ﺇﺫﻥ x2 − x − 6 = 0 :ﻭﻤﻨﻪ x2 = 3 ; x1 = −2 ; ∆ = 25 : ﻭ ﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻭﺤﻴﺩ }s = {3 (2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 2 ( logx )2 + 5logx − 3 = 0 :ﺍﻟﻤﻌﺎﺩﻟﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x > 0ﺒﻭﻀﻊ logx = tﻨﺠﺩ 2t 2 + 5t − 3 = 0ﻭﻤﻨﻪ : t2 = −3 ; t1 = 1 ; ∆ = 49 2= lnx 1 ln10 ﻭﻋﻠﻴﻪ : lnx = 1 ﻭﻤﻨﻪ : logx = 1 : t = 1 ﻟﻤﺎ 2 ln10 2 2 2 ﻭﻤﻨﻪ lnx = ln 10 :ﻭﻋﻠﻴﻪ x = 10 : lnx = −3 ﻭﻋﻠﻴﻪ : ﻟﻤﺎ logx = −3 : τ = −3 ln10 ﻭﻋﻠﻴﻪ lnx = ln10 −3 :ﻭ ﻤﻨﻪ x = 10−3 : ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ { }s = 10;10−3 : log x > 3 (3ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﻜﻭﻥ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x > 0ﻭﻋﻠﻴﻪ x > 103 : ﺃﻱ lnx > ln103 : lnx >3 : ﻭﻫﻲ ﺘﻜﺎﻓﺊ ln10 ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل s = 103;+∞ : (3 (4ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : log ( x − 6) > 2logxﺘﻜﻭﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x > 0ﻭ x − 6 > 0ﻭﻋﻠﻴﻪ x > 6 : ﻭﻤﻨﻪ ﻓﻬﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞] [. 6;+ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﻜﺎﻓﺊ log ( x − 6) > logx2 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ x − 6 > x2 : ﺇﺫﻥ − x2 + x − 6 < 0 :ﻭﻋﻠﻴﻪ ﻟﻴﺱ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ﺤﻠﻭل . ﺍﻟﺘﻤﺭﻴﻥ 18 ﺤﺴﺎﺏ : S
S = log 1 × 2 × 3 × ..... × 88 × 99 2 3 4 99 1000 S = log 1 = −log1000 1000 S = −log103 = −3 19 ﺍﻟﺘﻤﺭﻴﻥ1) f ( x) = x + log x ]−∞;0[ ∪ ]0;+∞[ ﻤﻌﺭﻓﺔ ﻋﻠﻰf ﺍﻟﺩﺍﻟﺔ lim f ( x) = lim x + ln x ln10 x→−∞ x→−∞ = lim x 1 + ln(− x) × 1 = −∞ x → −∞ −x ln10 lim f (x) = lim 1 + lnx × 1 = +∞ x ln10 x→+∞ x → +∞ lim f (x) = lim x + lnx = −∞ > > ln10 x→0 x→0 lim f ( x) = lim x + ln(− x) = −∞ < < ln10 x→0 x→6( )2) f ( x) = x2 − 1 − log x2 − 1 x2 − 1 > 0 ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﻥ ﺃﺠلf ﺍﻟﺩﺍﻟﺔ x ∈ ]−∞;1[ ∪ ]1;+∞[ : ﻭ ﻋﻠﻴﻪ ]−∞;1[ ∪ ]1;+∞[ ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻑ ﻫﻲ( )lim f ( x) = lim x2 − 1 − log x2 − 1x→−∞ x → −∞ ( ) ( )= lim x → −∞ x2 −1 log x2 − 1 1 − = +∞ x2 −1
( ) ( )lim f ( x) = lim x2 −1 log x2 − 1 1 − = +∞ x→+∞ x→+∞ x2 −1 ( )lim f ( x) = lim x2 − 1 − log x2 − 1 = +∞ x→−1 x→−1 x>−1 x>−1 ( )lim f ( x) = lim x2 − 1 − log x2 − 1 = −∞ x→1 x→1 x>1 x>13) f ( x) = 1 −1 Logx x > 0 ﻭLogx − 1 ≠ 0 ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠلf ﺍﻟﺩﺍﻟﺔ x ≠ 10 : ﺃﻱlnx ≠ ln10 : ﻭﻋﻠﻴﻪ lnx ≠1 : ﻤﻌﻨﺎﻩ logx ≠ 1 ln10 ]0,10[ ∪ ]10;+∞[ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ lim f (x) = lim 1 = 0 > > logx − 1 x→0 x→0 ( )lim f x = lim 1 −1 = −∞ logx x →10 x →10 x>10 x>10 ( )lim f x = lim 1 − 1 = +∞ > logx > x →10 x →10 lim f (x) = lim 1 = 0 logx − 1 x→+∞ x → +∞ 4) f ( x) = (log x)2 ] [0;+∞ ﺃﻱ ﻤﻌﺭﻓﺔ ﻋﻠﻰx > 0 ﺍﻟﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل lim f ( x) = lim (logx)2 = +∞ x→0 x→0 x>0 x>0 lim f ( x) = lim (logx)2 = +∞ x→+∞ x → +∞
ﺍﻟﺘﻤﺭﻴﻥ 20 – 1ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x − 1 ≠ 0ﺃﻱ x ≠ 1 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ ]−∞;1[ ∪ ]1;+∞[ : ∞lim f ( x) = lim log x − 1 = + ∞x→− ∞x→− ∞lim f ( x) = lim log x − 1 = − x→1 x→1 x<1 x<1 ∞lim f ( x) = lim log x − 1 = − x→1 x→1 x>1 x>1 ∞lim f ( x) = lim log x − 1 = + ∞x→+ ∞x→+ f ′ ( x ) = 1 × x 1 1 ln10 −ﻟﻤﺎ f ′ ( x ) > 0 : x > 1ﻭ ﻤﻨﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 1;+ﻭ ﻋﻠﻴﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ[ ] [. ]−∞;1 x ∞− 1 ∞+ +)f ′(x - ∞+ ∞+)f (x ∞−∞ − -2ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻫﻨﺎﻙ 4 ﻓﺭﻭﻉ ﻻﻨﻬﺎﺌﻴﺔ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ x = 1 : lim f )(x = lim )log ( x − 1 =0 ∞x→+ x ∞x → + x
ﺇﺫﻥ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞+lim f )( x = lim )log (− x + 1 =0∞x→− x ∞x → − x ﺇﺫﻥ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞− -3ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ y = f ′ ( 2) .( x − 2) + f ( 2) :f ′ ( )2 = 1 , f (2) = 0 ln10 y = 1 ( x − )2 ﻭ ﻋﻠﻴﻪ : ln10 – 4ﺇﻴﺠﺎﺩ ﺍﻟﻤﻤﺎﺴﺎﺕ ﺫﺍﺕ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ : 10 1 × 1 = 10 : ﻤﻨﻪ ﻭ f ′ ( x) = 10 ln10 x−1=x−1 1 ﻭﻋﻠﻴﻪ : ﺇﺫﻥ 10(ln10) .( x − 1) = 1 : 10.ln10 ﺇﺫﻥ ﻫﻨﺎﻙ ﻤﻤﺎﺱ ﻭﺍﺤﺩ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ x = 1+ 1 ﻭﻋﻠﻴﻪ : ln10 ﻤﻌﺎﻤل ﺘﻭﺠﻴﻬﻪ . 10 1+ 1 ﺍﻟﻔﺎﺼﻠﺔ ln10 -5ﺇﻨﺸﺎﺀ ( ): C y 1 0,5-1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 x -0,5 -1
* x−1 =1: y = 0 -ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ y = 0 : x = 0 : * }(C ) ∩ ( y′y) = {0ﻭ ﻤﻨﻪ x − 1 = 1 :ﺃﻭ x = 1 = −1ﻭﻋﻠﻴﻪ x = 2 :ﺃﻭ x = 0 } (C ) ∩ ( x′x) = {O, Aﺤﻴﺙ A(2;0) : -6ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ : ﻴﺘﻘﺎﻁﻊ ) (Cﻭ ) ∆ ( ﻓﻲ ﻨﻘﻁﺘﻴﻥ ﻤﺘﻤﺎﻴﺯﺘﻴﻥ . ﺍﻟﺘﻤﺭﻴﻥ. 21 [∞Df = ]0;+ -1 ∞lim f ( x) = lim− 4 + 4 logx = − >> x→0 x→0 ∞lim f ( x) = lim − 4 + 4logx = +∞x→+ ∞x → + f (′ )x = 4 × 1 Ln10 xﻭ ﻤﻨﻪ f ′ ( x ) > 0 :ﻭ ﻋﻠﻴﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ [∞]0;+ x 0 ∞+)f ′(x +)f (x ∞+ ∞− – 2ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : ﻫﻨﺎﻙ ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ x = 0 : lim f )(x = lim −4 + logx =0 x x ∞x→+ x ∞x → +
ﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . – 3ﺇﻨﺸﺎﺀ ) : (C y1,5 0 1,5 3 4,5 6 7,5 9 10,5 12 13,5 15 16,5 x-1,5-3-4,5-6-7,5 ﺍﻟﺘﻤﺭﻴﻥ. 22 }Df = { x ∈ : x > 0 , logx ≠ 0 [∞Df = ]0;+1[;]1;+ -ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ : ( )lim f x = lim 1 = 0 > > logx x→0 x→0 lim f =)(x lim 1 = ∞− < < logx x 1 x→1 → lim f )(x = lim 1 = ∞+ > > logx x 1 x→1 →
lim f )(x = lim 1 = 0 logx ∞x → + ∞x→ + 11 − ln10 × x = )f ′(x = −1 x )2 (log x )2 ( xln10)(log[ ]0;1و [∞]1;+ ﻭﻋﻠﻴﻪ f ′ x < 0ﻭ ﻤﻨﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ) ( x 0 1 ∞+ 0 )f ′(x -- )f (x ∞+ ∞− 0 ﺇﻨﺸﺎﺀ ) : (C y = 0 , x = 1ﻤﻌﺎﺩﻟﺘﻲ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﻘﺎﺭﺒﻴﻥ .
