ﺤﻴﺙ )R′ = k.k ، F = S ( R -12ﺩﺭﺍﺴﺔ ﺍﻟﺘﺤﻭﻴﻼﺕ ﺍﻟﻨﻘﻁﻴﺔ : f M → M ′ﺤﻴﺙ Z′ = aZ + b Zﻭ Z ′ﻫﻤﺎ ﻻﺤﻘﺘﻲ Mﻭ M ′ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . aﻭ bﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ . a ≠ 0 * ﺇﺫﺍ ﻜﺎﻥ Z′ = Z G+ b : a = 1 ﻭﻋﻠﻴﻪ fﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ vﺫﻭ ﺍﻟﻼﺤﻘﺔ b* ﺇﺫﺍ ﻜﺎﻥ f : a ∈ R* − 1ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ kﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ωﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ} { b . 1−a* ﺇﺫﺍ ﻜﺎﻥ a = 1ﻭ aﻏﻴﺭ ﺤﻘﻴﻘﻲ f :ﺩﻭﺭﺍﻥ ﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ aﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ωﺫﺍﺕ b ﺍﻟﻼﺤﻘﺔ . 1 − a* ﺇﺫﺍ ﻜﺎﻥ a = kﻭ aﻏﻴﺭ ﺤﻘﻴﻘﻲ f :ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ k. b ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ω ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ a ﻭﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ 1−a
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1ﻀﻊ ﺍﻟﻌﻼﻤﺔ√ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ : (1ﺇﺫﺍ ﻜﺎﻨJGﺕ MJ′JJﺼﻭJGﺭﺓ MJJJﺒﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪ kﻭﻤﺭﻜﺯﻩ ω ﻓﺈﻥ . ωM ′ = kωM (2ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ . . (3ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﺯﺍﻭﻴﺔ ﺘﻘﺎﻴﺴﻬﺎ . (4ﺼﻭﺭﺓ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺒﺘﺸﺎﺒﻪ ﻫﻲ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺘﻘﺎﻴﺴﻬﺎ .( )JJJG JJJG AB , AC = π ﻤﺜﻠﺙ ﺒﺤﻴﺙ ABC (5ﺇﺫﺍ ﻜﺎﻥ 2 ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﺘﺸﺎﺒﻪ ﻴﺤﻭل Bﺇﻟﻰ . C (6ﺍﻟﻌﺒﺎﺭﺓ Z′ = aZ + bﻫﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ . (7ﻜل ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﻟﻪ ﻋﺒﺎﺭﺓ ﻤﻥ ﺍﻟﺸﻜل : Z′ = aZﺤﻴﺙ . a ≠ 1 : (8ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻟﻴﺱ ﻟﻬﺎ ﺼﻭﺭﺓ ﺒﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ . (9ﺼﻭﺭﺓ ﺃﻴﺔ ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻫﻲ ﻨﻘﻁﺔ ﺘﺨﺘﻠﻑ ﻋﻨﻬﺎ .ﻭﻨﺴﺒﺘﻪ 2 O Z′ = e i π Z (10ﺍﻟﻌﺒﺎﺭﺓ 2 ﻫﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ π ﻭ ﺯﺍﻭﻴﺘﻪ . 2 ﺍﻟﺘﻤﺭﻴﻥ. 2ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل fﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺍﻟﻨﻘﻁﺔ M ′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z ′ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ :
1) Z′ = 2iZ 2) Z′ = (−i + 1) Z + 2 ( )3) Z′ = −2 3 − 2 Z ( )4) Z′ = 1 − 3i Z − 3 − i ﺍﻟﺘﻤﺭﻴﻥ. 3 ﻨﻌﺘﺒﺭ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ Sﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ M x ; yﺍﻟﻨﻘﻁﺔ ( ) ( )M′ x′; y′ x′ = x + y + 1 ﺒﺤﻴﺙ : y′ = − x+ y+1 -ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل . S ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻨﻌﺘﺒﺭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺒﺎﺸﺭ Sﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . 1 + 2iﺍﻟﻨﻘﻁﺔ A′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ −4 + 2iﻭﺒﺎﻟﻨﻘﻁﺔ Bﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 3 + iﺍﻟﻨﻘﻁﺔ B′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . −2 + 2i 3 -1ﻋﺭﻑ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . -2ﻋﻴﻥ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺸﻜل ﺍﻷﺴﻲ . -3ﺍﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻬﺫﺍ ﺍﻟﺘﺸﺎﺒﻪ . ﺍﻟﺘﻤﺭﻴﻥ. 5 ﻨﻌﺘﺒﺭ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ S1ﻭ S2ﺤﻴﺙ : . π ﻭﻨﺴﺒﺘﻪ 2ﻭﺯﺍﻭﻴﺘﻪ O ﻫﻭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ S1 3 2π 1. 3 ﻭﺯﺍﻭﻴﺘﻪ 2 ﻭﻨﺴﺒﺘﻪ 1 − 2i ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ A ﻫﻭ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ S2 -1ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻟﻤﺭﻜﺏ ﻟﻜل ﻤﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ . -2ﻋﻴﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻤﺭﻜﺏ S2oS1ﻤﻊ ﺇﻋﻁﺎﺀ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . ﺍﻟﺘﻤﺭﻴﻥ. 6 -1ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ 2Z 2 − (1 + 5i ) Z + 2( i − 1) = 0
، Z2 = 1 + 1 i ، Z1 = ﺫﺍﺕ ﺍﻟﻠﻭﺍﺤﻕ 2i -2ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ C ، B ، A 2 2 = Z3ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . 2 i 2 2Z2 2008 1 1 2007 2Z3 1961 2 2 2 3 . − Z1 + = 1 ﺃﻥ ﺒﻴﻥ - -ﻋﻴﻥ ﺍﻟﺘﺸﺎﺒﻪ Sﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ Oﻭﻴﺤﻭل Bﺇﻟﻰ . A -ﻋﻴﻥ ﺍﻟﺩﻭﺭﺍﻥ rﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ Oﻭﻴﺤﻭل Bﺇﻟﻰ . C * ﻋﻴﻥ Sorﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . -ﻋﻴﻥ SoSﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . ﺍﻟﺘﻤﺭﻴﻥ. 7 ﻨﻌﺘﺒﺭ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ P Zﺤﻴﺙ ( ): P ( Z ) = Z 3 + (3 − 2i ) Z 2 + (1 − 5i) Z − 2i − 2 (1ﺍﺤﺴﺏ . P −1 + iﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟) ( (2ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ( ). P Z = 0 (3ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ C ، B ، Aﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ Z3 ، Z2 ، Z1 ﺤﻴﺙ . Z3 = i ، Z2 = −2 ، Z1 = − 1 + i -ﻟﻴﻜﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺒﺎﺸﺭ Sﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ Aﺍﻟﻨﻘﻁﺔ Bﻭﺒﺎﻟﻨﻘﻁﺔ Cﺍﻟﻨﻘﻁﺔ ، A ﺍﻜﺘﺏ ﻋﺒﺎﺭﺘﻪ ﺍﻟﻤﺭﻜﺒﺔ ﺜﻡ ﻋﻴﻥ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . -ﺍﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ . -ﻋﻴﻥ SoSﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺘﻪ . ﺍﻟﺘﻤﺭﻴﻥ. 8 ﻨﻌﺘﺒﺭ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ : Z 3 − (4 − 3i ) Z 2 + (9 − 2i ) Z − 2 + 11i = 0 -1ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤﻼ ﺘﺨﻴﻠﻴﺎ ﺼﺭﻓﺎ . Z0
