ‫‪i‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2Z2‬‬ ‫‪ 2008‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪2007‬‬ ‫‪‬‬ ‫‪2Z3‬‬ ‫‪1961‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪−‬‬ ‫‪Z1‬‬ ‫‪+‬‬ ‫=‬ ‫‪1‬‬ ‫ﺃﻥ‬ ‫ﺒﻴﻥ‬ ‫‪-‬‬ ‫‪ -‬ﻋﻴﻥ ﺍﻟﺘﺸﺎﺒﻪ ‪ S‬ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ O‬ﻭﻴﺤﻭل ‪ B‬ﺇﻟﻰ ‪. A‬‬ ‫‪ -‬ﻋﻴﻥ ﺍﻟﺩﻭﺭﺍﻥ ‪ r‬ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ O‬ﻭﻴﺤﻭل ‪ B‬ﺇﻟﻰ ‪. C‬‬ ‫* ﻋﻴﻥ ‪ Sor‬ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫‪ -‬ﻋﻴﻥ ‪ SoS‬ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬ ‫ﻨﻌﺘﺒﺭ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ‪ P Z‬ﺤﻴﺙ ‪( ):‬‬ ‫‪P ( Z ) = Z 3 + (3 − 2i ) Z 2 + (1 − 5i) Z − 2i − 2‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ‪ . P −1 + i‬ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟) (‬ ‫‪ (2‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪( ). P Z = 0‬‬ ‫‪ (3‬ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ C ، B ، A‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪Z3 ، Z2 ، Z1‬‬ ‫ﺤﻴﺙ ‪. Z3 = i ، Z2 = −2 ، Z1 = − 1 + i‬‬‫‪ -‬ﻟﻴﻜﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺒﺎﺸﺭ ‪ S‬ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ A‬ﺍﻟﻨﻘﻁﺔ ‪ B‬ﻭﺒﺎﻟﻨﻘﻁﺔ ‪ C‬ﺍﻟﻨﻘﻁﺔ ‪، A‬‬ ‫ﺍﻜﺘﺏ ﻋﺒﺎﺭﺘﻪ ﺍﻟﻤﺭﻜﺒﺔ ﺜﻡ ﻋﻴﻥ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫‪ -‬ﺍﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ‪.‬‬ ‫‪ -‬ﻋﻴﻥ ‪ SoS‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺘﻪ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫ﻨﻌﺘﺒﺭ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪:‬‬ ‫‪Z 3 − (4 − 3i ) Z 2 + (9 − 2i ) Z − 2 + 11i = 0‬‬ ‫‪ -1‬ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤﻼ ﺘﺨﻴﻠﻴﺎ ﺼﺭﻓﺎ ‪. Z0‬‬

‫‪ -‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺤﻠﻴﻥ ﺍﻵﺨﺭﻴﻥ ‪ Z2 ، Z1‬ﺤﻴﺙ ‪. Z1 < Z2‬‬‫‪ -2‬ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ D ، C ، B ، A‬ﺼﻭﺭ ﺍﻷﻋﺩﺍﺩ ‪Z − 4i ، Z2 ، Z1 ، Z0‬‬ ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‪ - .‬ﺃﺜﺒﺕ ﺃﻨﻪ ﻴﻭﺠﺩ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ‪ S‬ﻟﻠﻤﺴﺘﻭﻯ ﻓﻲ ﻨﻔﺴﻪ‬‫ﺒﺤﻴﺙ ‪ S C = D ، S A = B :‬ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪( ) ( ).‬‬ ‫‪ -3‬ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻬﺫﺍ ﺍﻟﺘﺸﺎﺒﻪ ‪.‬‬‫‪ -4‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﺍﺤﺴﺏ ‪ . SoS‬ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺘﻪ ؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ ‪ B ، A‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺘﻴﻥ ‪ 3i ،1 − i‬ﻭﻟﻴﻜﻥ ‪ H‬ﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪A‬‬‫‪−π‬‬ ‫ﺍﻟﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ B‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫ﻭ‪r‬‬ ‫‪3‬‬ ‫ﻭﻨﺴﺒﺘﻪ‬ ‫‪3‬‬ ‫‪2‬‬‫‪ (1‬ﺍﻜﺘﺏ ﻋﺒﺎﺭﺓ ﻜل ﻤﻥ ‪ H‬ﻭ ‪ r‬ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪ (2‬ﺍﺤﺴﺏ ‪ roH‬ﻭﺍﺩﺭﺱ ﻁﺒﻴﻌﺘﻪ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬‫‪ f‬ﺘﺤﻭﻴل ﻨﻘﻁﻲ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ M x; y‬ﺍﻟﻨﻘﻁﺔ ‪( ) ( )M ′ x′; y′‬‬ ‫‪ x′ = 3x − y‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪‬‬ ‫‪y′‬‬ ‫=‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪3y‬‬ ‫ﻨﻔﺭﺽ ‪ Z′ ، Z‬ﻻﺤﻘﺘﻲ ‪ M‬ﻭ ‪. M ′‬‬‫‪ (1‬ﺍﻜﺘﺏ ‪ Z ′‬ﺒﺩﻻﻟﺔ ‪ . Z‬ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل ‪. f‬‬ ‫‪ -‬ﺍﻜﺘﺏ ﻋﺒﺎﺭﺘﻪ ﺍﻷﺴﻴﺔ ‪.‬‬ ‫‪ (2‬ﻨﻔﺭﺽ ﺍﻟﻨﻘﻁﺔ ‪ M0 1 ; 0‬ﻭﻨﻀﻊ ‪( ) ( )Mi+1 = f Mi‬‬ ‫ﻤﻥ ﺃﺠل ‪. i ∈{0 ; 1 ; ... ;n} :‬‬ ‫‪ -‬ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﻜل ﻤﻥ ‪ Z2 ، Z1 ، Z0‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻋﺒﺎﺭﺓ ‪. Zn‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬‫‪ ABC‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪ A‬ﺤﻴﺙ ‪ AB = 2 :‬ﻭ ‪. BC = 4‬‬ ‫ﻟﺘﻜﻥ ‪ H‬ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ ‪ A‬ﻋﻠﻰ ‪( ). BC‬‬