y 5 4 3 2 1-1 0 1 2 3 4 5 6 7x -1 -2 -3 23 ﺍﻟﺘﻤﺭﻴﻥ ] [Df = 0;+∞ : ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕlim f (x) = lim logx − 1 = lim 1 ( log x − 1) = −∞ > > x > xx→0 x→0 x→0 lim f ( x) = lim logx − 1 = 0 x x x→+∞ x → +∞ 1 . 1 .x − 1(logx − 1) ln10 x f ′( x) = x2 f ′( x) = 1 − log + 1 ln10 x2
)′( x 1 − lnx +1 ln10 ln10 f = x2 1 − lnx + ln10 1 + ln 10 x 2 ln10 xf (′ )x = = x 2 ln10 10 = e −1 : ﻤﻨﻪ ﻭ ln 10 = −1 : ﺘﻜﺎﻓﺊ f ′(x) = 0 x x x = 10e ﺇﺫﻥ : x = 10 10 = xe−1ﺃﻱ : ﻭ ﻋﻠﻴﻪ : e −1 10 > e −1 : ﻤﻨﻪ ﻭ ln 10 > −1 : ﺘﻜﺎﻓﺊ f ′(x) > 0 x x ﺃﻱ 10 > xe−1 :ﻭﻋﻠﻴﻪ x < 10e : ﻭ ﻤﻨﻪ f :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 0 ; 10eﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ] ] ﻋﻠﻰ [∞ [10e ; +x0 ∞10e +)f ′(x + - )f (10e)f (x 0 ∞− f ) (10e = log2e − 1 ﺇﺫﻥ 0, 02 : 2e ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻲ :
1y 1 2 3 4 5 6 7x-1 0 -1 -2 -3 -4 -5 -6
- 6ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺇﺠﺭﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻋﻠﻰ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ. - 2ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ . -3ﺤﺴﺎﺏ ﺍﻟﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻟﻌﺩﺩ ﻤﺭﻜﺏ -4ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﺇﻟﻰ ﺍﻟﻤﺜﻠﺜﻲ ﻭﺍﻟﻌﻜﺱ. -5ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺨﻭﺍﺹ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ. -6ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻟﺤل ﺍﻟﻤﺴﺎﺌل ﻓﻲ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﻬﻨﺩﺴﺔ. -7ﺘﻭﻅﻴﻑ ﺩﺴﺘﻭﺭ ﻤﻭﺍﻓﺭ ﻟﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﻬﻨﺩﺴﺔ . -8ﺤل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ . – 9ﺤل ﻤﻌﺎﺩﻻﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ -10ﺘﻌﻴﻴﻥ ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻤﺭﻜﺒﺔ ﻟﻠﺘﺤﻭﻴﻼﺕ ﺍﻟﻤﺄﻟﻭﻓﺔ . -11ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺘﺤﻭﻴل ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻜﺘﺎﺒﺘﻪ ﺍﻟﻤﺭﻜﺒﺔ . -12ﺘﻭﻅﻴﻑ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﺘﺤﻭﻴﻼﺕ . ﺗﺼﻤﻴﻢ اﻟﺪرس – 1ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺃﻨﺸﻁﺔ -3ﺘﻌﺎﺭ ﻴﻑ ﻭ ﻤﺼﻁﻠﺤﺎﺕ -2ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ -5ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ -4ﺍﻟﺤﺴﺎﺏ ﻓﻲ C -6ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻋﺩﺩ ﻤﺭﻜﺏ -7ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ )ﺘﺭﻤﻴﺯ ﺃﻭﻟﻴﺭ(ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل – 8ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ Cﺍﻟﺤـﻠــــــﻭل ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ :ﻨﻌﺘﺒﺭ ﻤﺠﻤﻭﻋﺔ Eﻋﻨﺎﺼﺭﻫﺎ ﻤﻥ ﺍﻟﺸﻜل x + iyﺤﻴﺙ xﻭ yﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻭ iﻋﺩﺩ ﺤﻴﺙ i2 = -1ﻟﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ Z′ , Zﺤﻴﺙ : Z = 5 + 2iﻭ Z′ = 3 - i -1ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻋﻤﻠﻴﺘﻲ ﺍﻟﺠﻤﻊ ﻭ ﺍﻟﻀﺭﺏ ﻓﻲ Eﻟﻬﺎ ﻨﻔﺱ ﺨﻭﺍﺹ ﻋﻤﻠﻴﺘﻲ ﺍﻟﺠﻤﻊ ﻭﺍﻟﻀﺭﺏ ﻓﻲ \ ،ﺍﺤﺴﺏ ﻜل ﻤﻥ :Z × Z′ ; Z2; 2Z -3Z′ ; 8Z ; Z +Z′ ; (Z- Z′)2 ; (2Z +Z′)2 1 = 5 - 2i ﻋﻠﻰ ﺍﻟﺸﻜل : 1 (2ﺒﻜﺘﺎﺒﺔ Z )(5 + 2i) (5 - 2i Z 1 =α + iβ ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ αو βﺒﺤﻴﺙ : Z 1. Z′ = a + ib ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ bﺒﺤﻴﺙ: (3ﺍﺤﺴﺏ i 2008ﺜﻡ inﺒﺩﻻﻟﺔ ( ). n (4ﺍﺴﺘﻨﺘﺞ ﻁﺭﻴﻘﺔ ﻟﺤﺴﺎﺏ ( ). 1 + i 2008 ﺍﻟﺤل : (1ﺍﻟﺤﺴﺎﺏ :• Z + Z′ = (5 + 2i) + (3 - i) = (5 + 3) + (2 - 1) i = 8 + i• 8Z = 8 (5 +2i) = 40 + 16i• 2Z - 3Z′ = 2 (5 + 2i) - 3 (3 - i) = 10 + 4i - 9 + 3i = 1 + 7i• Z2 = (5 + 2i)2 = (5)2 + 2 × 5 × 2i + (2i)2 = 21 + 20i• Z . Z′ = (5 +2i) (3 - i)= 15 - 5i + 6i - 2i2 = 17 + i• (2Z + Z′)2 = [2 (5 + 2i) + 3 - i]2 = (10 + 4i + 3 - i)2
= (13 + 3i)2 = (13)2 + 2 × 13 × 3i + (3i)2 = 169 + 78i -9 = 160 + 78i• (Z - Z′)2 = (5 + 2i - 3 + i)2 = (2 + 3i)2 = (2)2 + 2.2.3i + (3i)2 = 4 + 12i - 9 = -5 + 12i 1 = 5 - 2i = 5 - 2i (2 Z (5 + 2i) (5 - 2i) (5)2 - (2i)2 1 = 5 - 2i = 5 - 2 i : ﻭ ﻤﻨﻪ Z 25 + 4 29 29 -2 5 β = 29 و α = 29 : ﺇﺫﻥ1 = 1 = 3+i = 3 + i = 3+i = 3+iZ′ 3-i (3 - i) (3 + i) (3)2 - (i)2 9+1 10 . b = 1 و a = 3 : ﺇﺫﻥ 1 = 3 + 1 i : ﻭ ﻤﻨﻪ 10 10 Z′ 10 10 ( ): i 2008 ﺤﺴﺎﺏ- (3( )( ) ( )i 2008 = i2 1004 = -1 1004 = 1 (i)n )2 n n = ( i 2 = ( -1) 2 : in ﺤﺴﺎﺏ- ( )1 + i 2008 ( ﺍﺴﺘﻨﺘﺎﺝ ﻁﺭﻴﻘﺔ ﻟﺤﺴﺎﺏ4 2 1004 ( )=1004 1 +2i -1 1004( )(1 + i)2008 = (1 + i ) = 1 + 2i + i2 = 21004 i2 502 = 21004 . -1 502 = 21004 ( ) ( ) ( )=2i 1004 .