-ﺍﺴﺘﻨﺘﺞ ﺍﻟﺤﻠﻴﻥ ﺍﻵﺨﺭﻴﻥ Z2 ، Z1ﺤﻴﺙ . Z1 < Z2 -2ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ D ، C ، B ، Aﺼﻭﺭ ﺍﻷﻋﺩﺍﺩ Z − 4i ، Z2 ، Z1 ، Z0 ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ - .ﺃﺜﺒﺕ ﺃﻨﻪ ﻴﻭﺠﺩ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ Sﻟﻠﻤﺴﺘﻭﻯ ﻓﻲ ﻨﻔﺴﻪﺒﺤﻴﺙ S C = D ، S A = B :ﻤﻌﻴﻨﺎ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ( ) ( ). -3ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻬﺫﺍ ﺍﻟﺘﺸﺎﺒﻪ . -4ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﺍﺤﺴﺏ . SoSﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺘﻪ ؟ ﺍﻟﺘﻤﺭﻴﻥ. 9ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ B ، Aﺫﺍﺕ ﺍﻟﻼﺤﻘﺘﻴﻥ 3i ،1 − iﻭﻟﻴﻜﻥ Hﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ A−π ﺍﻟﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ Bﻭﺯﺍﻭﻴﺘﻪ ﻭr 3 ﻭﻨﺴﺒﺘﻪ 3 2 (1ﺍﻜﺘﺏ ﻋﺒﺎﺭﺓ ﻜل ﻤﻥ Hﻭ rﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ . (2ﺍﺤﺴﺏ roHﻭﺍﺩﺭﺱ ﻁﺒﻴﻌﺘﻪ . ﺍﻟﺘﻤﺭﻴﻥ. 10 fﺘﺤﻭﻴل ﻨﻘﻁﻲ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ M x; yﺍﻟﻨﻘﻁﺔ ( ) ( )M ′ x′; y′ x′ = 3x − y ﺤﻴﺙ : y′ = x + 3y ﻨﻔﺭﺽ Z′ ، Zﻻﺤﻘﺘﻲ Mﻭ . M ′ (1ﺍﻜﺘﺏ Z ′ﺒﺩﻻﻟﺔ . Zﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل . f -ﺍﻜﺘﺏ ﻋﺒﺎﺭﺘﻪ ﺍﻷﺴﻴﺔ . (2ﻨﻔﺭﺽ ﺍﻟﻨﻘﻁﺔ M0 1 ; 0ﻭﻨﻀﻊ ( ) ( )Mi+1 = f Mi ﻤﻥ ﺃﺠل . i ∈{0 ; 1 ; ... ;n} : -ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﻜل ﻤﻥ Z2 ، Z1 ، Z0ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻋﺒﺎﺭﺓ . Zn ﺍﻟﺘﻤﺭﻴﻥ. 11 ABCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Aﺤﻴﺙ AB = 2 :ﻭ . BC = 4 ﻟﺘﻜﻥ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Aﻋﻠﻰ ( ). BC
ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ HBAﻫﻭ ﺼﻭﺭﺓ ﺍﻟﻤﺜﻠﺙ HACﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻴﻁﻠﺏ ﺇﻋﻁﺎﺀ ﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . ﺍﻟﺘﻤﺭﻴﻥ. 12∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﻁﻰ A .ﻨﻘﻁﺔ ﺜﺎﺒﺘﺔ ﻻ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ∆ ( ) ( ). Mﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ∆ ( ).( ) MA = MBJJJG JJJG = π + 2kπ ; k∈Z Bﻨﻘﻁﺔ ﺤﻴﺙ :MA ; MB 2 -ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ . B
ﺍﻟﺤـﻠــــــﻭل . √ (3 . √ (2 ﺍﻟﺘﻤﺭﻴﻥ. 1 × (1 × (6 . √ (5 (4 ×.×. × (9 √ (8 . (7 (12 × (11 × (10 √.. ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺩﺭﺍﺴﺔ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل : f (1ﻟﺩﻴﻨﺎ Z′ = 2iZ : π ﻭﻋﻤﺩﺓ aﻫﻲ a Z′ = aZﺤﻴﺙ = 2 ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل : 2 . π Oﻭﺯﺍﻭﻴﺘﻪ ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ 2ﻭﻤﺭﻜﺯﻩ f ﻭﻤﻨﻪ 2 (2ﻟﺩﻴﻨﺎ Z′ = ( −i + 1) Z + 2 : ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZ + bﺤﻴﺙ a = 2ﻭﻋﻤﺩﺓ aﻫﻲ θ