‫ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ‪ HBA‬ﻫﻭ ﺼﻭﺭﺓ ﺍﻟﻤﺜﻠﺙ ‪ HAC‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻴﻁﻠﺏ ﺇﻋﻁﺎﺀ ﻋﻨﺎﺼﺭﻩ‬ ‫ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬‫∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﻁﻰ ‪ A .‬ﻨﻘﻁﺔ ﺜﺎﺒﺘﺔ ﻻ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ∆ ‪( ) ( ).‬‬ ‫‪ M‬ﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ∆ ‪( ).‬‬‫‪( )‬‬ ‫‪MA = MB‬‬‫‪‬‬‫‪‬‬‫‪JJJG JJJG‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪k∈Z‬‬ ‫‪ B‬ﻨﻘﻁﺔ ﺤﻴﺙ ‪:‬‬‫‪MA ; MB‬‬ ‫‪2‬‬ ‫‪ -‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪. B‬‬

‫ﺍﻟﺤـﻠــــــﻭل‬ ‫‪. √ (3‬‬ ‫‪. √ (2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫‪× (1‬‬ ‫× ‪(6 . √ (5‬‬ ‫‪(4‬‬ ‫×‪.‬‬‫×‪.‬‬ ‫× ‪(9‬‬ ‫√ ‪(8 .‬‬ ‫‪(7‬‬ ‫‪(12 × (11 × (10‬‬ ‫√‪..‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫ﺩﺭﺍﺴﺔ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل ‪: f‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪Z′ = 2iZ :‬‬ ‫‪π‬‬ ‫ﻭﻋﻤﺩﺓ ‪ a‬ﻫﻲ‬ ‫‪a‬‬ ‫‪ Z′ = aZ‬ﺤﻴﺙ ‪= 2‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫‪2‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫‪ O‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ 2‬ﻭﻤﺭﻜﺯﻩ‬ ‫‪f‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪2‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪Z′ = ( −i + 1) Z + 2 :‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪ Z′ = aZ + b‬ﺤﻴﺙ ‪ a = 2‬ﻭﻋﻤﺩﺓ ‪ a‬ﻫﻲ ‪θ‬‬

‫‪−π‬‬ ‫‪‬‬ ‫‪cos‬‬ ‫‪θ‬‬ ‫=‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪θ‬‬ ‫=‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪, k ∈ Z/‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪sin‬‬ ‫‪−2‬‬ ‫‪θ‬‬ ‫=‬ ‫‪2‬‬‫ﺤﻴﺙ ‪:‬‬ ‫‪Z0‬‬ ‫ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪M0‬‬ ‫ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬ ‫‪−π‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪ ‪2‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪b‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪1+ i −1‬‬ ‫=‬ ‫‪i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪1−a‬‬ ‫‪.‬‬ ‫‪Z0‬‬ ‫=‬ ‫)‪2(−i‬‬ ‫=‬ ‫‪− 2i‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪i(−i‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪( )Z′ = −2 3 − 2 Z :‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪ Z′ = aZ‬ﺤﻴﺙ ‪ a = 4‬ﻭﻋﻤﺩﺓ ‪ a‬ﻫﻲ ‪θ‬‬ ‫]∈‪k‬‬ ‫ﻤﻊ‬ ‫‪θ‬‬ ‫=‬ ‫‪7π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫= ‪cosθ‬‬ ‫‪−3‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪−1‬‬ ‫‪‬‬ ‫= ‪sin θ‬‬ ‫‪2‬‬ ‫‪.‬‬ ‫‪O‬‬ ‫ﻭﻤﺭﻜﺯﻩ‬ ‫‪7π‬‬ ‫ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ 4‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪f‬‬ ‫ﺇﺫﻥ‬ ‫‪6‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪( )Z′ = 1 − 3i Z − 3 − i :‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪ Z′ = aZ + b‬ﺤﻴﺙ ‪ a = 2‬ﻭﻋﻤﺩﺓ ‪ a‬ﻫﻲ ‪θ‬‬

‫‪−π‬‬ ‫‪‬‬ ‫= ‪cos θ‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪2‬‬ ‫]∈‪k‬‬ ‫ﻤﻊ‬ ‫=‪θ‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪‬‬ ‫ﺤﻴﺙ‬ ‫‪sin θ‬‬ ‫‪−3‬‬ ‫=‬ ‫‪2‬‬‫‪Z0‬‬ ‫‪ M0‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬ ‫‪−π‬‬ ‫ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ 2‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪f‬‬ ‫ﻭﻋﻠﻴﻪ‬ ‫‪3‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪− 3−i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪b‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪1+ i −1‬‬ ‫‪1−a‬‬ ‫‪Z0 = − 1 + i‬‬ ‫‪3‬‬ ‫‪ Z0 = −‬ﻭﻋﻠﻴﻪ‬ ‫‪3‬‬ ‫‪−‬‬ ‫‪i‬‬ ‫×‬ ‫‪−i‬‬ ‫=‬ ‫‪−‬‬ ‫‪1+‬‬ ‫‪i‬‬ ‫ﺃﻱ ‪3 :‬‬ ‫‪i‬‬ ‫‪−i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫‪ -‬ﻨﻔﺭﺽ ‪ Z‬ﻻﺤﻘﺔ ‪ M‬ﻭ ‪ Z′‬ﻻﺤﻘﺔ ‪. M ′‬‬ ‫ﺇﺫﻥ ‪Z′ = x′ + iy′ = ( x + y + 1) + i ( − x + y + 1) :‬‬ ‫‪= x + y + 1 − ix + iy + i‬‬ ‫‪= x + iy + y − ix + i‬‬ ‫‪= Z + y − ix + i‬‬ ‫‪= Z − i2 y − ix + i‬‬ ‫‪= Z − i ( x + iy) + i‬‬ ‫‪Z′ = Z − iZ + i = (1 − i ) Z + i‬‬ ‫‪Z′ = (1− i) Z + i‬‬ ‫ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل ‪ Z′ = aZ + b‬ﺤﻴﺙ ‪ a = 2‬ﻭﻋﻤﺩﺓ ‪ a‬ﻫﻲ ‪θ‬‬