– 1ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ : ( )G G ﺍﻟﻤﺴﺘﻭﻱ ﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O ; i , j -ﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺘﻤﺜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻭﻋﺩﺩ ﻤﺭﻜﺏ ﻭﺤﻴﺩ. ﻭﻜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻴﻤﺜل ﺒﻨﻘﻁﺔ ﻭ ﺒﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ. -ﺍﻟﻨﻘﻁﺔ ) J(o ; 1ﺘﻤﺜل ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﺍﻟﺫﻱ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ . i -ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ xﻭ ، yﻴﺭﻤﺯ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﺍﻟﻤﻤﺜل ﺒﺎﻟﻨﻘﻁﺔ M x ; yﺒﺎﻟﺭﻤﺯ ( ). x + iy -ﻴﺭﻤﺯ ﻟﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺒﺎﻟﺭﻤﺯ ^ . -2ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ xﻭ : yﺍﻟﺸﻜل x + iyﻴﺴﻤﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ . Z -3ﺘﻌﺎﺭ ﻴﻑ ﻭ ﻤﺼﻁﻠﺤﺎﺕ : ﻟﻴﻜﻥ Z = x + iyﻋﺩﺩ ﻤﺭﻜﺏ x ،ﻭ yﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ -ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻴﺴﻤﻰ ﺍﻟﺠﺯﺀ ﺃﻭ ﺍﻟﻘﺴﻡ ﺍﻟﺤﻘﻴﻘﻲ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ Re Zﺃﻱ ( ) ( )Re Z = x : -ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ yﻴﺴﻤﻰ ﺍﻟﺠﺯﺀ ﺃﻭ ﺍﻟﻘﺴﻡ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z ﻭﻴﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ Im Zﺃﻱ . Im ( Z) = y ( ): -ﺍﻟﻨﻘﻁﺔ ) M ( x ; yﺘﺴﻤﻰ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z ﻭ ﺍﻟﻌﺩﺩ Zﻴﺴﻤﻰ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ )M ( x ; y
-ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ y′ , x′ , y , xﻓﺈﻥ ﺍﻟﻌﺩﺩ x + iyﻴﺴﺎﻭﻱ ﺍﻟﻌﺩﺩ x′ + iy′ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ x = x′ :ﻭ . y = y′ -ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ ﻭ ﻟﺩﻴﻨﺎ : \ ∈ Zﻴﻜﺎﻓﺊ. Im ( Z) = 0 : -ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﺘﺨﻴﻠﻲ ﺼﺭﻑ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ( )Re Z = 0 : -ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻴﺩﻋﻰ ﺍﻟﻤﺤﻭﺭ ﺍﻟﺤﻘﻴﻘﻲ ﻭ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻴﺩﻋﻰ ﺍﻟﻤﺤﻭﺭ ﺍﻟﺘﺨﻴﻠﻲ . -ﺇﺫﺍ ﻜﺎﻥ Z = 0ﻓﺈﻥ Zﺤﻘﻴﻘﻲ ﻭ ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻭ ﻴﻤﺜل ﺒﺎﻟﻨﻘﻁﺔ ). O (0 ; 0 -4ﺍﻟﺤﺴﺎﺏ ﻓﻲ :C -ﺍﻟﻤﺠﻤﻭﻉ ﻭ ﺍﻟﺠﺩﺍﺀ ﻓﻲ ^ : ﺍﻟﻤﺠﻤﻭﻋﺔ ^ ﻤﺯﻭﺩﺓ ﺒﻌﻤﻠﻴﺘﻴﻥ ﻫﻤﺎ ﺍﻟﺠﻤﻊ +ﻭ ﺍﻟﻀﺭﺏ × ﻤﻌﺭﻓﺘﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ Zو Z′ﺤﻴﺙ: Z = x + iyﻭ Z′ = x′ + iy′ﻜﻤﺎ ﻴﻠﻲ :)Z + Z′ = (x + x′) + i (y + y′)Z × Z′ = (xx′ - yy′) + i (xy′ + x′y ﻫﺎﺘﻴﻥ ﺍﻟﻌﻤﻠﻴﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺨﻭﺍﺹ ﺍﻟﺠﻤﻊ +ﻭ ﺍﻟﻀﺭﺏ × ﻓﻲ \ -ﻗﻭﻯ ﻋﺩﺩ ﻤﺭﻜﺏ : ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻟﻬﺎ ﻨﻔﺱ ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ ﻟﻌﺩﺩ ﺤﻘﻴﻘﻲ ﻭﻟﺩﻴﻨﺎ : )i2 = (0 + 1 . i) × (0 + 1 . i = (0 - 1) + i (0 . 1 + 0 . 1) = -1 ﻭﻋﻠﻴﻪ i2 = -1 :
ﺃﻤﺜﻠﺔ : ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ. Z2 = -4 + 5i ; Z1 = 3 + 2i : (1ﺍﺤﺴﺏ ﻜل ﻤﻥ . Z1 × Z2 , Z1 + Z2 . Z 3 ; Z12 (2ﺍﺤﺴﺏ 2 ﺍﻟﺤل : Z1 + Z2 = (3 - 4) + i (2 + 5) • (1 ﻭﻤﻨﻪ Z1 + Z2 = - 1 + 7i : )Z1 × Z2 = (3 + 2i) (-4 + 5i x = -12 + 15i - 8i + 10i2 = -12 + 7i - 10 ﻭ ﻤﻨﻪ Z1 × Z2 = -22 + 7i : Z12 = (3 + 2i)2 = (3)2 + 2(3) × 2i + (2i)2 (2 ﻭ ﻤﻨﻪ Z12 = 9 + 12i - 4 :ﺃﻱZ12 = 5 + 12i :Z 3 = (-4 + 5i)3 = (-4)3 + 3(-4)2 × 5i + 3(-4) (5i)2 + (5i)3 2 = -64 + 240i + 300 - 125i = 236 + 115i ( JJJJG JJJJG ﺨﻭﺍﺹ : ﺇﺫﺍ ﻜﺎﻥ Zﻭ Z′ﻻﺤﻘﺘﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ Mﻭ ) M′ﺃﻭ ﺍﻟﺸﻌﺎﻋﻴﻥ OMو OM′ﻋﻠﻰ M′ S ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ : Z + Z′ xﻫJGﻭJﻻJﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ S )ﺃGﻭ JﺍJﻟJﺸﻌJﺎﻉ JJ( OJJGSﺤﻴﺙM JJJG : O JJJG OS = OM + OM′ JGZ - Z′ xﻫJﻭJJﻻﺤJﻘﺔ ﺍﻟﻨﻘJGﻁJﺔ) DJJﺃﻭ ﺍﻟJGﺸﻌJﺎJﻉJJ(JOG DJﺤﻴJﺙM′′ D JJJG :JJJG OD = OM - OM′ = OM + OM′′ﻭﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻨﺕ Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻻﺤﻘﺘﺎﻫﻤﺎ ZAﻭ ZBﻋﻠﻲ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ AB ZJJJG ﺍﻟﻤﺭﻜﺏ ﺍﻟﻌﺩﺩ ﻫﻭ AB
Z JJJG = ZB - ZA ﺤﻴﺙ : AB ZI = ZA + ZB ﻭﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Iﻤﻨﺘﺼﻑ ABﻫﻭ ZIﺤﻴﺙ] [ 2 -ﻤﻘﻠﻭﺏ ﻋﺩﺩ ﻤﺭﻜﺏ : Zﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﺤﻴﺙ . Z = x + iy 1 = 1 = )( x - iy = x - iy ﻟﺩﻴﻨﺎ : Z x + iy )(x + iy) (x - iy x2 + y2 1 = x2 x -i y ﻭ ﻤﻨﻪ : Z + y2 x2 + y2 ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻤﻘﻠﻭﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ. ﺃﻱ xﻭ yﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻤﻌﺎ. -ﺤﺎﺼل ﻗﺴﻤﺔ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥ : Zﻭ Z′ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙZ′ ≠ 0 : ﻤﻊ Z = x + iyﻭ Z′ = x′ + iy′Z =Z × 1 = (x )+iy × x′ -i y′ Z′ Z′ x′2 + y′2 x′2 + y′2 = xx′ -i xy′ +i x′y + yy′ x′2 + y′2 x′2 + y′2 x′2 + y′2 x′2 + y′2 = xx′ + yy′ +i x′y - xy′ x′2 + y′2 x′2 + y′2 Z ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z′ﺃﻱ ﺤﺎﺼل ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﻋﻠﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ . Z′