−π cos θ = 2 4 2 θ = + 2kπ , k ∈ Z/ ﺃﻱ : ﺤﻴﺙ : sin −2 θ = 2ﺤﻴﺙ : Z0 ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ M0 ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ −π ﻭﺯﺍﻭﻴﺘﻪ ﻭﻋﻠﻴﻪ fﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪ 2 4 2 2 b Z0 = 1+ i −1 = i ﻭﻤﻨﻪ : Z0 = 1−a . Z0 = )2(−i = − 2i ﺇﺫﻥ : )i(−i (3ﻟﺩﻴﻨﺎ ( )Z′ = −2 3 − 2 Z : ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZﺤﻴﺙ a = 4ﻭﻋﻤﺩﺓ aﻫﻲ θ ]∈k ﻤﻊ θ = 7π + 2kπ ﻭﻤﻨﻪ : = cosθ −3 ﺤﻴﺙ : 6 2 −1 = sin θ 2 . O ﻭﻤﺭﻜﺯﻩ 7π ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ 4ﻭﺯﺍﻭﻴﺘﻪ f ﺇﺫﻥ 6 (4ﻟﺩﻴﻨﺎ ( )Z′ = 1 − 3i Z − 3 − i : ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZ + bﺤﻴﺙ a = 2ﻭﻋﻤﺩﺓ aﻫﻲ θ
−π = cos θ 1 3 2 ]∈k ﻤﻊ =θ + 2kπ ﻭﻤﻨﻪ ﺤﻴﺙ sin θ −3 = 2Z0 M0ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ −π ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ 2ﻭﺯﺍﻭﻴﺘﻪ f ﻭﻋﻠﻴﻪ 3 Z0 = − 3−i ﻭﻤﻨﻪ : Z0 = b ﺤﻴﺙ : 1+ i −1 1−a Z0 = − 1 + i 3 Z0 = −ﻭﻋﻠﻴﻪ 3 − i × −i = − 1+ i ﺃﻱ 3 : i −i ﺍﻟﺘﻤﺭﻴﻥ. 3 -ﻨﻔﺭﺽ Zﻻﺤﻘﺔ Mﻭ Z′ﻻﺤﻘﺔ . M ′ ﺇﺫﻥ Z′ = x′ + iy′ = ( x + y + 1) + i ( − x + y + 1) : = x + y + 1 − ix + iy + i = x + iy + y − ix + i = Z + y − ix + i = Z − i2 y − ix + i = Z − i ( x + iy) + i Z′ = Z − iZ + i = (1 − i ) Z + i Z′ = (1− i) Z + i ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZ + bﺤﻴﺙ a = 2ﻭﻋﻤﺩﺓ aﻫﻲ θ
−π cos θ = 2 4 2 ]∈k ﻤﻊ θ = + 2kπ ﻭﺒﺎﻟﺘﺎﻟﻲ : ﺤﻴﺙ : sin θ −2 = 2 ﺫﺍﺕ M0 ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ −π ﻭﺯﺍﻭﻴﺘﻪ ﺇﺫﻥ Sﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ 2 4 i b. Z0 =1 ﺇﺫﻥ Z0 = 1−1+ i ﻭﻤﻨﻪ Z0 = 1−a ﺤﻴﺙ Z0 ﺍﻟﻼﺤﻘﺔ ﺍﻟﺘﻤﺭﻴﻥ. 4 -1ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ Sﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ Z′ = aZ + b :ﻭﺒﻤﺎ ﺃﻥ S = ( A) = A′ﻓﺈﻥ −4 + 2i = a (1 + 2i ) + b . . . (1) :ﻭﺒﻤﺎ ﺃﻥ S = ( B) = B′ﻓﺈﻥ ( )−2 + 2i 3 = a 3 + i + b . . . (2) : ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ :( ) ( )(−4 + 2i ) − −2 + 2i 3 = a(1 + 2i ) − a 3 + i ( ) ( )−2 + 2i 1 − 3 = a 1 − 3 + i ( )−2 + 2i 1 − 3 ×1− 3−i ﺇﺫﻥ : =a )3 1− 3 +i 1− 3 −i ( ) (2 −2 + 2 3 + 2i + 2i 1 − 3 + 2 1 −( )a = 1 − 3 2 + 1a = −2 + 2 3 + 2i + 2i − 4i 3 + 6i + 2 − 2 3 1−2 3 +3+1
( )a = 10i − 4i 3 = 2i 5 − 2 3 = 2i 5−2 3 5−2 3 ﻭﻤﻨﻪ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻓﺈﻥ : −4 + 2i = 2i (1 + 2i ) + b −4 + 2i = 2i − 4 ﻭﻤﻨﻪ b = 0 :ﺇﺫﻥ Z′ = 2i Z : π + 2kπ , k ∈ Z ﻭﻋﻤﺩﺓ 2iﻫﻲ : 2i =2 2 . O ﻭﻤﺭﻜﺯﻩ π ﺇﺫﻥ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ 2ﻭﺯﺍﻭﻴﺘﻪ 2 -2ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺒﺎﻟﺸﻜل ﺍﻷﺴﻲ : Z′ = 2 e i π Z Z′ = 2i Z 2 ﻭﻤﻨﻪ -3ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺘﺸﺎﺒﻪ : ﺒﻭﻀﻊ Z = x + iyﻭ Z′ = x′ + iy′ ﻨﺠﺩ )x′ + iy′ = 2i ( x + iy x′ = − 2 y ﻭﻋﻠﻴﻪ x′ + iy′ = 2i x − 2 y : ﻭﻤﻨﻪ : y′ = 2x ﺍﻟﺘﻤﺭﻴﻥ. 5 -1ﺘﻌﻴﻴﻥ ﺍﻟﺸﻜل ﺍﻟﻤﺭﻜﺏ ﻟﻜل ﻤﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ :a = 2 cos π +i sin π ﺤﻴﺙ : ﻟﺩﻴﻨﺎ S1 : Z′ = aZ : 3 3 ﻭﻤﻨﻪ a = 1 + i 3 :ﺇﺫﻥ ( )Z′ = 1 + i 3 Z :