‫‪−π‬‬ ‫‪‬‬ ‫‪cos‬‬ ‫‪θ‬‬ ‫=‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪2‬‬ ‫]∈‪k‬‬ ‫ﻤﻊ‬ ‫‪θ‬‬ ‫=‬ ‫‪+ 2kπ‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪sin θ‬‬ ‫‪−2‬‬ ‫=‬ ‫‪2‬‬ ‫ﺫﺍﺕ‬ ‫‪M0‬‬ ‫ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬ ‫‪−π‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ‬ ‫ﺇﺫﻥ ‪ S‬ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪2‬‬ ‫‪4‬‬ ‫‪i‬‬ ‫‪b‬‬‫‪.‬‬ ‫‪Z0‬‬ ‫‪=1‬‬ ‫ﺇﺫﻥ‬ ‫‪Z0‬‬ ‫=‬ ‫‪1−1+ i‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪Z0‬‬ ‫=‬ ‫‪1−a‬‬ ‫ﺤﻴﺙ‬ ‫‪Z0‬‬ ‫ﺍﻟﻼﺤﻘﺔ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪ -1‬ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ‪ S‬ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ‪Z′ = aZ + b :‬‬‫ﻭﺒﻤﺎ ﺃﻥ ‪ S = ( A) = A′‬ﻓﺈﻥ ‪−4 + 2i = a (1 + 2i ) + b . . . (1) :‬‬‫ﻭﺒﻤﺎ ﺃﻥ ‪ S = ( B) = B′‬ﻓﺈﻥ ‪( )−2 + 2i 3 = a 3 + i + b . . . (2) :‬‬ ‫ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ ‪:‬‬‫‪( ) ( )(−4 + 2i ) − −2 + 2i 3 = a(1 + 2i ) − a 3 + i‬‬ ‫‪( ) ( )−2 + 2i 1 − 3 = a 1 − 3 + i‬‬ ‫‪( )−2 + 2i 1 −‬‬ ‫‪3 ×1−‬‬ ‫‪3−i‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫=‪a‬‬ ‫)‪3‬‬ ‫‪1− 3 +i 1− 3 −i‬‬ ‫‪( ) (2‬‬ ‫‪−2 + 2 3 + 2i + 2i 1 − 3 + 2 1 −‬‬‫‪( )a = 1 − 3 2 + 1‬‬‫‪a = −2 + 2 3 + 2i + 2i − 4i 3 + 6i + 2 − 2 3‬‬ ‫‪1−2 3 +3+1‬‬

‫‪( )a = 10i − 4i 3 = 2i 5 − 2 3 = 2i‬‬ ‫‪5−2 3‬‬ ‫‪5−2 3‬‬ ‫ﻭﻤﻨﻪ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﻓﺈﻥ ‪:‬‬ ‫‪−4 + 2i = 2i (1 + 2i ) + b‬‬ ‫‪−4 + 2i = 2i − 4‬‬ ‫ﻭﻤﻨﻪ ‪ b = 0 :‬ﺇﺫﻥ ‪Z′ = 2i Z :‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪,‬‬ ‫‪k‬‬ ‫∈‬ ‫‪Z‬‬ ‫ﻭﻋﻤﺩﺓ ‪ 2i‬ﻫﻲ ‪:‬‬ ‫‪2i‬‬ ‫‪=2‬‬ ‫‪2‬‬ ‫‪.‬‬ ‫‪O‬‬ ‫ﻭﻤﺭﻜﺯﻩ‬ ‫‪π‬‬ ‫ﺇﺫﻥ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ ‪ 2‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪2‬‬ ‫‪ -2‬ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺒﺎﻟﺸﻜل ﺍﻷﺴﻲ ‪:‬‬ ‫‪Z′‬‬ ‫=‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z‬‬ ‫‪Z′ = 2i Z‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪ -3‬ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺘﺸﺎﺒﻪ ‪:‬‬ ‫ﺒﻭﻀﻊ ‪ Z = x + iy‬ﻭ ‪Z′ = x′ + iy′‬‬ ‫ﻨﺠﺩ )‪x′ + iy′ = 2i ( x + iy‬‬ ‫‪ x′ = − 2 y‬‬ ‫ﻭﻋﻠﻴﻪ ‪x′ + iy′ = 2i x − 2 y :‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪y′ = 2x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ﺍﻟﺸﻜل ﺍﻟﻤﺭﻜﺏ ﻟﻜل ﻤﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ ‪:‬‬‫‪a‬‬ ‫=‬ ‫‪2‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪+i‬‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪S1 : Z′ = aZ :‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪ a = 1 + i 3 :‬ﺇﺫﻥ ‪( )Z′ = 1 + i 3 Z :‬‬