-5ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ : ﺘﻌﺭﻴﻑ :ﻟﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z = x + iyﺤﻴﺙ xﻭ yﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻨﻅﻴﺭﺓﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻫﻲ ﺍﻟﻨﻘﻁﺔ M′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . x - i yﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ x - iy ﻴﺴﻤﻰ ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ x + i yﻭﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ Zﺃﻱ Z = x - i y : ﺃﻤﺜﻠﺔ : ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z1 = 1 + i :ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏZ1 = 1 - i : ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z2 = i :ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏZ2 = -i : ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z3 = 8 + 3 i :ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ: Z3 = 8 - 3 i ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z4 = 10 :ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏZ4 = 10 : ﺃﻱ ﺃﻥ Z4 = Z4 : ﺨﻭﺍﺹ : x (aﻭ yﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ Z = x + iy .ﻋﺩﺩ ﻤﺭﻜﺏ . Z = x - iyﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ . Z (1ﻟﺩﻴﻨﺎ Z = x + iy :ﻭﻤﻨﻪ Z = x + iy : ﻭﻋﻠﻴﻪ Z = Z : (2ﻟﺩﻴﻨﺎ Z + Z = 2 x :ﻭﻤﻨﻪ Z + Z = 2 Re( Z) : Z - Z = 2 i y (3ﻭﻤﻨﻪ Z - Z = 2 Im ( Z) : Z . Z = x2 + y2 (4 Z ∈ \ (5ﺘﻜﺎﻓﺊ Z = Z Z (6ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻴﻜﺎﻓﺊ Z = -Z : y′, y , x′, x (bﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ Z2 , Z1 .ﻋﺩﺍﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ :
Z2 = x′ + i y′ ؛Z1 = x + i y (1 Z1+ Z2 = ( x + x′ + i (y + y′)) = x + x′ − i (y + y′) = x - i y + x′ - i y′ Z1 + Z2 = Z1 + Z2 : ﻭﻤﻨﻪ (2 Z1 . Z2 = ( xx′ - yy′) + i ( xy′ + x′y) = ( xx′ - yy′) - i ( xy′ + x′y )Z1 . Z2 = ( x - iy) .( x′ - iy) = ( xx′ - yy′) - i ( xy′ + x′y ) Z1 . Z2 = Z1 . Z2 : ﻭﻋﻠﻴﻪ 1 = x2 x -i y (3 Z1 + y2 x2 + y2 = x2 x +i y + y2 x2 + y21 = 1 = x + iy = x2 x +i yZ1 x -iy x2 + y2 + y2 x2 + y2 1 = 1 : ﻭﻋﻠﻴﻪ Z1 Z1 Z1 = Z1 (4 Z2 Z2 ( )Z1n = Z1 n : n ∈ `* ( ﻤﻥ ﺃﺠل5 ( )Z1n = Z1 n : n ∈ ` ﻭZ1 ≠ 0 :ﻭﺇﺫﺍ ﻜﺎﻥ
ﺃﻤﺜﻠﺔ :)1) (1 + 2i) (3 - i) = (1 + 2i) (3 - i )= (1 - 2i) (3 + i)2 3 1 i = 1 = 1 + 3+i 3-i)3 2 + 3i = )(2 + 3i = 2 - 3i 5+i )(5 + i 5-i)4 a+b = a + b 1 - ab 1- a .b ﺤﻴﺙ a :ﻭ bﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ . ab ≠ 1 ﺘﻁﺒﻴﻕ : Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ M′ ، Z = x + iyﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ = Z′ Z+1 Z-1 (1ﺍﻜﺘﺏ Z′ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ. (2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﻴﻜﻭﻥ Z′ﺤﻘﻴﻘﻲ . (3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﻴﻜﻭﻥ Z′ﺘﺨﻴﻠﻲ ﺼﺭﻑ . ﺍﻟﺤل : (1ﻜﺘﺎﺒﺔ Z′ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ := Z′ x + iy + 1 = x + 1 + iy = )( x + iy + 1) (x - 1 - iy x + iy - 1 x - 1+ iy )( x + iy - 1) (x - 1 - iy= Z′ x2 + y2 - 1 +i -2y (x - 1)2 + y2 (x - 1)2 + y2 (2ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﻴﻜﻭﻥ Z′ﺤﻘﻴﻘﻲ :
-2y =0 Z′ﺤﻘﻴﻘﻲ ﻴﻜﺎﻓﺊ :(x - 1)2 + y2 y = 0ﻭﻴﻜﺎﻓﺊ . (x ; y) ≠ (1 , 0) :ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻫﻲ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ ). A (1 ; 0 (3ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﻴﻜﻭﻥ Z′ﺘﺨﻴﻠﻲ ﺼﺭﻑ : x2 + y2 - 1 Z′ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻴﻜﺎﻓﺊ = 0 :(x - 1)2 + y2ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ Oﻭﻨﺼﻑ x2 + y2 = 1 ﻭﻴﻜﺎﻓﺊ (x ; y) ≠ (1 , 0) : ﻗﻁﺭﻫﺎ 1ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ ). A (1 ; 0 -6ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻋﺩﺩ ﻤﺭﻜﺏ : ( )G Gﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﻓﻲ ﻤﺎ ﻴﻠﻲ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ﻭ ﻤﺒﺎﺸﺭ M . O ; i , jﻨﻘﻁﺔ ﻤﻥﺍﻟﻤﺴﺘﻭﻱ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ ﺍﻟﻘﻁﺒﻴﺎﻥ ρ ; θﺤﻴﺙ ρﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﻭ θﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻭ ﻋﻠﻴﻪ [ ]Z)ρ (cosθ + i sinθ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Mﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل : ρ (cosθ + i sinθ) xﻴﺴﻤﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻠﻌﺩﺩ Z xﻨﺼﻑ ﺍﻟﻘﻁﺭ ﺍﻟﻘﻁﺒJGﻲ OJMJJﻴGﺤﻘﻕ OM = ρﻭﻴﺴﻤﻰ ﻁﻭﻴﻠJGﺔJZJJﻭﻨﺭﻤGﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ . Z xﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻘﻁﺒﻴﺔ i ; OMﺘﺤﻘﻕ i ; OM = θ + 2kπﺤﻴﺙ ] ∈ ( ) ( )k ﻭ ﺘﺴﻤﻰ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ . Zﻭ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ) arg (Zﻭﻨﻜﺘﺏ arg(Z) = θ 2π :ﻭ ﺘﻘﺭﺃ θﺒﺘﺭﺩﻴﺩ [ ]2π
ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ y M ﺍﻟﻘﻁﺒﻴﺎﻥ ρ ; θﻓﻴﻜﻭﻥ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ] [ ρG ) (x ; yﻤﻌﺭﻓﺎﻥ ﻜﻤﺎ ﻴﻠﻲ :j G θ x = ρ cosθ i y = ρ sinθO x ﻭﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ Zﻻﺤﻘﺔ Mﻓﺈﻥ : Z = x + iy = ρ cosθ + iρ sinθ ﻭﻤﻨﻪ Z = ρ (cosθ + i sinθ) : JJJJG JJJJG ﻤﻼﺤﻅﺎﺕ : ﻟﺩﻴﻨﺎ OM = x2 + y2 :ﻭﻋﻠﻴﻪ Z = OM = ρ : = cosθ x ﻭﻋﻠﻴﻪ : x2 + y2 = sinθ y x2 + y2 ﻭﺇﺫﺍ ﻜﺎﻥ Z = 0ﻓﺈﻥ ρ = 0 :ﻟﻜﻥ Zﻟﻴﺱ ﻟﻪ ﻋﻤﺩﺓ. ﺃﻤﺜﻠﺔ : ﻋﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ : Z3 = 3 - i ; Z2 = i ; Z1 = 1 + i ﺍﻟﺤل : Z1 = (1)2 + (1)2 = 2 ; Z1 = 1 + i x= sinθ1 y و = cosθ1 x ﻨﻔﺭﺽ θ1ﻋﻤﺩﺓ Z1ﻓﻴﻜﻭﻥ : Z1 Z1
sinθ1 = 1= 2 وcosθ1 = 1= 2 2 2 2 2 : ﻭﻤﻨﻪ θ1 = π + 2kπ ; k∈] : ﺇﺫﻥ 4 Z2 = 02 + (1)2 = 1 ; Z2 = i xsinθ2 = y و cosθ2 = x : ﻓﻴﻜﻭﻥZ2 ﻋﻤﺩﺓθ2 ﻨﻔﺭﺽ Z2 Z2 sinθ2 = 1 , cosθ2 = 0 =0 1 1 θ2 = π + 2kπ ; k∈] : ﺇﺫﻥ 2 ( )Z3 = 3 2 + (-1)2 = 2 ; Z3 = 3 - i xsinθ3 = y , cosθ3 = x : ﻓﻴﻜﻭﻥZ3 ﻋﻤﺩﺓθ3 ﻨﻔﺭﺽx Z3 Z3 sinθ3 = -1 و cosθ3 = 3 : ﺇﺫﻥ 2 2 θ3 = −π + 2kπ ; k∈ ] : ﻭﻋﻠﻴﻪ 6 : ﺨﻭﺍﺹ . ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡZ (Aarg(Z) = 0 + 2kπ ; k ∈ ] : ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﻴﻜﺎﻓﺊZ (1arg(Z) = π + 2kπ ; k ∈ ] : ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻴﻜﺎﻓﺊZ (2 : ﻴﻜﺎﻓﺊRe(Z) = 0 ﻭIm(Z) > 0 (3 arg(Z) = π + 2kπ ; k ∈ ] 2