a= 1 cos 2π + i sin 2π : ﺤﻴﺙ S2 : Z′ = aZ + b : ﻟﺩﻴﻨﺎ 2 3 3 a= −1 + i 3 a = 1 −1 + i 3 4 4 : ﻭﻤﻨﻪ 2 2 : ﻭﻋﻠﻴﻪ 2 ( )Z0 b Z0 1 = 1−a : ﺤﻴﺙ ﻭﻻﺤﻘﺘﻪ a = 4 −1 + i 3 ﺃﻱ ﺃﻥ b = (1 − a)(1 − 2i) : ﺃﻱ b = 1 − 2i : ﺇﺫﻥ 1−a b = 1+ 1 − i 3 (1 − 2i ) : ﺇﺫﻥ 4 4 ( )b 5 3 (1 − 2i ) 1 (1 − 2i) = 4 − i 4 = 4 5−i 3 ( )b 1 = 4 5 − 10i − i 3−2 3 ( )b = 1 5 4 − 2 3−i 10 + 3 ( ) ( )Z′ =1 1 5 4 −1 + i 3 Z + 4 − 2 3−i 10 + 3 : ﻭﻤﻨﻪ : S2oS1 ﺘﻌﻴﻴﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻤﺭﻜﺏ-2 M ( Z ) S1→ M1 ( Z1 ) S2→ M′( Z′) ( )Z1 = 1 + i 3( ) ( )Z′ =1 3 Z1 1 5 2 3 4 −1 + i + 4 − 3−i 10 +
=( )( ) ( )Z′1 1 5 − 4 −1+ i 3 1+ i 3 Z + 4 2 3−i 10 + 3 ﻭﻤﻨﻪ :( )Z′ = 1 ( )−4 1 5 4 Z + 4 − 2 3−i 10 + 3 ( )Z′ = Z 1 5 3 − + 4 − 2 3−i 10 + ﻭﻋﻠﻴﻪ S2oS1ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ -1ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ωﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z0 . Z0 = b ﺤﻴﺙ : 1−a 145−2( ) ( )Z0 = 185−2 3−i 10+ 3 2 3 −i 10+ 3 ﺃﻱ : = Z0 ﺍﻟﺘﻤﺭﻴﻥ. 6 -1ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 2Z 2 − (1 + 5i ) Z + 2( i − 1) = 0 : )∆ = (1 + 5i)2 − 4(2i − 2)(2 ∆ = 1 + 10i − 25 − 16i + 16 ∆ = − 8 − 6i ﻨﺤﺴﺏ ﺠﺫﺭﻴﻪ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ : ﻨﻔﺭﺽ δ = α + iβﺠﺫﺭﺍ ﺘﺭﺒﻴﻌﻴﺎ ﻟـ ∆ ﺃﻱ δ2 = ∆ : α2 − β2 = − 8 ﻭﻤﻨﻪ ( α + iβ)2 = − 8 − 6i :ﻭﻋﻠﻴﻪ : 2αβ = − 6 ﻭﻜﺫﻟﻙ ﻟﺩﻴﻨﺎ δ2 = ∆ :ﻫﻲ α2 + β2 = 10 : )α2 − β2 = − 8 . . . (1 2α2 = 2 : ﺒﺠﻤﻊ ) (1ﻭ ) (3ﻨﺠﺩ )αβ = − 3 . . . (2 ﺇﺫﻥ α2 + β2 = 10 . . . )(3
α = − 1 ﺃﻭα = 1 : ﻭﻋﻠﻴﻪα2 = 1 : ﺇﺫﻥ : (2) ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲβ = 3 : ﻓﺈﻥα = − 1 ﻭﻟﻤﺎβ = − 3 : ﻓﺈﻥα = 1 ﻟﻤﺎ : ﺇﺫﻥ ∆ ﻟﻪ ﺠﺫﺭﻴﻥ ﺘﺭﺒﻴﻌﻴﻴﻥ ﻫﻤﺎ δ2 = − 1 + 3i ﻭδ1 = 1 − 3i : ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥZ ′′ = 1+ 5i + 1− 3i ﻭ Z′ = 1+ 5i −1+ 3i 4 4 Z ′′ = 1 + 1 i ﻭZ′ = 2i 2 2 : ﻨﺒﻴﻥ ﺃﻥ- 2Z2 2008 − 1 Z1 2007 + 2Z3 1961 = 1 2 2 2 2 : ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲZ3 ﻭZ2 ﻭZ1 ﻨﻜﺘﺏ Z1 = 2 ، arg ( Z1 ) = π 2 Z1 = 2 cos π + i sin π 2 2 1 Z1 2007 = cos π + i sin π 2007 : ﻭﻤﻨﻪ 2 2 2 = cos 2007π + i sin 2007π 2 2 = cos 2008π − π + i sin 2008π − π 2 2 2 2
= cos 1004π − π + i sin 1004π − π 2 2 = cos −π + i sin −π 2 2 = −i Z2 = 2 ، arg( Z2 ) = π 2 4 Z2 = 2 cos π + i sin π 2 4 4 2Z2 2008 = cos π + i sin π 2008 2 4 4 2Z2 2008 = cos 2008π + i sin 2008π 2 4 4 = cos 502π + i sin 502π =1 Z3 = 2 ، arg( Z3 ) = π 2 2 Z3 = 2 cos π + i sin π 2 2 2 2Z3 1961 = cos π +i sin π 1961 2 2 2 = cos 1961π + i sin 1961π 2 2