a= 1  cos 2π + i sin 2π  : ‫ﺤﻴﺙ‬ S2 : Z′ = aZ + b : ‫ﻟﺩﻴﻨﺎ‬ 2  3 3  a= −1 + i 3 a = 1  −1 + i 3 4 4 : ‫ﻭﻤﻨﻪ‬ 2  2  : ‫ﻭﻋﻠﻴﻪ‬  2  ( )Z0 b Z0 1 = 1−a : ‫ﺤﻴﺙ‬ ‫ﻭﻻﺤﻘﺘﻪ‬ a = 4 −1 + i 3 ‫ﺃﻱ ﺃﻥ‬ b = (1 − a)(1 − 2i) : ‫ﺃﻱ‬ b = 1 − 2i : ‫ﺇﺫﻥ‬ 1−a b =  1+ 1 − i 3  (1 − 2i ) : ‫ﺇﺫﻥ‬  4 4    ( )b  5 3 (1 − 2i ) 1 (1 − 2i) =  4 − i 4 = 4 5−i 3   ( )b 1 = 4 5 − 10i − i 3−2 3 ( )b = 1 5  4 − 2 3−i 10 + 3 ( ) ( )Z′ =1 1 5  4 −1 + i 3 Z + 4 − 2 3−i 10 + 3  : ‫ﻭﻤﻨﻪ‬ : S2oS1 ‫ ﺘﻌﻴﻴﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻤﺭﻜﺏ‬-2 M ( Z ) S1→ M1 ( Z1 ) S2→ M′( Z′) ( )Z1 = 1 + i 3( ) ( )Z′ =1 3 Z1 1 5 2 3  4 −1 + i + 4 − 3−i 10 + 

‫=‬‫‪( )( ) ( )Z′‬‬‫‪1‬‬ ‫‪1‬‬ ‫‪5 −‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪−1+ i‬‬ ‫‪3‬‬ ‫‪1+ i‬‬ ‫‪3‬‬ ‫‪Z‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪3−i‬‬ ‫‪10 +‬‬ ‫‪3‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬‫‪( )Z′‬‬ ‫=‬ ‫‪1‬‬ ‫(‬ ‫)‪−4‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪Z‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪−‬‬ ‫‪2‬‬ ‫‪3−i‬‬ ‫‪10 +‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪( )Z′‬‬ ‫=‬ ‫‪Z‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪−‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪−‬‬ ‫‪2‬‬ ‫‪3−i‬‬ ‫‪10 +‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪ S2oS1‬ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ ‪ -1‬ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪Z0‬‬ ‫‪.‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪b‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪1−a‬‬ ‫‪145−2‬‬‫‪( ) ( )Z0 = 185−2‬‬ ‫‪‬‬ ‫‪3−i‬‬ ‫‪10+‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪3 −i 10+‬‬ ‫‪3‬‬ ‫ﺃﻱ ‪:‬‬ ‫= ‪Z0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫‪ -1‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪2Z 2 − (1 + 5i ) Z + 2( i − 1) = 0 :‬‬ ‫)‪∆ = (1 + 5i)2 − 4(2i − 2)(2‬‬ ‫‪∆ = 1 + 10i − 25 − 16i + 16‬‬ ‫‪∆ = − 8 − 6i‬‬ ‫ﻨﺤﺴﺏ ﺠﺫﺭﻴﻪ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ‪:‬‬ ‫ﻨﻔﺭﺽ ‪ δ = α + iβ‬ﺠﺫﺭﺍ ﺘﺭﺒﻴﻌﻴﺎ ﻟـ ∆ ﺃﻱ ‪δ2 = ∆ :‬‬ ‫‪α2 − β2 = − 8‬‬ ‫ﻭﻤﻨﻪ ‪ ( α + iβ)2 = − 8 − 6i :‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2αβ = − 6‬‬ ‫ﻭﻜﺫﻟﻙ ﻟﺩﻴﻨﺎ ‪ δ2 = ∆ :‬ﻫﻲ ‪α2 + β2 = 10 :‬‬ ‫)‪α2 − β2 = − 8 . . . (1‬‬ ‫‪‬‬ ‫‪2α2‬‬ ‫=‬ ‫‪2‬‬ ‫‪:‬‬ ‫ﺒﺠﻤﻊ )‪ (1‬ﻭ )‪ (3‬ﻨﺠﺩ‬ ‫‪‬‬ ‫)‪αβ = − 3 . . . (2‬‬ ‫ﺇﺫﻥ‬ ‫‪‬‬ ‫‪α2‬‬ ‫‪+ β2‬‬ ‫=‬ ‫‪10‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪(3‬‬ ‫‪‬‬

α = − 1 ‫ ﺃﻭ‬α = 1 : ‫ ﻭﻋﻠﻴﻪ‬α2 = 1 : ‫ﺇﺫﻥ‬ : (2) ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ‬β = 3 : ‫ ﻓﺈﻥ‬α = − 1 ‫ ﻭﻟﻤﺎ‬β = − 3 :‫ ﻓﺈﻥ‬α = 1 ‫ﻟﻤﺎ‬ : ‫ﺇﺫﻥ ∆ ﻟﻪ ﺠﺫﺭﻴﻥ ﺘﺭﺒﻴﻌﻴﻴﻥ ﻫﻤﺎ‬ δ2 = − 1 + 3i ‫ ﻭ‬δ1 = 1 − 3i : ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ‬Z ′′ = 1+ 5i + 1− 3i ‫ﻭ‬ Z′ = 1+ 5i −1+ 3i 4 4 Z ′′ = 1 + 1 i ‫ ﻭ‬Z′ = 2i 2 2 : ‫ ﻨﺒﻴﻥ ﺃﻥ‬-  2Z2 2008 − 1  Z1 2007 +  2Z3 1961 = 1  2  2  2   2  : ‫ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ‬Z3 ‫ ﻭ‬Z2 ‫ ﻭ‬Z1 ‫ﻨﻜﺘﺏ‬ Z1 = 2 ، arg ( Z1 ) = π 2 Z1 = 2 cos π + i sin π  2 2   1 Z1 2007 =  cos π + i sin π  2007 : ‫ﻭﻤﻨﻪ‬  2   2 2  = cos 2007π + i sin 2007π 2 2 = cos  2008π − π  + i sin  2008π − π  2 2   2 2 