Im(Z) < 0 (4ﻭ Re(Z) = 0ﻴﻜﺎﻓﺊ :)arg(Z = - π + 2kπ ; k ∈ ] 2 ﺃﻤﺜﻠﺔ : ﻋﻴﻥ ﻋﻤﺩﺓ ﻜﻼ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ ﺩﻭﻥ ﺤﺴﺎﺏZ4 = -2i ; Z3 = 5i ; Z2 = -4 ; Z1 = 3 ﺍﻟﺤل : Z1 = 3 xﻭﻤﻨﻪ arg(Z1 ) = 0 + 2kπ ; k ∈ ] : Z2 = -4 xﻭﻤﻨﻪarg(Z2 ) = π + 2kπ ; k ∈ ] :) arg(Z3 = π + 2kπ ;k ∈ ] ﻭﻤﻨﻪ: Z3 = 5i x 2= ) arg(Z4 - π + 2kπ ∈ ;k ] Z4 = -2iﻭﻤﻨﻪ: x 2 (Bﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ : ﻟﺘﻜﻥ M′ , Mﺼﻭﺭﺘﻲ Zو Zﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻟﺩﻴﻨﺎ Mو M′ﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻋﻠﻴﻪ : Z = Zﻭ ] ∈ arg(Z) = -arg(Z) + 2kπ ; k (Cﺠﺩﺍﺀ ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ : Z , Zﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺤﻴﺙ : ) Z = ρ (cosθ + i sinθﻭ )Z′ = ρ′ (cosθ′ + i sinθ′])Z . Z′ =ρρ′[cosθ.cosθ′- sinθ.sinθ′+i (sinθ.cosθ′+cosθ.sinθ′ﻭﻤﻨﻪ ZZ′ = ρρ′ [cos (θ + θ′) + i sin (θ + θ′)] : Z . Z′ = Z . Z′ ﺇﺫﻥ :] ∈ arg(Z . Z′) = arg(Z) + arg(Z′) + 2kπ ; k (Dﻤﻘﻠﻭﺏ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ : ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ Z = ρ (cosθ + i sinθ) :
1 = 1 = cosθ - i sinθZ ρ(cosθ + i sinθ) ρ(cosθ+i sinθ) (cosθ- i sinθ)1 = cosθ - i sinθZ ρ(cos2θ + i sin2θ) 1 = 1 [cos(-θ) + i sin(-θ)] : ﺇﺫﻥ Z ρ 1 = 1 ﻭ arg 1 = -arg(Z) + 2kπ : ﻭﻋﻠﻴﻪ Z Z Z : ( ﺤﺎﺼل ﻗﺴﻤﺔ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥE Z′ ≠ 0 ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙZ′ ﻭZZ = Z. 1 = Z . 1 = Z . 1Z′ Z′ Z′ Z′ Z = Z : ﻭﻤﻨﻪ Z′ Z′ arg Z = arg Z × 1 = arg(Z) + arg 1 Z′ Z′ Z′ arg Z = arg(Z) - arg(Z′) : ﻭﻤﻨﻪ Z′ : ( ﺘﺴﺎﻭﻱ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥF : ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺤﻴﺙZ′ ﻭZ Z′ = ρ′ (cosθ′ + i sinθ′) ﻭZ = ρ (cosθ + i sinθ) θ = θ′ + 2kπ ; k ∈ ] ﻭρ = ρ′ : ﻴﻜﺎﻓﺊZ = Z′ : Zn ( ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓG . ﻋﺩﺩ ﺼﺤﻴﺢn ، ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡZ
arg(Zn ) = n . arg(Z) ﻭZn = Z n ﻟﺩﻴﻨﺎx : ﺍﻟﺒﺭﻫﺎﻥ n ≥ 2 ﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠلn ∈ ] + ﻤﻥ ﺃﺠل Z2 = Z 2 : n = 2 ﻟﻤﺎx . ﻜﻤﺎ ﺴﺒﻕarg(Z2 ) = arg(Z) + arg(Z) = 2arg(Z) : ﺃﻱk ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ﺇﻟﻰ ﺭﺘﺒﺔx arg(Zk ) = k arg(Z) ﻭZk = Z k : k + 1 ﻭﻨﺒﺭﻫﻥ ﺼﺤﺘﻬﺎ ﻓﻲ ﺍﻟﺭﺘﺒﺔZk+1 = Zk . Z = Zk . Z = Z k . Z = Z k+1arg(Zk+1 ) = arg(Zk . Z) = arg(Zk ) + arg(Z) = k arg(Z) + arg(Z) = (k + 1) arg(Z) n = -p ﺒﻭﻀﻊ: n ∈ ] − ﻤﻥ ﺃﺠلZn = Z-p = 1 = 1 = 1 = 1 = Zn Zp Zp Zp Z -n( ) ( )arg Zn 1 = arg Z-p = arg Zp = -arg( Zp ) = -p arg(Z) = n arg(Z) : ﻨﺘﻴﺠﺔ (cosθ + i sinθ)n = cosθ + i sinθ . θ ∈ \ ; n ∈ ] ﻤﻥ ﺃﺠل . ﻭﻫﻭ ﻤﺎ ﻴﻌﺭﻑ ﺒﺩﺴﺘﻭﺭ ﻤﻭﺍﻓﺭZB ﻭZB ﻭZA ﺜﻼﺙ ﻨﻘﻁ ﻤﺘﻤﺎﻴﺯﺓ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻟﻭﺍﺤﻘﻬﺎC ﻭB ﻭA ( ﺇﺫﺍ ﻜﺎﻨﺕH : ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ
• ZC - ZA = AC ZB - ZA AB ZC - ZA JJJG JJJG ZB - ZA AB , AC( ) [ ]•arg = Z′ ﻭ 2π vG uG ﻻﺤﻘﺘﻴﻬﻤﺎ : ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ Z ﺸﻌﺎﻋﺎﻥ ﻭ ﻜﺎﻥ ( ﺇﺫﺍI (uG , vG) = arg Z′ [2π] Z : ﺘﻁﺒﻴﻘﺎﺕ Z2 = -1 + i 3 ; Z1 = 3i : ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙZ2 , Z1 (1 Z12 , Z1 × Z2 , Z2 , Z1 ﺍﺤﺴﺏ ﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻜل ﻤﻥ Z1 , 1 , Z100 Z2 Z1 2 : ﺍﻟﺤل Z2 = 2 , Z1 = 3 x π cosθ1 = 0 =0 2 3 θ1 ≡ [2π] : ﻭﻤﻨﻪ : Z1 ﻋﻤﺩﺓθ1 ﻟﺘﻜﻥ sinθ1 3 = 3 =1 2π cosθ2 = - 1 3 2 [ ]θ2 ≡ 2π : ﻭﻤﻨﻪ : Z2 ﻋﻤﺩﺓ θ2 ﻭﻟﺘﻜﻥ sinθ2 = 3 2 Z1 . Z2 = Z1 . Z2 = 6 xarg ( Z1 . Z2 ) = arg ( Z1 ) + arg ( Z2 )
= π + 2π = 7π 2 3 6 Z12 = Z1 2 = 32 = 9 x( )arg Z12 = 2arg( Z1 ) = 2. π [2π] 2 ( )arg Z12 = π [2π] : ﻭ ﻤﻨﻪ ( ) ( )arg Z100 Z 100 = 3100 Z100 = 100arg Z1 ؛ 1 = 1 x 1 ( )arg π Z100 = 100 2 [2π] = 0 [2π] : ﻭﻤﻨﻪ 1• 1 = 1 = 1 Z1 Z1 3 arg 1 = -arg( Z1 ) [2π] = - π [2π] Z1 2 • Z1 = Z1 = 3 Z2 Z2 2 arg Z1 = arg( Z1 ) - arg( Z2 ) = π - 2π [2π] Z2 2 3 arg Z1 = -π [2π] : ﻭﻤﻨﻪ Z2 6 : ﻫﻲ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏA , B , C ﻤﺜﻠﺙ ﺤﻴﺙ ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁABC (2 . 2+i , 4+i , 2+3i . ﻭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥA ﻗﺎﺌﻡ ﻓﻲABC ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ : ﺍﻟﺤل
ZC - ZA = 2 + 3i - 2 - i = i =1ZB - ZA 4+i-2-i ﻭﻋﻠﻴﻪ AC = AB : AC =1 ﻭﻤﻨﻪ : ABarg ZC - ZA )= arg (i = π ][2π ZB - ZA 2 ﺇﺫﻥ ﺍﻟﻤﺜﻠﺙ ABCﻗﺎﺌﻡ ﻓﻲ Aﻭ ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ : -7ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ )ﺘﺭﻤﻴﺯ ﺃﻭﻟﻴﺭ( -ﺍﻟﺘﻌﺭﻴﻑ : ﻨﻀﻊ ﺍﺼﻁﻼﺤﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ cosθ + i sinθ = eiθ : θ ﻓﺈﺫﺍ ﻜﺎﻥ Zﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺤﻴﺙ Z = ρ cosθ + i sinθ :ﻓﺈﻥ ( ): . Z = ρ . eiθ ﻤﺜﺎل : ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z = -2 2 + 2 6 iﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ : ﺍﻟﺤل : Z=4 2 . e 2π i Z =4 2 , = )arg(Z 2π 3 3 ﻭﻋﻠﻴﻪ : -ﺨﻭﺍﺹ : ﻟﻴﻜﻥ Z2 , Z1ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ : Z2 = ρ eiθ2 , Z2 = ρ1eiθ1 2)1 Z1 . Z2 = ρ1 . ) ρ ei(θ1+θ2 2
2) 1 = 1 . e-iθ1 Z1 ρ1) 3) Z1 = ρ1 . ei(θ1−θ2 Z2 ρ24) Z1n = ρ1n . einθ5) Z1 = ρ1 . e-iθ1 ﻤﻼﺤﻅﺔ : ﻟﺩﻴﻨﺎ eiθ′ = cosθ′ + i sinθ′ ; eiθ = cosθ + i sinθ :ﻭﻋﻠﻴﻪ :)eiθ . eiθ′ = ei(θ+θ′) = cos (θ + θ′) + i sin(θ + θ′) . . . (1ﻭﻟﺩﻴﻨﺎ eiθ . e2θ′ = (cosθ + i sinθ) (cosθ′ + i sinθ′) :)= cosθ.cosθ′- sinθ. sinθ′+i(cosθ. sinθ′+ sinθ. cosθ′) . . .(2ﻤﻥ )cos(θ + θ′) = cosθ . cosθ′ - sinθ . sinθ′ : (2) ; (1sin(θ + θ′) = cosθ . sinθ′ + sinθ . cosθ′ -ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺩﺍﺌﺭﺓ ﺒﺎﻟﻌﻼﻗﺔ Z = Z0 + k . eiθ ﻟﺘﻜﻥ) (Cﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ωﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ .k ﻨﻔﺭﺽ Z0ﻻﺤﻘﺔ k ، ωﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ . ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﻤﻥ )(C ﻟﺩﻴﻨﺎ M ∈ (C) :ﺘﻜﺎﻓﺊ Z - Z0 = k :ﻭ ﺘﻜﺎﻓﺊ Z - Z0ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻁﻭﻴﻠﺘﻪ kﻭ ﺘﻜﺎﻓﺊ :ﻴﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ) θﻴﻤﻜﻥ ﺍﻟﻘﻭل ﺃﻥ [ [( θ ∈ 0 ; 2π ﺒﺤﻴﺙ . Z = Z0 + k . eiθ : =Z Z0 + k . eiθ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﺒﺎﻟﻌﻼﻗﺔ -ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ vGﻤﻌﻁﻰ ωﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ ﻟﻴﻜﻥ wx[ ).