= cos 980π + π + i sin 980π + π 2 2 = cos π + i sin π = i 2 2 2Z2 2008 − 1 Z1 2007 + 2 Z3 1961 = − i + 1+ i = 1 : ﻭﻤﻨﻪ 2 2 2 2 : S ﺘﻌﻴﻴﻥ ﺍﻟﺘﺸﺎﺒﻪ- Z′ = aZ : ﻫﻲ ﻤﻥ ﺍﻟﺸﻜلS ﻋﺒﺎﺭﺓ 2i = a 1 + 1 i : ﻓﺈﻥ S ( B) = A : ﻭﺒﻤﺎ ﺃﻥ 2 2 a = 4(1− i) : ﺃﻱ a = 2i : ﺇﺫﻥ (1+ i)(1− i) 1 + 1 i 2 2 Z′ = 2(1 + i ) Z : ﻭﺒﺎﻟﺘﺎﻟﻲa = 2 + 2i : ﺇﺫﻥ : r ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺭﺍﻥ- Z ′ = a Z : ﻋﺒﺎﺭﺓ ﺍﻟﺩﻭﺭﺍﻥ ﻤﻥ ﺍﻟﺸﻜل 2 i = a 1 + 1 i : ﻓﺈﻥ r(B) = C : ﻭﺒﻤﺎ ﺃﻥ 2 2 2 2 2 1+ i a = : ﺃﻱ a = 1 2 : ﻭﻤﻨﻪ 2 (1 + i ) a= 2 (1 − i ) : ﺃﻱ a = 2(1− i) : ﻭﻤﻨﻪ 2 (1+ i)(1− i)
Z′ = 2 (1 − i ) Z : ﻭﻤﻨﻪ 2 : Sor ﺘﻌﻴﻴﻥ- M ( Z ) r→ M1 ( Z1 ) → M′( Z′) Z1 = 2 (1 − i ) Z ، Z′ = (2 + 2i) Z1 2Z′ = 2 2Z : ﺇﺫﻥ Z′ = 2(1+ i)(1− i) 2 Z : ﻭﻤﻨﻪ 2 . O ﻭﻤﺭﻜﺯﻩ2 2 ﻫﻭ ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪSor ﺇﺫﻥ : SoS ﺘﻌﻴﻴﻥ- M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′) Z1′ = ( 2 + 2i ) Z ، Z′ = ( 2 + 2i ) Z1Z′ = 4i Z : ﺇﺫﻥZ′ = ( 2 + 2i )( 2 + 2i ) Z : ﻭﻤﻨﻪ . π ﻭﺯﺍﻭﻴﺘﻪ4 ﻭﻨﺴﺒﺘﻪO ﻫﻭ ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ SoS ﻭﻋﻠﻴﻪ 2 . 7ﺍﻟﺘﻤﺭﻴﻥ : p( −1 + i ) ( ﺤﺴﺎﺏ1p(−1+ i) = (−1+ i)3 +(3−2i)(−1+ i)2 +(1−5i)(−1+ i) − 2i − 2= (2i + 2) + (−6i − 4) + 4 + 6i − 2i − 2 = 0 ( ). p Z ﺠﺫﺭ ﻟـ−1 + i : ﺇﺫﻥ ( ): p Z = 0 ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ2p( Z ) = ( Z + 1 − i )(aZ 2 + bZ + c)= aZ 3 + bZ2 + cZ + aZ2 + bZ + c − iaZ2 − ibZ − ic
p( Z ) = aZ 3 + (b + a − ia) Z 2 + (c + b − ib) Z − ic + c a=1 a=1b = 2 − i b + a − ia = 3 − 2ic = − 2i ﻭﻤﻨﻪ : ﻭﻤﻨﻪ : c + b − ib = 1 − 5i −ic + c = − 2i − 2 ﺇﺫﻥ ( )p( Z ) = ( Z + 1 − i ) Z 2 + ( 2 − i ) Z − 2i : p( Z ) = 0ﺘﻜﺎﻓﺊ Z + 1 − i = 0ﺃﻱ Z 2 + ( 2 − i ) Z − 2i = 0 Z + 1 − i = 0ﻤﻌﻨﺎﻩ Z = − 1 + i ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ( )Z 2 + 2 − i Z − 2i = 0 : ) ∆ = ( 2 − i )2 − 4( −2iﻭﻤﻨﻪ ∆ = 3 + 4i : ﻟﻨﺤﺴﺏ ﺠﺫﺭﻱ ∆ :ﻨﻔﺭﺽ δ = x + iyﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ δ ) x2 − y2 = 3 . . . (1 2x2 = 8 ﻨﺠﺩ )(2 ﻭ )(1 ﺒﺠﻤﻊ )xy = 2 . . . (2 ﻭﻤﻨﻪ : x 2 + y2 = 5 . . . )(3 ﻭﻤﻨﻪ x2 = 4 :ﻭﻋﻠﻴﻪ x = 2 :ﺃﻭ x = − 2 ﻟﻤﺎ y = 1 : x = 2ﻭﻟﻤﺎ y = − 1 : x = − 2 ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ ﺘﺭﺒﻴﻌﻴﺎﻥ ﻫﻤﺎ δ2 = − 2 − i ، δ1 = 2 + i := Z′′ −2 + i − 2 − i ، Z′ = −2 + i + 2 + i ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : 2 2 Z′′ = − 2 ، Z′ = i }S = {−2 , i , − 1 + i (3ﻜﺘﺎﺒﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺭﻜﺒﺔ ﻟﻠﺘﺸﺎﺒﻪ Z′ = aZ + b : S ﻭﻟﺩﻴﻨﺎ S ( A) = B :ﻭﻤﻨﻪ −2 = a ( −1 + i ) + b :
ﻭﻟﺩﻴﻨﺎ S (C ) = A :ﻭﻤﻨﻪ −1 + i = a ( i ) + b : ﺇﺫﻥ −2 − ( −1 + i ) = a ( −1 + i ) + b − ai − b : a = −1 − i ﻭﺒﺎﻟﺘﺎﻟﻲ : ﻭﻋﻠﻴﻪ −1 − i = a ( −1) : −1 ﺃﻱ ﺃﻥ a = 1 + i :ﻭﻤﻨﻪ −1 + i = (1 + i ) i + b : ﺇﺫﻥ b = − 1 + i − i + 1 :ﻭﻋﻠﻴﻪ b = 0 : ﺇﺫﻥ Z′ = (1 + i ) Z : ﻋﺒﺎﺭﺓ ﺍﻟﺘﺸﺎﺒﻪ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZﺤﻴﺙ a = 2 : =θ π + 2kπ = cosθ 2 ﻭﻋﻤﺩﺓ θﺤﻴﺙ : 4 ﻭﻋﻠﻴﻪ : 2 2 = sin θ 2 π ﺇﺫﻥ ﻤﺭﻜﺯ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ Oﻭﻨﺴﺒﺘﻪ 2 ﻭﺯﺍﻭﻴﺘﻪ . 4 -ﻋﺒﺎﺭﺓ ﺍﻟﺸﻜل ﺍﻷﺴﻲ : = Z′ 2 e i π Z 4 -ﺤﺴﺎﺏ : SoS )M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′ = Z1 2 e i π Z = Z′ 2 e i π Z1 4 4 ،O Z = 2 e i π = Z′ 2 e i π × 2 e i π 2 4 4 ﻫﻭ ﺘﺸﺎﺒﻪ ﻤﺭﻜﺯﻩ ﺇﺫﻥ : ﻭﻋﻠﻴﻪ : π ﻭﻨﺴﺒﺘﻪ 2ﻭﺯﺍﻭﻴﺘﻪ ﻫﻲ . 2 ﺍﻟﺘﻤﺭﻴﻥ. 8
: Z0 ﺇﺜﺒﺎﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤل ﺘﺨﻴﻠﻲ ﺼﺭﻑ-1 : ﻓﻨﺠﺩZ0 = iy ﻨﻔﺭﺽ( i y)3 − (4 − 3i )( iy)2 + ( y − 2i ) iy − 2 + 11i = 0 −iy3 + 4 y2 − 3iy2 + 9iy + 2 y − 2 + 11i = 0 ( )4 y2 + 2 y − 2 + i − y3 − 3 y2 + 9 y + 11 = 0 4 y2 + 2 y − 2 = 0 . . . (1) − y3 − 3 y2 + 9 y + 11 = 0 . . . (2) : ﻭﻤﻨﻪy2 = − 1 : ﺃﻱ y1 = 1 : ∆ ﻭﻤﻨﻪ′ = 1 + 8 = y : 1 ﻨﺤل 2 . (2) ﻴﺤﻘﻕy = − 1 : ( ﻨﺠﺩ2) ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ Z0 = − i : ﻭﻤﻨﻪ( )( )Z + i aZ 2 + bZ + c = 0 : ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﺼﺒﺢaZ 3 + bZ 2 + cZ + i aZ 2 + i bZ + ic = 0aZ 3 + (b + ia) Z 2 + (c + ib) Z + ic = 0 a=1 a=1b = − 4 + 2i b + ia = − 4 + 3i c = 11 + 2i : ﻭﻋﻠﻴﻪ : ﺇﺫﻥ c + ib = 9 − 2i ic = − 2 + 11i( Z + i ) Z 2 + ( −4 + 2i ) Z + 11 + 2i : ﻭﻤﻨﻪZ 2 + ( −4 + 2i ) Z + 11 + 2i = 0 ﺃﻭZ = − i ﺇﻤﺎ Z 2 + 2( −2 + i ) Z + 11 + 2i = 0 ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ∆′ = − 8 − 6i : ∆ ﻭﻤﻨﻪ′ = ( −2 + i )2 − 11 − 2i
ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ . ∆′ ﻨﻔﺭﺽ δ = x + iyﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ∆′ﺃﻱ δ2 = ∆′ x2 − y2 = − 8 xy = − 3 ﻭﻤﻨﻪ x2 + y2 = 10 ﻨﺤل ﺍﻟﺠﻤﻠﺔ ﻓﻨﺠﺩ δ2 = − 1 + 3i ، δ1 = 1 − 3i : ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : Z2 = 2 − i + 1 − 3i ، Z1 = 2 − i − 1 + 3i ﺇﺫﻥ Z0 = − i ، Z2 = 3 − 4i ، Z1 = 1 + 2i : -2ﺇﺜﺒﺎﺕ ﻭﺠﻭﺩ ﺍﻟﺘﺸﺎﺒﻪ Z′ = aZ + b : ﻟﺩﻴﻨﺎ S ( A) = B :ﻭﻤﻨﻪ 1 + 2i = a ( −i ) + b : S (C ) = Dﻭﻤﻨﻪ −5 − 4i = a ( 3 − 4i ) + b : ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ 6 + 6i = a ( −3 + 3i ) :a = ×2 −2i ﻭﺒﺎﻟﺘﺎﻟﻲ : a = )6(1+ i × −1 − i ﻭﻤﻨﻪ : 2 )3(−1 + i −1 − i ﻭﻋﻠﻴﻪ a = − 2i :ﺇﺫﻥ 1 + 2i = − 2i ( −i ) + b : ﻭﻤﻨﻪ 1 + 2i = − 2 + b :ﻭﻋﻠﻴﻪ b = 3 + 2i : ﺇﺫﻥ Z′ = − 2iZ + 3 + 2i : ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ −2i :ﺃﻱ . 2 ( )−π −2i ﺯﺍﻭﻴﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ ﻋﻤﺩﺓ ﺃﻱ . 2 b Z0 = 1−a ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ M0 ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ
Z0 = 7 − 4i : ﻭﻤﻨﻪ Z0 = 3 + 2i × 1 − 2i : ﺃﻱ 5 1 + 2i 1 − 2i Z′ = 2e − i π Z + 3 + 2i : ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻠﺘﺸﺎﺒﻪ-3 2 : SoS ﺤﺴﺎﺏ-4 M ( Z ) S→ M1 ( Z1 ) S→ M′( Z′) Z1 = 2e − i π Z + 3+ 2i ; Z′ = 2e − i π Z1 + 3 + 2i 2 2 Z′ = 2e − i π 2e − i π Z + 3 + 2i + 3 + 2i 2 2 4e Z− i π + π e− i π ( )Z′ 2 2 2 2 2i = + 3 + 2i + 3+ Z′ = 4e−iπZ + (6 + 4i )( −i ) + 3 + 2i Z′ = 4e−iπ Z − 6i + 4 + 3 + 2i Z′ = 4e−iπ Z + 7 − 4i: ﺤﻴﺙZ0 ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔM0 ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ−π ﻭﺯﺍﻭﻴﺘﻪ4 ﻫﻭ ﺘﺸﺎﺒﻪ ﻨﺴﺒﺘﻪSoS . Z0 = b = 7 − 4i 1−a 5 . 9ﺍﻟﺘﻤﺭﻴﻥ Z′ = 3 Z + b : H ﻋﺒﺎﺭﺓ-1 2 ( )H A = A : ﻓﺈﻥA ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺭﻜﺯ ﻫﻭ: ﺃﻱ ﺃﻥ b = 1 − i − 3 + 3 i : ﻭﻋﻠﻴﻪ 1− i = 3 (1 − i ) + b : ﻭﻤﻨﻪ 2 2 2 3 1 1 1 1 Z′ = 2 Z − 2 + 2 i : ﺇﺫﻥ b = − 2 + 2 i
Z′ = aZ + b : r ﻋﺒﺎﺭﺓ-a = 1 − 3 i : ﺃﻱ ﺃﻥ a = cos −π + i sin −π : ﺤﻴﺙ 2 2 3 3 b = 3i − 3ia : ﺃﻱ ﺃﻥ3i = 3ia + b : ﻭﻤﻨﻪr ( B) = B : ﻭﻟﺩﻴﻨﺎ b = 3i 1 − 1 + 3 i : ﺃﻱ b = 3i (1 − a ) : ﻭﻋﻠﻴﻪ 2 2 b = 3 i − 33 : ﻭﻤﻨﻪ b = 3i 1 + 3 i : ﻭﺒﺎﻟﺘﺎﻟﻲ 2 2 2 2 Z′ = 1 − 3 i Z + 3 i − 3 3 : ﻭﻋﻠﻴﻪ 2 2 2 2 : roH ﺤﺴﺎﺏ-2 M ( Z ) H→ M1 ( Z1 ) r→ M′( Z′)Z1 = 3 Z − 1 1 i ، Z′ = 1 − 3 i Z1 + 3 i − 3 3 2 2+ 2 2 2 2 2 Z′ = 1 − 3 i 3 Z − 1 + 1 i + 3 i − 3 3 : ﻭﻤﻨﻪ 2 2 2 2 2 2 2 Z′ = 3 1 − 3 i Z + 1 − 3 i − 1 + 1 i + 3 i − 33 2 2 2 2 2 2 2 2 2 ( )Z′=3 1− 3 Z − 1 + 1 i + 3 + 3 + 3 i − 3 3 4 4 4 4 4 2 2 ( )Z′ = 3 1− 3 Z − 1 − 3 + 7 i 4 4 4
ﻭﻤﻨﻪ roHﻫﻭ ﺘﺸﺎﺒﻪ ( ). 3 1− 3 = 3 4 2= (Z′ = x′ + iy′ ﺍﻟﺘﻤﺭﻴﻥ. 10 -1ﻜﺘﺎﺒﺔ Z ′ﺒﺩﻻﻟﺔ : Z ) ( )3x − y + i x + 3 y = x 3 − y + ix + i 3 y Z′ = 3 ( x + iy) + i2 y + ix ﺇﺫﻥ : )Z′ = 3Z + i ( x + iy Z′ = 3Z + iZ ﻭﻤﻨﻪ : ( )Z′ = 3 + i Z ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل Z′ = aZ : . π ﻫﻲ a ﻋﻤﺩﺓ ، a =2 6 . O ﻭﻤﺭﻜﺯﻩ π ﻭﻤﻨﻪ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ﻫﻲ 2ﻭﺯﺍﻭﻴﺘﻪ 6 Z′ = 2e i π Z 6 ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﺴﻴﺔ ﻟﻠﺘﺸﺎﺒﻪ ﻫﻲ : Z0 = 1 (2= (Z1 ﻭﺒﻤﺎ ﺃﻥ M1 = f M0 :ﻓﺈﻥ ) ( )3 + i Z0 : ﻭﻤﻨﻪ Z1 = 3 + i :ﻭﺒﻤﺎ ﺃﻥ M2 = f M1 :ﻓﺈﻥ ( ) ( )Z2 = 3 + i Z1 : ( )2 ﻭﻤﻨﻪ Z2 = 3 + i :
ﻭﺒﻤﺎ ﺃﻥ M3 = f M2 :ﻓﺈﻥ ( ) ( )Z3 = 3 + i Z2 : ( )3ﻭﻤﻨﻪ Z3 = 3 + i : ( )nﻭﻨﻼﺤﻅ ﺃﻥ Zn = 3 + i :( ) ( )nﻟﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺫﻟﻙ p n : Zn = 3 + 1 : ( )0* ﻤﻥ ﺃﺠل Z0 = 3 + 1 = 1 : n = 0 : ﻭﻤﻨﻪ p 0ﺼﺤﻴﺤﺔ ( ).* ﻨﻔﺭﺽ ﺼﺤﺔ p nﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ ( ) ( ). p n + 1 n 3 +1= ( )p(n) : Zn( )p( n + 1) : Zn+1 = 3 + 1 n+1 ﻟﺩﻴﻨﺎ ( )Mn+1 = f Mn :( )Zn+1 = 3 + i Zn ﻭﻋﻠﻴﻪ : ﻭﻤﻨﻪ 3 + i n :( )( )Zn+1 = 3 + i 3 + i n+1= ( )Zn+1 ﺇﺫﻥ : ﻭﻤﻨﻪ p n + 1ﺼﺤﻴﺤﺔ ( ). nﺇﺫﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ 3 + i := ( ). Zn
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427