= cos  1004π − π  + i sin  1004π − π  2   2  = cos  −π  + i sin  −π   2   2  = −i Z2 = 2 ، arg( Z2 ) = π 2 4 Z2 = 2 cos π + i sin π 2 4 4   2Z2 2008 =  cos π + i sin π 2008  2   4 4  2Z2  2008 = cos 2008π + i sin 2008π 2  4 4 = cos 502π + i sin 502π =1 Z3 = 2 ، arg( Z3 ) = π 2 2 Z3 = 2 cos π + i sin π  2 2 2  2Z3 1961 =  cos π +i sin π 1961 2   2 2  = cos 1961π + i sin 1961π 2 2

= cos  980π + π  + i sin  980π + π   2   2  = cos π + i sin π = i 2 2 2Z2 2008 − 1 Z1 2007 +  2 Z3 1961 = − i + 1+ i = 1 : ‫ﻭﻤﻨﻪ‬ 2  2  2   2  : S ‫ ﺘﻌﻴﻴﻥ ﺍﻟﺘﺸﺎﺒﻪ‬- Z′ = aZ : ‫ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل‬S ‫ﻋﺒﺎﺭﺓ‬ 2i = a  1 + 1 i  : ‫ﻓﺈﻥ‬ S ( B) = A : ‫ﻭﺒﻤﺎ ﺃﻥ‬  2 2  a = 4(1− i) : ‫ﺃﻱ‬ a = 2i : ‫ﺇﺫﻥ‬ (1+ i)(1− i) 1 + 1 i 2 2 Z′ = 2(1 + i ) Z : ‫ ﻭﺒﺎﻟﺘﺎﻟﻲ‬a = 2 + 2i : ‫ﺇﺫﻥ‬ : r ‫ ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺭﺍﻥ‬- Z ′ = a Z : ‫ﻋﺒﺎﺭﺓ ﺍﻟﺩﻭﺭﺍﻥ ﻤﻥ ﺍﻟﺸﻜل‬ 2 i = a  1 + 1 i  : ‫ﻓﺈﻥ‬ r(B) = C : ‫ﻭﺒﻤﺎ ﺃﻥ‬ 2  2 2  2 2 1+ i a = : ‫ﺃﻱ‬ a = 1 2 : ‫ﻭﻤﻨﻪ‬ 2 (1 + i ) a= 2 (1 − i ) : ‫ﺃﻱ‬ a = 2(1− i) : ‫ﻭﻤﻨﻪ‬ 2 (1+ i)(1− i)

Z′ = 2 (1 − i ) Z : ‫ﻭﻤﻨﻪ‬ 2 : Sor ‫ ﺘﻌﻴﻴﻥ‬- M ( Z ) r→ M1 ( Z1 ) → M′( Z′) Z1 = 2 (1 − i ) Z ، Z′ = (2 + 2i) Z1 2Z′ = 2 2Z : ‫ﺇﺫﻥ‬ Z′ = 2(1+ i)(1− i) 2 Z : ‫ﻭﻤﻨﻪ‬ 2 . O ‫ ﻭﻤﺭﻜﺯﻩ‬2 2 ‫ ﻫﻭ ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ‬Sor ‫ﺇﺫﻥ‬ : SoS ‫ ﺘﻌﻴﻴﻥ‬- M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′) Z1′ = ( 2 + 2i ) Z ، Z′ = ( 2 + 2i ) Z1Z′ = 4i Z : ‫ ﺇﺫﻥ‬Z′ = ( 2 + 2i )( 2 + 2i ) Z : ‫ﻭﻤﻨﻪ‬ . π ‫ ﻭﺯﺍﻭﻴﺘﻪ‬4 ‫ ﻭﻨﺴﺒﺘﻪ‬O ‫ﻫﻭ ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ‬ SoS ‫ﻭﻋﻠﻴﻪ‬ 2 . 7‫ﺍﻟﺘﻤﺭﻴﻥ‬ : p( −1 + i ) ‫( ﺤﺴﺎﺏ‬1p(−1+ i) = (−1+ i)3 +(3−2i)(−1+ i)2 +(1−5i)(−1+ i) − 2i − 2= (2i + 2) + (−6i − 4) + 4 + 6i − 2i − 2 = 0 ( ). p Z ‫ ﺠﺫﺭ ﻟـ‬−1 + i : ‫ﺇﺫﻥ‬ ( ): p Z = 0 ‫( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬2p( Z ) = ( Z + 1 − i )(aZ 2 + bZ + c)= aZ 3 + bZ2 + cZ + aZ2 + bZ + c − iaZ2 − ibZ − ic