ﻨﻔﺭﺽ Z0ﻻﺤﻘﺔ u ، wﻻﺤﻘﺔ ( )u ∈ ^* , vG ﺤﻴﺙ u = 1 ; arg (u) = θ [2π] :ﻭﺘﻜﺎﻓﺊ ( JJJJG = k . vG ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻟﺩﻴﻨﺎ : wM M ∈ wxﺘﻜﺎﻓﺊ )ﻴﻭﺠﺩ ﻋﺩﺩ kﻤﻥ \ +ﺒﺤﻴﺙ [ ): )ﻴﻭﺠﺩ ﻋﺩﺩ kﻤﻥ \ +ﺒﺤﻴﺙ : ( Z = Z0 + k . eiθ – 8ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ^ . * ﺇﺫﺍ ﻜﺎﻥ Z′ , Zﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻓﺈﻥ : Z . Z′ = 0ﺘﻜﺎﻓﺊ Z = 0 :ﺃﻭ Z′ = 0 ﺍﻟﺒﺭﻫﺎﻥ : ﻨﻔﺭﺽ Z = x + iyﻭ Z′ = x′ + iy′ ﻟﺩﻴﻨﺎ Z . Z′ = ( xx′ + yy′) + i ( xy - x′y) : xx′ - yy′ = 0 و ﻭﻤﻨﻪ Z . Z′ = 0 :ﺘﻜﺎﻓﺊ : xy′ + x′y = 0 ﻨﻔﺭﺽ Z′ ≠ 0ﺤل ﺍﻟﺠﻤﻠﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل x ; yﻫﻭ ( ): -y′ 0 =x x 0 = 0 =0 x′ -y′ x′2 + y′2 y′ x′
0 x′ =y 0 y′ = 0 =0 x′ -y′ x′2 + y′2 y′ x′ ﻓﻨﺠﺩ . Z = 0 ﻭﺇﺫﺍ ﻓﺭﻀﻨﺎ Z ≠ 0ﻨﺠﺩ Z′ = 0 :ﻭﻤﻨﻪ Z . Z′ = 0 : ﺘﻜﺎﻓﺊ Z = 0 :ﺃﻭ Z′ = 0 * ﺤل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜل : )aZ2 + bZ + C = 0 . . . (1 ﻤﻊ c , b , aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ Z ; a ≠ 0ﻤﺘﻐﻴﺭ ﻓﻲ ^ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﻟﻠﻌﺒﺎﺭﺓ aZ2 + bZ + Cﻫﻭ : aZ2 + bZ + C = a Z + b 2 - b2 - 4ac 2a 4a2 aZ2 + bZ + C = a Z + b 2 - ∆ : ﻨﺠﺩ ∆ = b2 - 4ac ﺒﻭﻀﻊ 2a 4a2 xﺇﺫﺍ ﻜﺎﻥ : ∆ ≥ 0ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺤﻠﻴﻥ ﻜﻤﺎ ﺴﺒﻕ ﻓﻲ \ . Z2 = -b + ∆ ﻭ Z1 = -b + ∆ 2a 2a ( )2 xﺇﺫﺍ ﻜﺎﻥ : ∆ < 0ﻨﻀﻊ ∆∆ = i - ﻓﻴﻜﻭﻥ :aZ2 + bZ + C = a Z - -b - i −∆ Z - -b + i −∆ 2a 2a ﻭﻋﻠﻴﻪ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻜﺎﻓﺊ :
Z = -b +i ∆− ﺃﻭ =Z ∆-b - i − 2a 2a ﺃﻱ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ . * ﺍﻟﺠﺫﻭﺭ ﺍﻟﺭﺒﻴﻌﻴﺔ ﻟﻌﺩﺩ ﻤﺭﻜﺏ :ﻟﻴﻜﻥ Zﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ .ﻟﻨﺒﺤﺙ ﻋﻥ ﻭﺠﻭﺩ ﻋﺩﺩ ﻤﺭﻜﺏ kﺒﺤﻴﺙ . k 2 = Z ﻨﻔﺭﺽ Z = x + iyﻭ k = α + iβ (α + iβ)2 = x + iy ﻟﺩﻴﻨﺎ k 2 = Z :ﻭﻋﻠﻴﻪ : k 2 = Z α2α2 β- = β2 x ... )(1 =y. . ). (2 ﺇﺫﻥ : 2 + β2 = )x2 + y2 . . . (3 α ﻨﺠﻤﻊ ) (1ﻭ ) (3ﻨﺠﺩ 2α2 + β2 = x+ x2 + y2 : = α2ﻟﻜﻥ x2 + y2 > -x x2 + y2 + x ﻭﻋﻠﻴﻪ 2 :α=- x2 + y2 + x = αﺃﻭ x2 + y2 + x 2 ﻭﻤﻨﻪ 2= α2 x2 + y2 + x ﻭ = α1 x2 + y2 + x 2 ﻨﻔﺭﺽ 2 : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ): (2 β2 = y : α = α2 ،ﻟﻤﺎ = β1 y ﻟﻤﺎ : α = α1 2α2 2α1 ﺤﻴﺙ p2 = −β1 ، α2 = -α1 :
* ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺸﻜل : )aZ2 + bZ + C = 0 . . . (1 ﺤﻴﺙ b , c , aﺃﻋﺩﺍﺩ ﻤﺭﻜﺒﺔ ﻭ a ≠ 0 xﻨﻜﺘﺏ aZ2 + bC + Cﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﻓﻨﺠﺩ : aZ2 + bZ + c = a x + b 2 - ∆ 2a 4a 2 ﻤﻊ ∆ = b2 - 4acﻜﻤﺎ ﺴﺒﻕ . xﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ :ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺤﻠﻴﻥZ2 = -b + ∆ ﻭ Z1 = -b - ∆ 2a 2a xﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ :ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺤﻠﻴﻥZ2 = -b + i ∆− ﻭ Z1 = -b - i ∆ 2a 2a xﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﺤﻘﻴﻘﻲ : ﻨﺒﺤﺙ ﻋﻥ ﺠﺫﺭﻴﻪ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻭ ﻟﻴﻜﻥ kﺃﺤﺩﻫﻤﺎ ﻭﻤﻨﻪ ) (1ﺘﻜﺎﻓﺊ : a x + b 2 - k2 =0 ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : 2a 4a2 Z2 = -b + k , Z1 = -b - k Z1ﻭ Z2ﺤﻴﺙ : 2a 2a ﻤﺜﺎل : ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - (3 - 2i) Z + 5 - i = 0 : ∆ = b2 - 4a Cﻭﻤﻨﻪ ∆ = (3 - 2i)2 - 4 (5 - i) :ﺇﺫﻥ ∆ = 9 - 12i - 4 - 20 + 4i :ﻭﻤﻨﻪ ∆ = -15 - 8i :
ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ∆ . ﻟﻴﻜﻥ kﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ∆ . ∆ = k2 ﻨﻔﺭﺽ k = x + iy : ﻓﻴﻜﻭﻥ : k 2 ∆= ( x + iy)2 = -15 - 8i ﻭﻋﻠﻴﻪ : x 2 + y2 = (-15)2 + (-8)2 ) x - y2 = -15 . . . (1 )2xy = -8 . . . (2 ﻭﻋﻠﻴﻪ : x 2 + y2 = 17 . . . )(3 ﺒﺠﻤﻊ ) (1ﻭ ) (2ﻨﺠﺩ 2 x2 = 2 :ﻭﻤﻨﻪ x2 = 1 : ﻭﻋﻠﻴﻪ x = 1 :ﺃﻭ . x = -1 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ) (2ﻨﺠﺩ :ﻟﻤﺎ y = -4 : x = 1 ﻟﻤﺎ . y = 4 : x = 1 ﺇﺫﻥ k = 1 - 4iﺃﻭ k = -1 + 4i ﻭﺒﺎﻟﺘﺎﻟﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎ :Z2 = 3 - 2i + 1 - 4i = 2 - 3i , Z1 = 3 - 2i - 1 + 4i =1+i 2 2 -9ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻭ ﺍﻟﺘﺤﻭﻴﻼﺕ ﺍﻟﻨﻘﻁﻴﺔ : * ﻤﺒﺭﻫﻨﺔ :ﻟﻴﻜﻥ fﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ Mﻻﺤﻘﺘﻬﺎ Zﺍﻟﻨﻘﻁﺔ M′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . Z′ β ∈ ZvG′ﺫﻭﺤﻴﺍﻟﺙﻼ :ﺤﻘﺔ^β =Z +β : ﺇﺫﺍ ﻜﺎﻥ x f ﻓﺈﻥ : . ﺸﻌﺎﻋﻪ ﺍﻨﺴﺤﺎﺏ xﺇﺫﺍ ﻜﺎﻥ Z′ - Z0 = k (Z - Z0 ) :ﺤﻴﺙ ^ ∈ Z0ﻭ *\ ∈ kﻓﺈﻥ fﺘﺤﺎﻜﻲ ﻨﺴﺒﺘﻪ kﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ M0ﺫﺍﺕ
ﺍﻟﻼﺤﻘﺔ . Z0 xﺇﺫﺍ ﻜﺎﻥ Z′ - Z0 = eiθ (Z - Z0 ) :ﺤﻴﺙ ^ ∈ Z0ﻭ \ ∈ θ ﻓﺈﻥ fﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ M0ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z0ﻭﺯﺍﻭﻴﺘﻪ . θ ﺍﻟﺒﺭﻫﺎﻥ := Z′ - Z Z JJJJJG = β ﻓﺈﻥ xﺇﺫﺍ ﻜﺎﻥ Z′ = Z + β JJJJJG MM′ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﺈﻥ ﺍﻟﺸﻌﺎﻉ MM′ﺜﺎﺒﺕ. ﻭﻋﻠﻴﻪ ﻓﻬﻭ ﻴﻌﺭﻑ ﺍﻨﺴﺤﺎﺏ . xﺇﺫﺍ ﻜﺎﻥ ) Z′ - Z0 = k (Z - Z0ﻓﺈﻥ ﺼﻭﺭﺓ ﺍﻟﻨﻘﻁﺔ M0ﺫﺍﺕﺍﻟﻼﺤﻘﺔ Z0ﺒﻭﺍﺴﻁﺔ fﻫﻲ ﻨﻔﺴﻬﺎ .ﻭﻤﻥ ﺃﺠل Z ≠ Z0 . Z′ - Z0 =k , *\ ∈ k ﻓﺈﻥ : Z - Z0 M0M′ = k ﻭﻤﻨﻪ : M0M( )JJJJJG JJJJJJG ﻓﺈﺫﺍ ﻜﺎﻥ k > 0ﻓﺈﻥ [ ]= 0 2π : M0M ; M0M′( )JJJJJG JJJJJJGﻭ ﺇﺫﺍ ﻜﺎﻥ k < 0ﻓﺈﻥ [ ]M0M ; M0M′ = π 2π :ﻭﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﻨﻘﻁ M′ , M , M0ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ.ﺘﻤﻴﺯ ﺘﺤﺎﻜﻲ ﻤﺭﻜﺯﻩ M0ﻭ ﻨﺴﺒﺘﻪ . k M0M′ = k ﻭ ﺒﺎﻟﻨﺴﺒﺔ M0M xﺇﺫﺍ ﻜﺎﻥ ) Z′ - Z0 = eiθ (Z - Z0ﻓﺈﻥ ﺼﻭﺭﺓ ﺍﻟﻨﻘﻁﺔ M0ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z0 ﺒﻭﺍﺴﻁﺔ fﻫﻲ ﻨﻔﺴﻬﺎ .ﻭﻤﻥ ﺃﺠل Z ≠ Z0 : Z′ - Z0 = eiθ ﻓﺈﻥ : Z - Z0
( )JJJJJG JJJJJJG ﻭ ]= θ [2π M0M′ =1 ﻭﻤﻨﻪ : M0M M0M ; M0M′ ﻫﺎﺘﻴﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ﺘﻤﻴﺯﺍﻥ ﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ M0ﻭ ﺯﺍﻭﻴﺘﻪ . θ ﺃﻤﺜﻠﺔ :ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل fﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺍﻟﻨﻘﻁﺔ M′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z′ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ :1) Z′ = Z - 1 2) Z′ = Z + i + 1 3) Z′ = 3Z4) Z′ = -2Z + i + 2 5) Z′ = iZ = 6) Z′ 2 (i + )1 Z + i 2 ﺍﻟﺤل : = ′wGﺫZﻭ ﻟﺩﻴﻨﺎ Z - 1 : (1 . -1 ﺍﻟﻼﺤﻘﺔ fﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ ZwG+ﺫﻭ ﺍ=ﻟ ′ﻼﺤﻘZﺔ ﻟﺩﻴﻨﺎ i + 1 : (2 . 1 + i fﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ (3ﻟﺩﻴﻨﺎ Z′ = 3Z : fﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ 3ﻭ ﻤﺭﻜﺯﻩ . O (4ﻟﺩﻴﻨﺎ Z′ = -2Z + i + 2 :. Z0 = i - 1 fﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ -2ﻭ ﻤﺭﻜﺯﻩ Iﺤﻴﺙ ﻻﺤﻘﺘﻪ 1-i ﺇﺫﻥ . Z0 = -1 Z′ = iZ , i = ei π (5ﻟﺩﻴﻨﺎ : 2 π fﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ Oﻭﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ iﺃﻱ . 2 = Z′ 2 (i + 1) Z + i (6ﻟﺩﻴﻨﺎ : 2
2 (i + )1 ei π ﻭﻟﺩﻴﻨﺎ : 2 4 Z0 ﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ π ﻭﻋﻠﻴﻪ fﺩﻭﺭﺍﻥ ﺯﺍﻭﻴﺘﻪ 4 2i i Z0 = 2 -ﺃﻱ : 2- ﻭﻤﻨﻪ : = Z0 ﺤﻴﺙ : 2i 1- 2 2 )(1 + i ( )2i 2 - 2 + 2i Z0 = 2 - 2 - 2i 2 - 2 + 2i = . Z0 ( )-2 2 + 2 2 - 2 i ﻭﻋﻠﻴﻪ : ( )2 2- 2 +2
ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺍﻟﺘﻁﺒﻴﻕ : . z 1 3i 2 ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ 5 i ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ : (1ﻋﻴﻥ ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ (2 . zﻋﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺤﻘﻴﻘﻲ ﻟﻠﻌﺩﺩ . z (3ﻋﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ (4 . zﻋﻴﻥ ﻁﻭﻴﻠﺔ ﺍﻟﻌﺩﺩ . z (5ﻋﻴﻥ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ (6 . zﺃﻜﺘﺏ ﺍﻟﻌﺩﺩ zﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ. (7ﺃﻜﺘﺏ ﺍﻟﻌﺩﺩ zﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ. ﺍﻟﺤل (1ﺘﻌﻴﻴﻥ ﺍﻟﻤﺭﺍﻓﻕ :ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔﺍﻟﻰ CPXﻜﻤﺎﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻓﺘﻅﻬﺭ ﻗﺎﺌﻤﺔ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ. ﻨﺨﺘﺎﺭ ﺍﻟﺭﻗﻡ 1ﻟﻨﺤﺼل ﻋﻠﻰ : (1:Conj ﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ zﻜﻤﺎﻴﻠﻲ : ))Conj((1-3i)^2)/(5+iﻭﻨﻨﻘﺭ ﻋﻠﻰ Enterﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻨﺘﻴﺠﺔ -1,77+0,85i ﻭﺍﻟﺘﻲ ﺘﻤﺜل ﻤﺭﺍﻓﻕ z
( 2ﺘﻌﻴﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺤﻘﻴﻘﻲ :ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ ﺍﻟﻰ CPXﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ 2ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ real( :ﻨﺩﺨل ﻋﺒﺎﺭﺓ real((1-3i)^2)/(5+i)) : : ﻨﻨﻘﺭ ﻋﻠﻰ Enterﻓﻨﺠﺩ −1,77 : ( 3ﺘﻌﻴﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺘﺨﻴﻠﻲ :ﻭﻨﺤﺭﻙ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔﺍﻟﺯﺍﻟﻘﺔ ﺍﻟﻰ CPXﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ 3ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ Imag( :ﻨﺩﺨل ﻋﺒﺎﺭﺓ Imag((1-3i)^2)/(5+i)) : :ﻨﻨﻘﺭ ﻋﻠﻰ Enterﻓﻨﺠﺩ- 0,8 5 :ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ (4ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔﺇﻟﻰ CPXﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ 5ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ abs ( :ﻨﺩﺨل ﻋﺒﺎﺭﺓ abs((1-3i)^2)/(5+i)) :ﻨﻨﻘﺭ ﻋﻠﻰ Enterﻓﻨﺠﺩ1,96 :ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ (5ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔﺇﻟﻰ CPXﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ 4ﻓﺘﻅﻬﺭﻋﻠﻰﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ angle ( :ﻨﺩﺨل ﻋﺒﺎﺭﺓ angle((1-3i)^2)/(5+i)) :ﻨﻨﻘﺭ ﻋﻠﻰ Enterﻓﻨﺠﺩ– 2,70 :
(6ﻜﺘﺎﺒﺔ Zﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ : ﻨﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻋﺒﺎﺭﺓ Zﻜﻤﺎﻴﻠﻲ : )(1-3i)^2/(5+i ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ ﺇﻟﻰ CPXﺜﻡ ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﺭﻗﻡ 6 ﻭ ﻨﻨﻘﺭ ﻋﻠﻰ Enter ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ : -1,77- 0,85 i (7ﻜﺘﺎﺒﺔ Zﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ : ﻨﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻋﺒﺎﺭﺓ Zﻜﻤﺎ ﻴﻠﻲ : )(1-3i)^2/(5+i ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ ﺇﻟﻰ CPXﺜﻡ ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﺭﻗﻡ 7ﻭ ﻨﻨﻘﺭﻋﻠﻰ Enterﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ 1,96e2,70i : ﻤﻼﺤﻅﺔ : 1 ﻟﻜﺘﺎﺒﺔ ﺍﻟﺤﺭﻑ iﻨﻘﻭﻡ ﺒﻤﺎ ﻴﻠﻲ : ﺜﻡ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ ﻤﻼﺤﻅﺔ : 2ﻭﻨﺤﺩﺩ ﻋﺩﺩ ﻟﺘﻐﻴﻴﺭ ﻋﺩﺩ ﺍﻷﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔﺍﻷﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺍﻟﻘﺔ ﻭﻫﺫﺍ ﻓﻲ ﺍﻟﺴﻁﺭ ﺍﻟﺜﺎﻨﻲ ﺜﻡ ﻨﻨﻘﺭﻋﻠﻰ Enterﻭﻗﺩ ﺍﺨﺘﺭﻨﺎ ﻓﻲ ﺍﻟﺸﻜل ﺜﻼﺜﺔ ﺃﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ .
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ×ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ: (1ﺍﻟﻌﺩﺩ 0ﻟﻴﺱ ﻋﺩﺩ ﻤﺭﻜﺏ . ﻤﺭﻜﺏ. ﻋﺩﺩ ﻫﻭ cos π (2 6 (3ﻜل ﻋﺩﺩ ﺤﻘﻴﻕ ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ. (4ﻜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ. (5ﺇﺫﺍ ﻜﺎﻥ x + 2i = -3 + yi :ﺤﻴﺙ xﻭ yﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﺤﻘﻴﻘﻴﻴﻥ ﻓﺈﻥ y = 2 : ﻭ x = -3 Z = - Z (6 i+Z = i - Z (7 i - Z i - Z =Z 1 ﺇﺫﺍ ﻜﺎﻨﺕ Z = 1ﻓﺈﻥ : (8 Z (9ﺇﺫﺍ ﻜﺎﻨﺕ Z = 4ﺤﻴﺙ Zﻋﺩﺩ ﻤﺭﻜﺏ ﻭﻫﻭ ﻻﺤﻘﺔ ) M(x ; yﻓﺈﻨﻪ ﻋﻨﺩﻤﺎ ﻴﺘﻐﻴﺭ ﻜل ﻤﻥ x ﻭ yﻓﻲ \ ﻴﺸﻜﻼﻥ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ Oﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ . 4ﻫﻲ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ 4ﻭ ﻋﻤﺩﺘﻪ 4 sin π + i cos π (10ﺍﻟﻌﺒﺎﺭﺓ 2 2 π .2 (11ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z π Z=2 sin π +i cos π ﺤﻴﺙ :ﻫﻤﺎ 2ﻭ 4ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . 4 4
ﻫﻤﺎ 3ﻭ Z=3 sin π + i cos π (12ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﺤﻴﺙ : 4 4 π 6ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . . π ﻫﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ 4ﻭ ﻋﻤﺩﺘﻪ Z = -4 ei π (13ﺍﻟﻌﺒﺎﺭﺓ : 4 4 π+ π ﻫﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ 4ﻭ ﻋﻤﺩﺘﻪ Z = -4 ei π (14ﺍﻟﻌﺒﺎﺭﺓ : 4 4 Z = -2 + i + k ei π (15ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺤﻴﺙ 4 ﻫﻲ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ ﺍﻟﻨﻘﻁﺔ Iﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ -2 + iﻭ kﻤﺘﻐﻴﺭ ﻓﻲ \ (16ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺤﻴﺙ Z = i + 3 eiθﺤﻴﺙ θﻤﺘﻐﻴﺭ ﻓﻲ \ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ iﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ iﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ 3 (17ﺘﻭﺠﺩ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ^ ﻻ ﺘﻘﺒل ﺤﻠﻭل (18ﺇﺫﺍ ﻜﺎﻥ ﻤﻤﻴﺯ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺴﺎﻟﺒﺎ ﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺤﻠﻴﻥ ﻤﺘﺭﺍﻓﻘﻴﻥ. (19ﺇﺫﺍ ﻜﺎﻥ ABCﻤﺜﻠﺙ ﺤﻴﺙ ﻟﻭﺍﺤﻕ Aﻭ Bﻭ Cﻫﻲ ZAﻭ ZBﻭ ZCﺒﺤﻴﺙ: ZC - ZA =1 ZB - ZA (20ﻓﺈﻥ ﺍﻟﻤﺜﻠﺙ ABCﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ . (21ﺇﺫﺍ ﻜﺎﻥ ABCﻤﺜﻠﺙ ﺤﻴﺙ ZC , ZB , ZAﻫﻲ ﻟﻭﺍﺤﻕ C, B , ﻓﺈﻥ ﺍﻟﻤﺜﻠﺙ π ﻫﻲ ZC - ZA ﻭ ﻜﺎﻨﺕ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ A 2 ZB - ZA ABCﻗﺎﺌﻡ ﻓﻲ . A
ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ :BC A vG O uG (1ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ GAﻭJBJJﻭ JJJG JJ.JGC (2ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﺍﻷﺸﻌﺔ (3 . BC , AC , AB ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Dﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺭﺒﺎﻋﻲ ABCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ .ﺜﻡ ﻋﻴﻥ ﻻﺤﻘﺔ ﻤﺭﻜﺯﻩ . I (4ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Eﺒﺤﻴﺙ ﻴﻜﻭﻥ ABDEﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ. ﺍﻟﺘﻤﺭﻴﻥ. 3ﻫل ﺘﻭﺠﺩ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ xﻭ yﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z = (x + y) + xyiﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ 7 + 12i ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ D , C , B , Aﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ZD , ZC , ZB , ZAﺤﻴﺙ : ZD = ZC ; ZC = -ZA , ZB = ZA ; ZA = α + iβ ﺤﻴﺙ αو βﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ .
ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ . ABCD ﺍﻟﺘﻤﺭﻴﻥ. 5 ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ Z1 = 2 - i :ﻭ Z2 = -5 + 3i ﺍﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ.Z3 = Z1 - Z2 Z4 = Z12 iZ1 1 + Z1 1 - Z2 Z1 + Z2 2 ( ), = , Z5 ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ S1 = 1 + i + i2 + . . . + i2008 : ﺜﻡ ﺍﻟﻤﺠﻤﻭﻉ S2 = 1 - i + i2 - i3 + . . . + (-i)2008 : ﺍﻟﺘﻤﺭﻴﻥ. 7ﻤﺜل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ﺍﻟﻨﻘﻁ F , E , D , C , B , Aﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ : ﺤﻴﺙ : 1 , 1 , ZA .ZB , ZA + ZB , ZB , ZA ZB ZA ZA = ) arg ( ZAﻭ = 2 π + 2kπ , ]∈k 3 ZB = ) arg ( ZBﻭ = 1 −π + 2kπ , ∈k ] 6 ﺍﻟﺘﻤﺭﻴﻥ. 8ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ Z2 = 3 3 - 3i ; Z1 = -2 - 2i :ﻋﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ : ﻭ Z12ﻭ Z1 . Z2 Z1 ﻭ Z42 ﻭ 1 , Z2 , Z1 Z2 Z1 ﺍﻟﺘﻤﺭﻴﻥ. 9
( ) 1 -3i 2010 ; 1+i 1962 ; 1 + i 1418 ﺍﺤﺴﺏ ﻜل ﻤﻥ : 1 - i 2 ﺍﻟﺘﻤﺭﻴﻥ. 10 ﻨﻌﺘﺒﺭ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔZ3 = -4 6 + 4 2i ; Z2 = -1 - 3i ; Z1 = 1 - i ﺍﻜﺘﺏ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻜل ﻤﻥ : Z1 , Z2 , Z3 , Z1 , Z2 , Z1 , Z32 , Z1 Z2 Z3 Z2 ﺍﻟﺘﻤﺭﻴﻥ. 11 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺘﻴﻥ : cosθ + i sinθ = eiθﻭ cosθ - i sinθ = e-iθ ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ θﻓﺈﻥ :cosθ = eiθ + e-iθ ﻭ sin θ = eiθ - e-iθ 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 12ﺍﻜﺘﺏ ﺍﻟﻼﺤﻘﺔ Z′ﻟﻠﻨﻘﻁﺔ M′ﺒﺩﻻﻟﺔ ﺍﻟﻼﺤﻘﺔ Zﻟﻠﻨﻘﻁﺔ Mﺇﺫﺍ ﻜﺎﻨﺕ M ′ﻫﻲ ﺼﻭﺭﺓ M ﺒﻭﺍﺴﻁﺔ : . 1 i wGﻫﻲ ﺍﻟﺫﻱ ﻻﺤﻘﺔ ﺸﻌﺎﻋﻪ t (1ﺍﻻﻨﺴﺤﺎﺏ 2 (2ﺍﻟﺘﺤﺎﻜﻲ Hﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ Oﻭﻴﺤﻭل ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 1 + iﺇﻟﻰ ﺍﻟﻨﻘﻁﺔ Bﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 2 . + 2i.- 3 +i ﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ Cﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 5π (3ﺍﻟﺩﻭﺭﺍﻥ Rﺍﻟﺫﻱ ﺯﺍﻭﻴﺘﻪ 6 ﺍﻟﺘﻤﺭﻴﻥ. 13 -1ﻋﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻜل ﻤﻥ 3 + 4i ; 3 – 4i -2ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - 6Z + 25 = 0 :
-3ﺍﺴﺘﻨﺘﺞ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ Z4 - 6Z2 + 25 = 0 : ﺍﻟﺘﻤﺭﻴﻥ. 14 A,B,Cﺜﻼﺙ ﻨﻘﻁ ﻟﻭﺍﺤﻘﻬﺎ a = -1 - i , b = 2 + i , c = 4i : ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . -1ﻤﺜل ﺍﻟﻨﻘﻁ . A,B,C ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ. =Z a-b -2ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ : c-b ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ . ABC -3ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Dﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺭﺒﺎﻋﻲ ABCDﻤﺭﺒﻊ. ﺍﻟﺘﻤﺭﻴﻥ. 15Z ≠ i Z , i ,ﺤﻴﺙ: 1 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ M , B , Aﺫﺍﺕ ﺍﻟﻠﻭﺍﺤﻕ 2 1 - 2Z . Z1 = iZ + 1 ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ .ﻨﻀﻊ: . Z1 =2. AM -1ﺒﻴﻥ ﺃﻥ : BMﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻋﺔ ) (Eﻟﻠﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺒﺤﻴﺙ ﻴﻜﻭﻥ . Z1 = 2 -2ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ ) (Fﻟﻠﻨﻘﻁ Mﺒﺤﻴﺙ ﻴﻜﻭﻥ Z1ﺤﻘﻴﻘﻲ . ﺍﻟﺘﻤﺭﻴﻥ. 16 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : Z = 1 + 2eiθ (1ﺤﻴﺙ θﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل \ . Z = i + 4eiθ (2ﺤﻴﺙ θﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل \ .\. ﺤﻴﺙ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل Z = -1 +i + kei π (3 6 ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺤل ﻓﻲ ^ ﺍﻟﺠﻤﻠﺘﻴﻥ :
iZ + iZ′ = 3 iZ + (2i - 1) Z′ = 4 -iZ + 3iZ′ = -i؛ 2iZ - Z′ = 1 + i ﺍﻟﺘﻤﺭﻴﻥ. 18 ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ : Z2 + 2 (1 - cosθ) Z + 2 - 2 cosθ = 0 ﺤﻴﺙ . 0 < θ ≤ πﻨﻜﺘﺏ ﻜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ . ﺍﻟﺘﻤﺭﻴﻥ. 19 ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻵﺘﻴﺔ ﻓﻲ ^ :)Z3 - 12Z2 + 48Z - 128 = 0 . . . (1 -1ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻘﺒل ﺤﻼ ﺤﻘﻴﻘﻴﺎ Z0ﺤﻴﺙ . Z0 = 8 -2ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ). (1 -3ﻟﻴﻜﻥ Z2 , Z1 , Z0ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺤﻴﺙ :ﺍﻟﻘﺴﻡ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ Z2ﺴﺎﻟﺏ. -ﺍﻜﺘﺏ ﻜل ﻤﻨﻬﺎ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ . -ﻤﺜل ﺍﻟﻨﻘﻁ M2 , M1 , M0ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ Z2 , Z1 , Z0ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ . Z3 = Z2 - Z0 -4ﻨﻔﺭﺽ : Z1 - Z0 -ﺍﺤﺴﺏ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ . Z3ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ . M0M1M2 ﺍﻟﺘﻤﺭﻴﻥ. 20 ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Zﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ . M Z1 = iZ+1-i ﻭ ﻨﻀﻊ : Z-2+i -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ Z1ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ.. π ﺘﺴﺎﻭﻱ Z1 -2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ :ﻋﻤﺩﺓ 2
-3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ . Z1 = 2 . π ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ Z1 -4ﻋﻴﻥ ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ 4 ﺍﻟﺘﻤﺭﻴﻥ. 21 ﻋﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ : Z = 1 - cosθ + i sinθﻤﻊ . -π < θ ≤ π ﺍﻟﺘﻤﺭﻴﻥ. 22ﻋﻴﻥ ﺜﻼﺙ ﺃﻋﺩﺍﺩ ﻤﺭﻜﺒﺔ ﺠﺩﺍﺅﻫﺎ -27iﻭ ﻁﻭﻴﻼﺘﻬﺎ ﺘﺸﻜل ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﺎﻫﺎ 3 π .ﻭ ﻋﻤﺩﺘﻬﺎ ﺘﺸﻜل ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﺎﻫﺎ . 3.(2 cm )ﺍﻟﻭﺤﺩﺓ ؛ (O ; uG , ) vG ﻤﺘﺠﺎﻨﺱ ﻭ ﻤﺘﻌﺎﻤﺩ ﻤﻌﻠﻡ ﺇﻟﻰ ﺍﻟﻤﻨﺴﻭﺏ ﺍﻟﺘﻤﺭﻴﻥ. 23 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ZA = 1ﻭ ﺍﻟﺩﺍﺌﺭﺓ ) (Cﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ Aﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ . R = 1ﻭ ﺍﻟﻨﻘﻁﺔ ُ Eﺫﺍﺕ ZB = 1 + ei π (Iﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺔ Fﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 2ﻭ ﺍﻟﻨﻘﻁﺔ Bﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 3 ﺍﻟﻼﺤﻘﺔ . ZE = 1 + ZB2 -1ﺒﻴﻥ ﺃﻥ Bﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩGﺍJﺌJﺭﺓ( )JJ.JG(C) J -2ﻋﻴﻥ ﻗﻴﺱ ﻟﻠﺯﺍﻭﻴﺔ . AF , AB -3ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻠﻌﺩﺩ ZB - ZAﻭ . ZE - ZA -4ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁ Aﻭ Bﻭ Eﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . (IIﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ Mﻭ M′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺘﻴﻥ Zﻭ Z′ﺤﻴﺙ : Z′ = 1 + Z2ﻭ Z ≠ 0 , Z ≠ 1 ≠. Z Zو1 ≠ 0 ﺤﻴﺙ Z′ - 1 -1ﻤﺎ ﻫﻭ ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ ﻟـ Z - 1 -2ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁ Aﻭ Mﻭ M′ﺘﻜﻭﻥ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427