‫‪p( Z ) = aZ 3 + (b + a − ia) Z 2 + (c + b − ib) Z − ic + c‬‬‫‪ a=1‬‬ ‫‪ a=1‬‬‫‪b = 2 − i‬‬ ‫‪b + a − ia = 3 − 2i‬‬‫‪c = − 2i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪c‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫‪−‬‬ ‫‪ib‬‬ ‫=‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪5i‬‬ ‫‪−ic + c = − 2i − 2‬‬ ‫ﺇﺫﻥ ‪( )p( Z ) = ( Z + 1 − i ) Z 2 + ( 2 − i ) Z − 2i :‬‬‫‪ p( Z ) = 0‬ﺘﻜﺎﻓﺊ ‪ Z + 1 − i = 0‬ﺃﻱ ‪Z 2 + ( 2 − i ) Z − 2i = 0‬‬ ‫‪ Z + 1 − i = 0‬ﻤﻌﻨﺎﻩ ‪Z = − 1 + i‬‬ ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪( )Z 2 + 2 − i Z − 2i = 0 :‬‬ ‫) ‪ ∆ = ( 2 − i )2 − 4( −2i‬ﻭﻤﻨﻪ ‪∆ = 3 + 4i :‬‬ ‫ﻟﻨﺤﺴﺏ ﺠﺫﺭﻱ ∆ ‪ :‬ﻨﻔﺭﺽ ‪ δ = x + iy‬ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ‪δ‬‬ ‫)‪ x2 − y2 = 3 . . . (1‬‬ ‫‪‬‬‫‪2x2‬‬ ‫=‬ ‫‪8‬‬ ‫ﻨﺠﺩ‬ ‫)‪(2‬‬ ‫ﻭ‬ ‫)‪(1‬‬ ‫‪ ‬ﺒﺠﻤﻊ‬ ‫)‪xy = 2 . . . (2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫=‬ ‫‪5‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪(3‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪ x2 = 4 :‬ﻭﻋﻠﻴﻪ ‪ x = 2 :‬ﺃﻭ ‪x = − 2‬‬ ‫ﻟﻤﺎ ‪ y = 1 : x = 2‬ﻭﻟﻤﺎ ‪y = − 1 : x = − 2‬‬ ‫ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ ﺘﺭﺒﻴﻌﻴﺎﻥ ﻫﻤﺎ ‪δ2 = − 2 − i ، δ1 = 2 + i :‬‬‫= ‪Z′′‬‬ ‫‪−2 + i − 2 − i‬‬ ‫‪،‬‬ ‫‪Z′‬‬ ‫=‬ ‫‪−2 + i + 2 + i‬‬ ‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪Z′′ = − 2 ، Z′ = i‬‬ ‫}‪S = {−2 , i , − 1 + i‬‬ ‫‪ (3‬ﻜﺘﺎﺒﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺭﻜﺒﺔ ﻟﻠﺘﺸﺎﺒﻪ ‪Z′ = aZ + b : S‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪ S ( A) = B :‬ﻭﻤﻨﻪ ‪−2 = a ( −1 + i ) + b :‬‬

‫ﻭﻟﺩﻴﻨﺎ ‪ S (C ) = A :‬ﻭﻤﻨﻪ ‪−1 + i = a ( i ) + b :‬‬ ‫ﺇﺫﻥ ‪−2 − ( −1 + i ) = a ( −1 + i ) + b − ai − b :‬‬ ‫‪a‬‬ ‫=‬ ‫‪−1 − i‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫ﻭﻋﻠﻴﻪ ‪−1 − i = a ( −1) :‬‬ ‫‪−1‬‬ ‫ﺃﻱ ﺃﻥ ‪ a = 1 + i :‬ﻭﻤﻨﻪ ‪−1 + i = (1 + i ) i + b :‬‬ ‫ﺇﺫﻥ ‪ b = − 1 + i − i + 1 :‬ﻭﻋﻠﻴﻪ ‪b = 0 :‬‬ ‫ﺇﺫﻥ ‪Z′ = (1 + i ) Z :‬‬ ‫ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻤﻥ ﺍﻟﺸﻜل ‪ Z′ = aZ‬ﺤﻴﺙ ‪a = 2 :‬‬ ‫=‪θ‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫= ‪cosθ‬‬ ‫‪2‬‬ ‫ﻭﻋﻤﺩﺓ ‪ θ‬ﺤﻴﺙ ‪:‬‬ ‫‪4‬‬ ‫‪ ‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫= ‪sin θ‬‬ ‫‪2‬‬ ‫‪π‬‬ ‫ﺇﺫﻥ ﻤﺭﻜﺯ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ ‪ O‬ﻭﻨﺴﺒﺘﻪ ‪2‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ ‪. 4‬‬ ‫‪ -‬ﻋﺒﺎﺭﺓ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ‪:‬‬ ‫= ‪Z′‬‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z‬‬ ‫‪4‬‬ ‫‪ -‬ﺤﺴﺎﺏ ‪: SoS‬‬ ‫)‪M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′‬‬ ‫= ‪Z1‬‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z‬‬ ‫= ‪Z′‬‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z1‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪،‬‬‫‪O‬‬ ‫‪Z‬‬ ‫=‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫= ‪Z′‬‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫×‬ ‫‪2‬‬ ‫‪e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫ﻫﻭ ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪π‬‬ ‫ﻭﻨﺴﺒﺘﻪ ‪ 2‬ﻭﺯﺍﻭﻴﺘﻪ ﻫﻲ ‪. 2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬

: Z0 ‫ ﺇﺜﺒﺎﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤل ﺘﺨﻴﻠﻲ ﺼﺭﻑ‬-1 : ‫ ﻓﻨﺠﺩ‬Z0 = iy ‫ﻨﻔﺭﺽ‬( i y)3 − (4 − 3i )( iy)2 + ( y − 2i ) iy − 2 + 11i = 0 −iy3 + 4 y2 − 3iy2 + 9iy + 2 y − 2 + 11i = 0 ( )4 y2 + 2 y − 2 + i − y3 − 3 y2 + 9 y + 11 = 0  4 y2 + 2 y − 2 = 0 . . . (1) − y3 − 3 y2 + 9 y + 11 = 0 . . . (2) : ‫ﻭﻤﻨﻪ‬y2 = − 1 : ‫ﺃﻱ‬ y1 = 1 : ‫∆ ﻭﻤﻨﻪ‬′ = 1 + 8 = y : 1 ‫ﻨﺤل‬ 2 . (2) ‫ ﻴﺤﻘﻕ‬y = − 1 : ‫( ﻨﺠﺩ‬2) ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ‬ Z0 = − i : ‫ﻭﻤﻨﻪ‬( )( )Z + i aZ 2 + bZ + c = 0 : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﺼﺒﺢ‬aZ 3 + bZ 2 + cZ + i aZ 2 + i bZ + ic = 0aZ 3 + (b + ia) Z 2 + (c + ib) Z + ic = 0 a=1  a=1b = − 4 + 2i b + ia = − 4 + 3i c = 11 + 2i : ‫ﻭﻋﻠﻴﻪ‬  : ‫ﺇﺫﻥ‬  c + ib = 9 − 2i  ic = − 2 + 11i( Z + i )  Z 2 + ( −4 + 2i ) Z + 11 + 2i  : ‫ﻭﻤﻨﻪ‬Z 2 + ( −4 + 2i ) Z + 11 + 2i = 0 ‫ ﺃﻭ‬Z = − i ‫ﺇﻤﺎ‬ Z 2 + 2( −2 + i ) Z + 11 + 2i = 0 ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬∆′ = − 8 − 6i : ‫∆ ﻭﻤﻨﻪ‬′ = ( −2 + i )2 − 11 − 2i

‫ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ‪. ∆′‬‬ ‫ﻨﻔﺭﺽ ‪ δ = x + iy‬ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ‪ ∆′‬ﺃﻱ ‪δ2 = ∆′‬‬ ‫‪x2 − y2 = − 8‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪xy = − 3‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫=‬ ‫‪10‬‬ ‫‪‬‬ ‫ﻨﺤل ﺍﻟﺠﻤﻠﺔ ﻓﻨﺠﺩ ‪δ2 = − 1 + 3i ، δ1 = 1 − 3i :‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪Z2 = 2 − i + 1 − 3i ، Z1 = 2 − i − 1 + 3i‬‬ ‫ﺇﺫﻥ ‪Z0 = − i ، Z2 = 3 − 4i ، Z1 = 1 + 2i :‬‬ ‫‪ -2‬ﺇﺜﺒﺎﺕ ﻭﺠﻭﺩ ﺍﻟﺘﺸﺎﺒﻪ ‪Z′ = aZ + b :‬‬ ‫ﻟﺩﻴﻨﺎ ‪ S ( A) = B :‬ﻭﻤﻨﻪ ‪1 + 2i = a ( −i ) + b :‬‬ ‫‪ S (C ) = D‬ﻭﻤﻨﻪ ‪−5 − 4i = a ( 3 − 4i ) + b :‬‬ ‫ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ‪6 + 6i = a ( −3 + 3i ) :‬‬‫‪a‬‬ ‫=‬ ‫×‪2‬‬ ‫‪−2i‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪a‬‬ ‫=‬ ‫)‪6(1+ i‬‬ ‫×‬ ‫‪−1‬‬ ‫‪−‬‬ ‫‪i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫)‪3(−1 + i‬‬ ‫‪−1‬‬ ‫‪−‬‬ ‫‪i‬‬ ‫ﻭﻋﻠﻴﻪ ‪ a = − 2i :‬ﺇﺫﻥ ‪1 + 2i = − 2i ( −i ) + b :‬‬ ‫ﻭﻤﻨﻪ ‪ 1 + 2i = − 2 + b :‬ﻭﻋﻠﻴﻪ ‪b = 3 + 2i :‬‬ ‫ﺇﺫﻥ ‪Z′ = − 2iZ + 3 + 2i :‬‬ ‫ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ ‪ −2i :‬ﺃﻱ ‪. 2‬‬ ‫‪( )−π‬‬ ‫‪−2i‬‬ ‫ﺯﺍﻭﻴﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ ﻋﻤﺩﺓ‬ ‫ﺃﻱ ‪. 2‬‬ ‫‪b‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪1−a‬‬ ‫ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪M0‬‬ ‫ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬

Z0 = 7 − 4i : ‫ﻭﻤﻨﻪ‬ Z0 = 3 + 2i × 1 − 2i : ‫ﺃﻱ‬ 5 1 + 2i 1 − 2i Z′ = 2e − i π Z + 3 + 2i : ‫ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻠﺘﺸﺎﺒﻪ‬-3 2 : SoS ‫ ﺤﺴﺎﺏ‬-4 M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′) Z1 = 2e − i π Z + 3+ 2i ; Z′ = 2e − i π Z1 + 3 + 2i 2 2 Z′ = 2e − i π  2e − i π Z + 3 + 2i  + 3 + 2i 2  2   4e Z− i π + π  e− i π ( )Z′ 2 2  2 2 2i = + 3 + 2i + 3+ Z′ = 4e−iπZ + (6 + 4i )( −i ) + 3 + 2i Z′ = 4e−iπ Z − 6i + 4 + 3 + 2i Z′ = 4e−iπ Z + 7 − 4i: ‫ ﺤﻴﺙ‬Z0 ‫ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬M0 ‫ ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ‬−π ‫ ﻭﺯﺍﻭﻴﺘﻪ‬4 ‫ ﻫﻭ ﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪ‬SoS . Z0 = b = 7 − 4i 1−a 5 . 9‫ﺍﻟﺘﻤﺭﻴﻥ‬ Z′ = 3 Z + b : H ‫ ﻋﺒﺎﺭﺓ‬-1 2 ( )H A = A : ‫ ﻓﺈﻥ‬A ‫ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺭﻜﺯ ﻫﻭ‬: ‫ﺃﻱ ﺃﻥ‬ b = 1 − i − 3 + 3 i : ‫ﻭﻋﻠﻴﻪ‬ 1− i = 3 (1 − i ) + b : ‫ﻭﻤﻨﻪ‬ 2 2 2 3 1 1 1 1 Z′ = 2 Z − 2 + 2 i : ‫ﺇﺫﻥ‬ b = − 2 + 2 i

Z′ = aZ + b : r ‫ ﻋﺒﺎﺭﺓ‬-a = 1 − 3 i : ‫ﺃﻱ ﺃﻥ‬ a = cos −π  + i sin −π  : ‫ﺤﻴﺙ‬ 2 2 3  3 b = 3i − 3ia : ‫ ﺃﻱ ﺃﻥ‬3i = 3ia + b : ‫ ﻭﻤﻨﻪ‬r ( B) = B : ‫ﻭﻟﺩﻴﻨﺎ‬ b = 3i  1 − 1 + 3 i  : ‫ﺃﻱ‬ b = 3i (1 − a ) : ‫ﻭﻋﻠﻴﻪ‬  2 2    b = 3 i − 33 : ‫ﻭﻤﻨﻪ‬ b = 3i  1 + 3 i  : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ 2 2  2 2    Z′ =  1 − 3 i  Z + 3 i − 3 3 : ‫ﻭﻋﻠﻴﻪ‬  2 2  2 2   : roH ‫ ﺤﺴﺎﺏ‬-2 M ( Z ) H→ M1 ( Z1 ) r→ M′( Z′)Z1 = 3 Z − 1 1 i ، Z′ =  1 − 3 i  Z1 + 3 i − 3 3 2 2+ 2  2 2  2 2  Z′ =  1 − 3 i  3 Z − 1 + 1 i  + 3 i − 3 3 : ‫ﻭﻤﻨﻪ‬  2 2   2 2 2  2 2  Z′ = 3 1 − 3 i  Z +  1 − 3 i  − 1 + 1 i  + 3 i − 33 2 2 2   2 2  2 2  2 2  ( )Z′=3 1− 3 Z − 1 + 1 i + 3 + 3 + 3 i − 3 3 4 4 4 4 4 2 2 ( )Z′ = 3 1− 3 Z − 1 − 3 + 7 i 4 4 4

‫ﻭﻤﻨﻪ ‪ roH‬ﻫﻭ ﺘﺸﺎﺒﻪ ‪( ).‬‬ ‫‪3‬‬ ‫‪1−‬‬ ‫‪3‬‬ ‫=‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪2‬‬‫= ‪(Z′ = x′ + iy′‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬ ‫‪ -1‬ﻜﺘﺎﺒﺔ ‪ Z ′‬ﺒﺩﻻﻟﺔ ‪: Z‬‬ ‫‪) ( )3x − y + i x + 3 y‬‬ ‫‪= x 3 − y + ix + i 3 y‬‬ ‫‪Z′ = 3 ( x + iy) + i2 y + ix‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪Z′ = 3Z + i ( x + iy‬‬ ‫‪Z′ = 3Z + iZ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪( )Z′ = 3 + i Z‬‬ ‫ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل ‪Z′ = aZ :‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫ﻫﻲ‬ ‫‪a‬‬ ‫ﻋﻤﺩﺓ‬ ‫‪،‬‬ ‫‪a =2‬‬ ‫‪6‬‬ ‫‪.‬‬ ‫‪O‬‬ ‫ﻭﻤﺭﻜﺯﻩ‬ ‫‪π‬‬ ‫ﻭﻤﻨﻪ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ ‪ 2‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫‪6‬‬ ‫‪Z′‬‬ ‫=‬ ‫‪2e‬‬ ‫‪i‬‬ ‫‪π‬‬ ‫‪Z‬‬ ‫‪6‬‬ ‫ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﺴﻴﺔ ﻟﻠﺘﺸﺎﺒﻪ ﻫﻲ ‪:‬‬ ‫‪Z0 = 1 (2‬‬‫= ‪(Z1‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ M1 = f M0 :‬ﻓﺈﻥ ‪) ( )3 + i Z0 :‬‬ ‫ﻭﻤﻨﻪ ‪Z1 = 3 + i :‬‬‫ﻭﺒﻤﺎ ﺃﻥ ‪ M2 = f M1 :‬ﻓﺈﻥ ‪( ) ( )Z2 = 3 + i Z1 :‬‬ ‫‪( )2‬‬ ‫ﻭﻤﻨﻪ ‪Z2 = 3 + i :‬‬

‫ﻭﺒﻤﺎ ﺃﻥ ‪ M3 = f M2 :‬ﻓﺈﻥ ‪( ) ( )Z3 = 3 + i Z2 :‬‬ ‫‪( )3‬‬‫ﻭﻤﻨﻪ ‪Z3 = 3 + i :‬‬ ‫‪( )n‬‬‫ﻭﻨﻼﺤﻅ ﺃﻥ ‪Zn = 3 + i :‬‬‫‪( ) ( )n‬‬‫ﻟﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺫﻟﻙ ‪p n : Zn = 3 + 1 :‬‬ ‫‪( )0‬‬‫* ﻤﻥ ﺃﺠل ‪Z0 = 3 + 1 = 1 : n = 0 :‬‬ ‫ﻭﻤﻨﻪ ‪ p 0‬ﺼﺤﻴﺤﺔ ‪( ).‬‬‫* ﻨﻔﺭﺽ ﺼﺤﺔ ‪ p n‬ﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ ‪( ) ( ). p n + 1‬‬ ‫‪n‬‬ ‫‪3 +1‬‬‫= ‪( )p(n) : Zn‬‬‫‪( )p( n + 1) : Zn+1 = 3 + 1 n+1‬‬ ‫ﻟﺩﻴﻨﺎ ‪( )Mn+1 = f Mn :‬‬‫‪( )Zn+1 = 3 + i Zn‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﻭﻤﻨﻪ ‪3 + i n :‬‬‫‪( )( )Zn+1 = 3 + i‬‬ ‫‪3 + i n+1‬‬‫= ‪( )Zn+1‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﻭﻤﻨﻪ ‪ p n + 1‬ﺼﺤﻴﺤﺔ ‪( ).‬‬ ‫‪n‬‬‫ﺇﺫﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻓﺈﻥ ‪3 + i :‬‬‫= ‪( ). Zn‬‬




Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook