Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

‫ﺇﺫﻥ ‪ x2 − x − 6 = 0 :‬ﻭﻤﻨﻪ ‪x2 = 3 ; x1 = −2 ; ∆ = 25 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻭﺤﻴﺩ }‪s = {3‬‬ ‫‪ (2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪2 ( logx )2 + 5logx − 3 = 0 :‬‬‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ‪ x > 0‬ﺒﻭﻀﻊ ‪ logx = t‬ﻨﺠﺩ ‪ 2t 2 + 5t − 3 = 0‬ﻭﻤﻨﻪ ‪:‬‬ ‫‪t2 = −3‬‬ ‫;‬ ‫‪t1‬‬ ‫=‬ ‫‪1‬‬ ‫‪; ∆ = 49‬‬ ‫‪2‬‬‫= ‪lnx‬‬ ‫‪1‬‬ ‫‪ln10‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪lnx‬‬ ‫=‬ ‫‪1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪logx‬‬ ‫=‬ ‫‪1‬‬ ‫‪:‬‬ ‫‪t‬‬ ‫=‬ ‫‪1‬‬ ‫ﻟﻤﺎ‬ ‫‪2‬‬ ‫‪ln10‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪ lnx = ln 10 :‬ﻭﻋﻠﻴﻪ ‪x = 10 :‬‬ ‫‪lnx‬‬ ‫=‬ ‫‪−3‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﻟﻤﺎ ‪logx = −3 : τ = −3‬‬ ‫‪ln10‬‬ ‫ﻭﻋﻠﻴﻪ ‪ lnx = ln10 −3 :‬ﻭ ﻤﻨﻪ ‪x = 10−3 :‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ ‪{ }s = 10;10−3 :‬‬ ‫‪log x > 3‬‬ ‫‪ (3‬ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪:‬‬ ‫ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﻜﻭﻥ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ‪x > 0‬‬‫ﻭﻋﻠﻴﻪ ‪x > 103 :‬‬ ‫ﺃﻱ ‪lnx > ln103 :‬‬ ‫‪lnx‬‬ ‫‪>3‬‬ ‫‪:‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ‬ ‫‪ln10‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ‪s = 103;+∞ :‬‬ ‫‪ (3 (4‬ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪:‬‬ ‫‪log ( x − 6) > 2logx‬‬‫ﺘﻜﻭﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ‪ x > 0‬ﻭ ‪ x − 6 > 0‬ﻭﻋﻠﻴﻪ ‪x > 6 :‬‬ ‫ﻭﻤﻨﻪ ﻓﻬﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞‪] [. 6;+‬‬‫ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﻜﺎﻓﺊ ‪ log ( x − 6) > logx2 :‬ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪x − 6 > x2 :‬‬ ‫ﺇﺫﻥ ‪ − x2 + x − 6 < 0 :‬ﻭﻋﻠﻴﻪ ﻟﻴﺱ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ﺤﻠﻭل ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪18‬‬ ‫ﺤﺴﺎﺏ ‪: S‬‬

S = log  1 × 2 × 3 × ..... × 88 × 99   2 3 4 99 1000  S = log  1  = −log1000  1000  S = −log103 = −3 19 ‫ﺍﻟﺘﻤﺭﻴﻥ‬1) f ( x) = x + log x ]−∞;0[ ∪ ]0;+∞[ ‫ ﻤﻌﺭﻓﺔ ﻋﻠﻰ‬f ‫ﺍﻟﺩﺍﻟﺔ‬ lim f ( x) = lim x + ln x ln10 x→−∞ x→−∞ = lim x 1 + ln(− x) × 1 = −∞   x → −∞ −x ln10 lim f (x) = lim 1 + lnx × 1 = +∞ x ln10 x→+∞ x → +∞ lim f (x) = lim x + lnx = −∞ > > ln10 x→0 x→0 lim f ( x) = lim x + ln(− x) = −∞ < < ln10 x→0 x→6( )2) f ( x) = x2 − 1 − log x2 − 1 x2 − 1 > 0 ‫ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﻥ ﺃﺠل‬f ‫ﺍﻟﺩﺍﻟﺔ‬ x ∈ ]−∞;1[ ∪ ]1;+∞[ : ‫ﻭ ﻋﻠﻴﻪ‬ ]−∞;1[ ∪ ]1;+∞[ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻑ ﻫﻲ‬( )lim f ( x) = lim x2 − 1 − log x2 − 1x→−∞ x → −∞ ( ) ( )= lim x → −∞ x2 −1  log x2 − 1  1 −  = +∞  x2 −1 

( ) ( )lim f ( x) = lim x2 −1  log x2 − 1  1 −  = +∞ x→+∞ x→+∞  x2 −1  ( )lim f ( x) = lim x2 − 1 − log x2 − 1 = +∞ x→−1 x→−1 x>−1 x>−1 ( )lim f ( x) = lim x2 − 1 − log x2 − 1 = −∞ x→1 x→1 x>1 x>13) f ( x) = 1 −1 Logx x > 0 ‫ ﻭ‬Logx − 1 ≠ 0 ‫ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل‬f ‫ﺍﻟﺩﺍﻟﺔ‬ x ≠ 10 : ‫ ﺃﻱ‬lnx ≠ ln10 : ‫ﻭﻋﻠﻴﻪ‬ lnx ≠1 : ‫ﻤﻌﻨﺎﻩ‬ logx ≠ 1 ln10 ]0,10[ ∪ ]10;+∞[ : ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ‬ lim f (x) = lim 1 = 0 > > logx − 1 x→0 x→0 ( )lim f x = lim 1 −1 = −∞ logx x →10 x →10 x>10 x>10 ( )lim f x = lim 1 − 1 = +∞ > logx > x →10 x →10 lim f (x) = lim 1 = 0 logx − 1 x→+∞ x → +∞ 4) f ( x) = (log x)2 ] [0;+∞ ‫ ﺃﻱ ﻤﻌﺭﻓﺔ ﻋﻠﻰ‬x > 0 ‫ﺍﻟﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل‬ lim f ( x) = lim (logx)2 = +∞ x→0 x→0 x>0 x>0 lim f ( x) = lim (logx)2 = +∞ x→+∞ x → +∞

‫ﺍﻟﺘﻤﺭﻴﻥ ‪20‬‬ ‫‪ – 1‬ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ‪ x − 1 ≠ 0‬ﺃﻱ ‪x ≠ 1‬‬ ‫ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻫﻲ ‪]−∞;1[ ∪ ]1;+∞[ :‬‬ ‫∞‪lim f ( x) = lim log x − 1 = +‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪lim f ( x) = lim log x − 1 = −‬‬ ‫‪x→1‬‬ ‫‪x→1‬‬ ‫‪x<1 x<1‬‬ ‫∞‪lim f ( x) = lim log x − 1 = −‬‬ ‫‪x→1‬‬ ‫‪x→1‬‬ ‫‪x>1 x>1‬‬ ‫∞‪lim f ( x) = lim log x − 1 = +‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪f‬‬ ‫‪′‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪1‬‬ ‫×‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ln10‬‬ ‫‪−‬‬‫ﻟﻤﺎ ‪ f ′ ( x ) > 0 : x > 1‬ﻭ ﻤﻨﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞‪ 1;+‬ﻭ ﻋﻠﻴﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ[ ]‬ ‫[‪. ]−∞;1‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪1‬‬ ‫∞‪+‬‬ ‫‪+‬‬‫)‪f ′(x‬‬ ‫‪-‬‬ ‫∞‪+‬‬ ‫∞‪+‬‬‫)‪f (x‬‬ ‫∞‪−∞ −‬‬ ‫‪ -2‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻫﻨﺎﻙ ‪4‬‬ ‫ﻓﺭﻭﻉ ﻻﻨﻬﺎﺌﻴﺔ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ ‪x = 1 :‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫)‪log ( x − 1‬‬ ‫‪=0‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫∞‪x → +‬‬ ‫‪x‬‬

‫ﺇﺫﻥ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞‪+‬‬‫‪lim‬‬ ‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪lim‬‬ ‫)‪log (− x + 1‬‬ ‫‪=0‬‬‫∞‪x→−‬‬ ‫‪x‬‬ ‫∞‪x → −‬‬ ‫‪x‬‬ ‫ﺇﺫﻥ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻋﻨﺩ ∞‪−‬‬ ‫‪ -3‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ‪y = f ′ ( 2) .( x − 2) + f ( 2) :‬‬‫‪f‬‬ ‫‪′‬‬ ‫(‬ ‫)‪2‬‬ ‫=‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪f (2) = 0‬‬ ‫‪ln10‬‬ ‫‪y‬‬ ‫=‬ ‫‪1‬‬ ‫(‬ ‫‪x‬‬ ‫‪−‬‬ ‫)‪2‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪ln10‬‬ ‫‪ – 4‬ﺇﻴﺠﺎﺩ ﺍﻟﻤﻤﺎﺴﺎﺕ ﺫﺍﺕ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ ‪: 10‬‬ ‫‪1‬‬ ‫×‬ ‫‪1‬‬ ‫=‬ ‫‪10‬‬ ‫‪:‬‬ ‫ﻤﻨﻪ‬ ‫ﻭ‬ ‫‪f ′ ( x) = 10‬‬ ‫‪ln10‬‬ ‫‪x−1‬‬‫=‪x−1‬‬ ‫‪1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﺇﺫﻥ ‪10(ln10) .( x − 1) = 1 :‬‬ ‫‪10.ln10‬‬ ‫ﺇﺫﻥ ﻫﻨﺎﻙ ﻤﻤﺎﺱ ﻭﺍﺤﺩ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ‬ ‫‪x‬‬ ‫=‬ ‫‪1+‬‬ ‫‪1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪ln10‬‬ ‫ﻤﻌﺎﻤل ﺘﻭﺠﻴﻬﻪ ‪. 10‬‬ ‫‪1+‬‬ ‫‪1‬‬ ‫ﺍﻟﻔﺎﺼﻠﺔ‬ ‫‪ln10‬‬ ‫‪ -5‬ﺇﻨﺸﺎﺀ ‪( ): C‬‬ ‫‪y‬‬ ‫‪1‬‬ ‫‪0,5‬‬‫‪-1,5 -1 -0,5 0‬‬ ‫‪0,5 1 1,5 2 2,5 3‬‬ ‫‪x‬‬ ‫‪-0,5‬‬ ‫‪-1‬‬

‫* ‪x−1 =1: y = 0‬‬ ‫‪ -‬ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ ‪y = 0 : x = 0 :‬‬ ‫* }‪(C ) ∩ ( y′y) = {0‬‬‫ﻭ ﻤﻨﻪ ‪ x − 1 = 1 :‬ﺃﻭ ‪ x = 1 = −1‬ﻭﻋﻠﻴﻪ ‪ x = 2 :‬ﺃﻭ ‪x = 0‬‬ ‫}‪ (C ) ∩ ( x′x) = {O, A‬ﺤﻴﺙ ‪A(2;0) :‬‬ ‫‪ -6‬ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪:‬‬ ‫ﻴﺘﻘﺎﻁﻊ ) ‪ (C‬ﻭ ) ∆ ( ﻓﻲ ﻨﻘﻁﺘﻴﻥ ﻤﺘﻤﺎﻴﺯﺘﻴﻥ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 21‬‬ ‫[∞‪Df = ]0;+‬‬ ‫‪-1‬‬ ‫∞‪lim f ( x) = lim− 4 + 4 logx = −‬‬ ‫>>‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫∞‪lim f ( x) = lim − 4 + 4logx = +‬‬‫∞‪x→+‬‬ ‫∞‪x → +‬‬ ‫‪f‬‬ ‫(‪′‬‬ ‫)‪x‬‬ ‫=‬ ‫‪4‬‬ ‫×‬ ‫‪1‬‬ ‫‪Ln10‬‬ ‫‪x‬‬‫ﻭ ﻤﻨﻪ ‪ f ′ ( x ) > 0 :‬ﻭ ﻋﻠﻴﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ [∞‪]0;+‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫∞‪+‬‬‫)‪f ′(x‬‬ ‫‪+‬‬‫)‪f (x‬‬ ‫∞‪+‬‬ ‫∞‪−‬‬ ‫‪ – 2‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ‪:‬‬ ‫ﻫﻨﺎﻙ ﻓﺭﻋﻴﻥ ﻻﻨﻬﺎﺌﻴﻴﻥ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ ‪x = 0 :‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪−4‬‬ ‫‪+‬‬ ‫‪logx‬‬ ‫‪=0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫∞‪x → +‬‬

‫ﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ‪.‬‬ ‫‪ – 3‬ﺇﻨﺸﺎﺀ ) ‪: (C‬‬ ‫‪y‬‬‫‪1,5‬‬ ‫‪0‬‬ ‫‪1,5 3 4,5 6 7,5 9 10,5 12 13,5 15 16,5 x‬‬‫‪-1,5‬‬‫‪-3‬‬‫‪-4,5‬‬‫‪-6‬‬‫‪-7,5‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬ ‫}‪Df = { x ∈ : x > 0 , logx ≠ 0‬‬ ‫[∞‪Df = ]0;+1[;]1;+‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫‪( )lim f‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫=‬ ‫‪0‬‬ ‫>‬ ‫>‬ ‫‪logx‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫=)‪(x‬‬ ‫‪lim 1‬‬ ‫=‬ ‫∞‪−‬‬ ‫<‬ ‫<‬ ‫‪logx‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪x→1‬‬ ‫→‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim 1‬‬ ‫=‬ ‫∞‪+‬‬ ‫>‬ ‫>‬ ‫‪logx‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪x→1‬‬ ‫→‬

‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫=‬ ‫‪0‬‬ ‫‪logx‬‬ ‫∞‪x → +‬‬ ‫∞‪x→ +‬‬ ‫‪11‬‬ ‫‪− ln10 × x‬‬ ‫= )‪f ′(x‬‬ ‫=‬ ‫‪−1‬‬ ‫‪x )2‬‬ ‫‪(log x )2‬‬ ‫‪( xln10)(log‬‬‫[‪ ]0;1‬و [∞‪]1;+‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f ′ x < 0‬ﻭ ﻤﻨﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ) (‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪1 ∞+‬‬ ‫‪0‬‬ ‫)‪f ′(x‬‬ ‫‪--‬‬ ‫)‪f (x‬‬ ‫∞‪+‬‬ ‫∞‪−‬‬ ‫‪0‬‬ ‫ﺇﻨﺸﺎﺀ ) ‪: (C‬‬ ‫‪ y = 0 , x = 1‬ﻤﻌﺎﺩﻟﺘﻲ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻟﻤﻘﺎﺭﺒﻴﻥ ‪.‬‬

y 5 4 3 2 1-1 0 1 2 3 4 5 6 7x -1 -2 -3 23 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ ] [Df = 0;+∞ : ‫ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ‬lim f (x) = lim logx − 1 = lim 1 ( log x − 1) = −∞ > > x > xx→0 x→0 x→0 lim f ( x) = lim logx − 1 = 0 x x x→+∞ x → +∞ 1 . 1 .x − 1(logx − 1) ln10 x f ′( x) = x2 f ′( x) = 1 − log + 1 ln10 x2

‫)‪′( x‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪lnx‬‬ ‫‪+1‬‬ ‫‪ln10‬‬ ‫‪ln10‬‬ ‫‪f‬‬ ‫=‬ ‫‪x2‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪lnx + ln10‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪ln‬‬ ‫‪10‬‬ ‫‪x 2 ln10‬‬ ‫‪x‬‬‫‪f‬‬ ‫(‪′‬‬ ‫)‪x‬‬ ‫=‬ ‫=‬ ‫‪x 2 ln10‬‬ ‫‪10‬‬ ‫=‬ ‫‪e −1‬‬ ‫‪:‬‬ ‫ﻤﻨﻪ‬ ‫ﻭ‬ ‫‪ln‬‬ ‫‪10‬‬ ‫=‬ ‫‪−1‬‬ ‫‪:‬‬ ‫ﺘﻜﺎﻓﺊ‬ ‫‪f ′(x) = 0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x = 10e‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪x‬‬ ‫=‬ ‫‪10‬‬ ‫‪ 10 = xe−1‬ﺃﻱ ‪:‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪e −1‬‬ ‫‪10‬‬ ‫>‬ ‫‪e −1‬‬ ‫‪:‬‬ ‫ﻤﻨﻪ‬ ‫ﻭ‬ ‫‪ln‬‬ ‫‪10‬‬ ‫>‬ ‫‪−1‬‬ ‫‪:‬‬ ‫ﺘﻜﺎﻓﺊ‬ ‫‪f ′(x) > 0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫ﺃﻱ ‪ 10 > xe−1 :‬ﻭﻋﻠﻴﻪ ‪x < 10e :‬‬ ‫ﻭ ﻤﻨﻪ ‪ f :‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ 0 ; 10e‬ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ] ]‬ ‫ﻋﻠﻰ [∞ ‪[10e ; +‬‬‫‪x0‬‬ ‫∞‪10e +‬‬‫)‪f ′(x‬‬ ‫‪+‬‬ ‫‪-‬‬ ‫)‪f (10e‬‬‫)‪f (x‬‬ ‫‪0‬‬ ‫∞‪−‬‬ ‫‪f‬‬ ‫) ‪(10e‬‬ ‫=‬ ‫‪log2e‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫ﺇﺫﻥ ‪0, 02 :‬‬ ‫‪2e‬‬ ‫ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻲ ‪:‬‬

1y 1 2 3 4 5 6 7x-1 0 -1 -2 -3 -4 -5 -6

‫‪ - 6‬ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‬ ‫ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫‪ -1‬ﺇﺠﺭﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻋﻠﻰ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‪.‬‬ ‫‪ - 2‬ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ ‪.‬‬ ‫‪ -3‬ﺤﺴﺎﺏ ﺍﻟﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻟﻌﺩﺩ ﻤﺭﻜﺏ‬ ‫‪ -4‬ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﺇﻟﻰ ﺍﻟﻤﺜﻠﺜﻲ ﻭﺍﻟﻌﻜﺱ‪.‬‬ ‫‪ -5‬ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺨﻭﺍﺹ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‪.‬‬‫‪ -6‬ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻟﺤل ﺍﻟﻤﺴﺎﺌل ﻓﻲ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﻬﻨﺩﺴﺔ‪.‬‬ ‫‪ -7‬ﺘﻭﻅﻴﻑ ﺩﺴﺘﻭﺭ ﻤﻭﺍﻓﺭ ﻟﺤل ﻤﺴﺎﺌل ﻓﻲ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﻬﻨﺩﺴﺔ ‪.‬‬ ‫‪ -8‬ﺤل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ‪.‬‬ ‫‪ – 9‬ﺤل ﻤﻌﺎﺩﻻﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ‬ ‫‪ -10‬ﺘﻌﻴﻴﻥ ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻤﺭﻜﺒﺔ ﻟﻠﺘﺤﻭﻴﻼﺕ ﺍﻟﻤﺄﻟﻭﻓﺔ ‪.‬‬ ‫‪ -11‬ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺘﺤﻭﻴل ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻜﺘﺎﺒﺘﻪ ﺍﻟﻤﺭﻜﺒﺔ ‪.‬‬ ‫‪ -12‬ﺘﻭﻅﻴﻑ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻓﻲ ﺍﻟﺘﺤﻭﻴﻼﺕ ‪.‬‬ ‫ﺗﺼﻤﻴﻢ اﻟﺪرس‬‫‪ – 1‬ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‬ ‫ﺃﻨﺸﻁﺔ‬‫‪ -3‬ﺘﻌﺎﺭ ﻴﻑ ﻭ ﻤﺼﻁﻠﺤﺎﺕ‬ ‫‪ -2‬ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ‬ ‫‪ -5‬ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ‬ ‫‪ -4‬ﺍﻟﺤﺴﺎﺏ ﻓﻲ ‪C‬‬‫‪ -6‬ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻋﺩﺩ ﻤﺭﻜﺏ ‪ -7‬ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ )ﺘﺭﻤﻴﺯ ﺃﻭﻟﻴﺭ(‬‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل‬ ‫‪ – 8‬ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ‪C‬‬‫ﺍﻟﺤـﻠــــــﻭل‬ ‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬

‫ﺃﻨﺸﻁﺔ‬ ‫ﺍﻟﻨﺸﺎﻁ ‪:‬‬‫ﻨﻌﺘﺒﺭ ﻤﺠﻤﻭﻋﺔ ‪ E‬ﻋﻨﺎﺼﺭﻫﺎ ﻤﻥ ﺍﻟﺸﻜل ‪ x + iy‬ﺤﻴﺙ ‪ x‬ﻭ ‪ y‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻭ ‪ i‬ﻋﺩﺩ ﺤﻴﺙ‬ ‫‪ i2 = -1‬ﻟﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ ‪ Z′ , Z‬ﺤﻴﺙ ‪:‬‬ ‫‪ Z = 5 + 2i‬ﻭ ‪Z′ = 3 - i‬‬ ‫‪ -1‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻋﻤﻠﻴﺘﻲ ﺍﻟﺠﻤﻊ ﻭ ﺍﻟﻀﺭﺏ ﻓﻲ ‪ E‬ﻟﻬﺎ ﻨﻔﺱ ﺨﻭﺍﺹ‬ ‫ﻋﻤﻠﻴﺘﻲ ﺍﻟﺠﻤﻊ ﻭﺍﻟﻀﺭﺏ ﻓﻲ \ ‪ ،‬ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪:‬‬‫‪Z × Z′ ; Z2; 2Z -3Z′ ; 8Z ; Z +Z′ ; (Z- Z′)2 ; (2Z +Z′)2‬‬ ‫‪1‬‬ ‫=‬ ‫‪5 - 2i‬‬ ‫ﻋﻠﻰ ﺍﻟﺸﻜل ‪:‬‬ ‫‪1‬‬ ‫‪ (2‬ﺒﻜﺘﺎﺒﺔ‬ ‫‪Z‬‬ ‫)‪(5 + 2i) (5 - 2i‬‬ ‫‪Z‬‬ ‫‪1‬‬ ‫‪=α‬‬ ‫‪+ iβ‬‬ ‫ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ α‬و ‪ β‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪Z‬‬ ‫‪1‬‬‫‪.‬‬ ‫‪Z′‬‬ ‫‪= a + ib‬‬ ‫ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ a‬ﻭ ‪ b‬ﺒﺤﻴﺙ‪:‬‬ ‫‪ (3‬ﺍﺤﺴﺏ ‪ i 2008‬ﺜﻡ ‪ in‬ﺒﺩﻻﻟﺔ ‪( ). n‬‬ ‫‪ (4‬ﺍﺴﺘﻨﺘﺞ ﻁﺭﻴﻘﺔ ﻟﺤﺴﺎﺏ ‪( ). 1 + i 2008‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪ (1‬ﺍﻟﺤﺴﺎﺏ ‪:‬‬‫‪• Z + Z′ = (5 + 2i) + (3 - i) = (5 + 3) + (2 - 1) i = 8 + i‬‬‫‪• 8Z = 8 (5 +2i) = 40 + 16i‬‬‫‪• 2Z - 3Z′ = 2 (5 + 2i) - 3 (3 - i) = 10 + 4i - 9 + 3i = 1 + 7i‬‬‫‪• Z2 = (5 + 2i)2 = (5)2 + 2 × 5 × 2i + (2i)2 = 21 + 20i‬‬‫‪• Z . Z′ = (5 +2i) (3 - i)= 15 - 5i + 6i - 2i2 = 17 + i‬‬‫‪• (2Z + Z′)2 = [2 (5 + 2i) + 3 - i]2 = (10 + 4i + 3 - i)2‬‬

= (13 + 3i)2 = (13)2 + 2 × 13 × 3i + (3i)2 = 169 + 78i -9 = 160 + 78i• (Z - Z′)2 = (5 + 2i - 3 + i)2 = (2 + 3i)2 = (2)2 + 2.2.3i + (3i)2 = 4 + 12i - 9 = -5 + 12i 1 = 5 - 2i = 5 - 2i (2 Z (5 + 2i) (5 - 2i) (5)2 - (2i)2 1 = 5 - 2i = 5 - 2 i : ‫ﻭ ﻤﻨﻪ‬ Z 25 + 4 29 29 -2 5 β = 29 ‫و‬ α = 29 : ‫ﺇﺫﻥ‬1 = 1 = 3+i = 3 + i = 3+i = 3+iZ′ 3-i (3 - i) (3 + i) (3)2 - (i)2 9+1 10 . b = 1 ‫و‬ a = 3 : ‫ﺇﺫﻥ‬ 1 = 3 + 1 i : ‫ﻭ ﻤﻨﻪ‬ 10 10 Z′ 10 10 ( ): i 2008 ‫ ﺤﺴﺎﺏ‬- (3( )( ) ( )i 2008 = i2 1004 = -1 1004 = 1 (i)n )2 n n = ( i  2 = ( -1) 2 : in ‫ ﺤﺴﺎﺏ‬-  ( )1 + i 2008 ‫( ﺍﺴﺘﻨﺘﺎﺝ ﻁﺭﻴﻘﺔ ﻟﺤﺴﺎﺏ‬4 2 1004 ( )=1004 1 +2i -1 1004( )(1 + i)2008 = (1 + i )  = 1 + 2i + i2  = 21004 i2 502 = 21004 . -1 502 = 21004 ( ) ( ) ( )=2i 1004 .

‫‪ – 1‬ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ‪:‬‬ ‫‪( )G G‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪O ; i , j‬‬ ‫‪ -‬ﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺘﻤﺜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻭﻋﺩﺩ ﻤﺭﻜﺏ ﻭﺤﻴﺩ‪.‬‬ ‫ﻭﻜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻴﻤﺜل ﺒﻨﻘﻁﺔ ﻭ ﺒﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ‪.‬‬ ‫‪ -‬ﺍﻟﻨﻘﻁﺔ )‪ J(o ; 1‬ﺘﻤﺜل ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﺍﻟﺫﻱ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪. i‬‬ ‫‪ -‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ x‬ﻭ ‪ ، y‬ﻴﺭﻤﺯ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﺍﻟﻤﻤﺜل‬ ‫ﺒﺎﻟﻨﻘﻁﺔ ‪ M x ; y‬ﺒﺎﻟﺭﻤﺯ ‪( ). x + iy‬‬ ‫‪ -‬ﻴﺭﻤﺯ ﻟﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺒﺎﻟﺭﻤﺯ ^ ‪.‬‬ ‫‪ -2‬ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ‪:‬‬‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ x‬ﻭ ‪ : y‬ﺍﻟﺸﻜل ‪ x + iy‬ﻴﺴﻤﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ‪. Z‬‬ ‫‪ -3‬ﺘﻌﺎﺭ ﻴﻑ ﻭ ﻤﺼﻁﻠﺤﺎﺕ ‪:‬‬ ‫ﻟﻴﻜﻥ ‪ Z = x + iy‬ﻋﺩﺩ ﻤﺭﻜﺏ ‪ x ،‬ﻭ ‪ y‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ‬ ‫‪ -‬ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ‪ x‬ﻴﺴﻤﻰ ﺍﻟﺠﺯﺀ ﺃﻭ ﺍﻟﻘﺴﻡ ﺍﻟﺤﻘﻴﻘﻲ ﻟﻠﻌﺩﺩ‬ ‫ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪ Re Z‬ﺃﻱ ‪( ) ( )Re Z = x :‬‬ ‫‪ -‬ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ‪ y‬ﻴﺴﻤﻰ ﺍﻟﺠﺯﺀ ﺃﻭ ﺍﻟﻘﺴﻡ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪Z‬‬ ‫ﻭﻴﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪ Im Z‬ﺃﻱ ‪. Im ( Z) = y ( ):‬‬ ‫‪ -‬ﺍﻟﻨﻘﻁﺔ )‪ M ( x ; y‬ﺘﺴﻤﻰ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪Z‬‬ ‫ﻭ ﺍﻟﻌﺩﺩ ‪ Z‬ﻴﺴﻤﻰ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ )‪M ( x ; y‬‬

‫‪ -‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ y′ , x′ , y , x‬ﻓﺈﻥ ﺍﻟﻌﺩﺩ ‪ x + iy‬ﻴﺴﺎﻭﻱ‬ ‫ﺍﻟﻌﺩﺩ ‪ x′ + iy′‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪ x = x′ :‬ﻭ ‪. y = y′‬‬ ‫‪ -‬ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ ﻭ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫\ ∈ ‪ Z‬ﻴﻜﺎﻓﺊ‪. Im ( Z) = 0 :‬‬ ‫‪ -‬ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ‪( )Re Z = 0 :‬‬ ‫‪ -‬ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻴﺩﻋﻰ ﺍﻟﻤﺤﻭﺭ ﺍﻟﺤﻘﻴﻘﻲ ﻭ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻴﺩﻋﻰ‬ ‫ﺍﻟﻤﺤﻭﺭ ﺍﻟﺘﺨﻴﻠﻲ ‪.‬‬ ‫‪ -‬ﺇﺫﺍ ﻜﺎﻥ ‪ Z = 0‬ﻓﺈﻥ ‪ Z‬ﺤﻘﻴﻘﻲ ﻭ ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻭ ﻴﻤﺜل‬ ‫ﺒﺎﻟﻨﻘﻁﺔ )‪. O (0 ; 0‬‬ ‫‪ -4‬ﺍﻟﺤﺴﺎﺏ ﻓﻲ ‪:C‬‬ ‫‪ -‬ﺍﻟﻤﺠﻤﻭﻉ ﻭ ﺍﻟﺠﺩﺍﺀ ﻓﻲ ^ ‪:‬‬ ‫ﺍﻟﻤﺠﻤﻭﻋﺔ ^ ﻤﺯﻭﺩﺓ ﺒﻌﻤﻠﻴﺘﻴﻥ ﻫﻤﺎ ﺍﻟﺠﻤﻊ ‪ +‬ﻭ ﺍﻟﻀﺭﺏ × ﻤﻌﺭﻓﺘﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ‬ ‫‪ Z‬و ‪ Z′‬ﺤﻴﺙ‪:‬‬ ‫‪ Z = x + iy‬ﻭ ‪ Z′ = x′ + iy′‬ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫)‪Z + Z′ = (x + x′) + i (y + y′‬‬‫)‪Z × Z′ = (xx′ - yy′) + i (xy′ + x′y‬‬ ‫ﻫﺎﺘﻴﻥ ﺍﻟﻌﻤﻠﻴﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺨﻭﺍﺹ ﺍﻟﺠﻤﻊ ‪ +‬ﻭ ﺍﻟﻀﺭﺏ × ﻓﻲ \‬ ‫‪ -‬ﻗﻭﻯ ﻋﺩﺩ ﻤﺭﻜﺏ ‪:‬‬ ‫ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻟﻬﺎ ﻨﻔﺱ ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ ﻟﻌﺩﺩ ﺤﻘﻴﻘﻲ ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫)‪i2 = (0 + 1 . i) × (0 + 1 . i‬‬ ‫‪= (0 - 1) + i (0 . 1 + 0 . 1) = -1‬‬ ‫ﻭﻋﻠﻴﻪ ‪i2 = -1 :‬‬

‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ‪. Z2 = -4 + 5i ; Z1 = 3 + 2i :‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪. Z1 × Z2 , Z1 + Z2‬‬ ‫‪.‬‬ ‫‪Z‬‬ ‫‪3‬‬ ‫;‬ ‫‪Z12‬‬ ‫‪ (2‬ﺍﺤﺴﺏ‬ ‫‪2‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪Z1 + Z2 = (3 - 4) + i (2 + 5) • (1‬‬ ‫ﻭﻤﻨﻪ ‪Z1 + Z2 = - 1 + 7i :‬‬ ‫)‪Z1 × Z2 = (3 + 2i) (-4 + 5i‬‬ ‫‪x‬‬ ‫‪= -12 + 15i - 8i + 10i2 = -12 + 7i - 10‬‬ ‫ﻭ ﻤﻨﻪ ‪Z1 × Z2 = -22 + 7i :‬‬ ‫‪Z12 = (3 + 2i)2 = (3)2 + 2(3) × 2i + (2i)2‬‬ ‫‪(2‬‬ ‫ﻭ ﻤﻨﻪ ‪ Z12 = 9 + 12i - 4 :‬ﺃﻱ‪Z12 = 5 + 12i :‬‬‫‪Z‬‬ ‫‪3‬‬ ‫‪= (-4 + 5i)3‬‬ ‫‪= (-4)3‬‬ ‫‪+ 3(-4)2‬‬ ‫×‬ ‫‪5i + 3(-4) (5i)2‬‬ ‫‪+ (5i)3‬‬ ‫‪2‬‬ ‫‪= -64 + 240i + 300 - 125i = 236 + 115i‬‬ ‫‪( JJJJG JJJJG‬‬ ‫ﺨﻭﺍﺹ ‪:‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ Z‬ﻭ ‪ Z′‬ﻻﺤﻘﺘﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ ‪ M‬ﻭ ‪) M′‬ﺃﻭ ﺍﻟﺸﻌﺎﻋﻴﻥ ‪ OM‬و ‪ OM′‬ﻋﻠﻰ‬ ‫‪M′ S‬‬ ‫ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ ‪:‬‬ ‫‪ Z + Z′ x‬ﻫ‪JG‬ﻭ‪J‬ﻻ‪J‬ﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪S‬‬ ‫)ﺃ‪G‬ﻭ‪ J‬ﺍ‪J‬ﻟ‪J‬ﺸﻌ‪J‬ﺎﻉ ‪JJ( OJJGS‬ﺤﻴﺙ‪M JJJG :‬‬ ‫‪O JJJG OS = OM + OM′‬‬ ‫‪JGZ - Z′ x‬ﻫ‪J‬ﻭ‪JJ‬ﻻﺤ‪J‬ﻘﺔ ﺍﻟﻨﻘ‪JG‬ﻁ‪J‬ﺔ‪) DJJ‬ﺃﻭ ﺍﻟ‪JG‬ﺸﻌ‪J‬ﺎ‪J‬ﻉ‪JJ(JOG DJ‬ﺤﻴ‪J‬ﺙ‪M′′ D JJJG :‬‬‫‪JJJG OD = OM - OM′ = OM + OM′′‬‬‫ﻭﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻨﺕ ‪ A‬ﻭ ‪ B‬ﻨﻘﻁﺘﺎﻥ ﻻﺤﻘﺘﺎﻫﻤﺎ ‪ ZA‬ﻭ ‪ ZB‬ﻋﻠﻲ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ‪AB‬‬ ‫‪ZJJJG‬‬ ‫ﺍﻟﻤﺭﻜﺏ‬ ‫ﺍﻟﻌﺩﺩ‬ ‫ﻫﻭ‬ ‫‪AB‬‬

‫‪Z JJJG‬‬ ‫‪= ZB‬‬ ‫‪- ZA‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪AB‬‬ ‫‪ZI‬‬ ‫=‬ ‫‪ZA‬‬ ‫‪+ ZB‬‬ ‫ﻭﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ I‬ﻤﻨﺘﺼﻑ ‪ AB‬ﻫﻭ ‪ ZI‬ﺤﻴﺙ] [‬ ‫‪2‬‬ ‫‪ -‬ﻤﻘﻠﻭﺏ ﻋﺩﺩ ﻤﺭﻜﺏ ‪:‬‬ ‫‪ Z‬ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪ .‬ﺤﻴﺙ ‪. Z = x + iy‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫)‪( x - iy‬‬ ‫=‬ ‫‪x - iy‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪Z‬‬ ‫‪x + iy‬‬ ‫)‪(x + iy) (x - iy‬‬ ‫‪x2 + y2‬‬ ‫‪1‬‬ ‫=‬ ‫‪x2‬‬ ‫‪x‬‬ ‫‪-i‬‬ ‫‪y‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪Z‬‬ ‫‪+ y2‬‬ ‫‪x2 + y2‬‬ ‫ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻤﻘﻠﻭﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ‪.‬‬ ‫ﺃﻱ ‪ x‬ﻭ‪ y‬ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻤﻌﺎ‪.‬‬ ‫‪ -‬ﺤﺎﺼل ﻗﺴﻤﺔ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥ ‪:‬‬ ‫‪ Z‬ﻭ ‪ Z′‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ‪Z′ ≠ 0 :‬‬ ‫ﻤﻊ ‪ Z = x + iy‬ﻭ ‪Z′ = x′ + iy′‬‬‫‪Z‬‬ ‫‪=Z‬‬ ‫×‬ ‫‪1‬‬ ‫=‬ ‫‪(x‬‬ ‫)‪+iy‬‬ ‫×‬ ‫‪ x′‬‬ ‫‪-i‬‬ ‫‪y′ ‬‬‫‪Z′‬‬ ‫‪Z′‬‬ ‫‪ x′2 + y′2‬‬ ‫‪x′2 + y′2 ‬‬ ‫=‬ ‫‪xx′‬‬ ‫‪-i‬‬ ‫‪xy′‬‬ ‫‪+i‬‬ ‫‪x′y‬‬ ‫‪+‬‬ ‫‪yy′‬‬ ‫‪x′2 + y′2‬‬ ‫‪x′2 + y′2‬‬ ‫‪x′2 + y′2‬‬ ‫‪x′2 + y′2‬‬ ‫=‬ ‫‪xx′ + yy′‬‬ ‫‪+i‬‬ ‫‪x′y - xy′‬‬ ‫‪x′2 + y′2‬‬ ‫‪x′2 + y′2‬‬ ‫‪Z‬‬ ‫ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‬‫‪ Z′‬ﺃﻱ ﺤﺎﺼل ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﻋﻠﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﻏﻴﺭ‬ ‫ﺍﻟﻤﻌﺩﻭﻡ ‪. Z′‬‬

‫‪ -5‬ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ ‪:‬‬ ‫ﺘﻌﺭﻴﻑ ‪:‬‬‫ﻟﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z = x + iy‬ﺤﻴﺙ ‪ x‬ﻭ‪ y‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻨﻅﻴﺭﺓ‬‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻫﻲ ﺍﻟﻨﻘﻁﺔ ‪ M′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ . x - i y‬ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪x - iy‬‬ ‫ﻴﺴﻤﻰ ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ x + i y‬ﻭﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪ Z‬ﺃﻱ ‪Z = x - i y :‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪ Z1 = 1 + i :‬ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪Z1 = 1 - i :‬‬ ‫ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪ Z2 = i :‬ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪Z2 = -i :‬‬ ‫ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪ Z3 = 8 + 3 i :‬ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪:‬‬ ‫‪Z3 = 8 - 3 i‬‬ ‫ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪ Z4 = 10 :‬ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‪Z4 = 10 :‬‬ ‫ﺃﻱ ﺃﻥ ‪Z4 = Z4 :‬‬ ‫ﺨﻭﺍﺹ ‪:‬‬ ‫‪ x (a‬ﻭ ‪y‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ Z = x + iy .‬ﻋﺩﺩ ﻤﺭﻜﺏ ‪.‬‬ ‫‪ Z = x - iy‬ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪. Z‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ Z = x + iy :‬ﻭﻤﻨﻪ ‪Z = x + iy :‬‬ ‫ﻭﻋﻠﻴﻪ ‪Z = Z :‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪ Z + Z = 2 x :‬ﻭﻤﻨﻪ ‪Z + Z = 2 Re( Z) :‬‬ ‫‪ Z - Z = 2 i y (3‬ﻭﻤﻨﻪ ‪Z - Z = 2 Im ( Z) :‬‬ ‫‪Z . Z = x2 + y2 (4‬‬ ‫‪ Z ∈ \ (5‬ﺘﻜﺎﻓﺊ ‪Z = Z‬‬ ‫‪ Z (6‬ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻴﻜﺎﻓﺊ ‪Z = -Z :‬‬ ‫‪ y′, y , x′, x (b‬ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ‪ Z2 , Z1 .‬ﻋﺩﺍﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ ‪:‬‬

Z2 = x′ + i y′ ‫ ؛‬Z1 = x + i y (1 Z1+ Z2 = ( x + x′ + i (y + y′)) = x + x′ − i (y + y′) = x - i y + x′ - i y′ Z1 + Z2 = Z1 + Z2 : ‫ﻭﻤﻨﻪ‬ (2 Z1 . Z2 = ( xx′ - yy′) + i ( xy′ + x′y) = ( xx′ - yy′) - i ( xy′ + x′y )Z1 . Z2 = ( x - iy) .( x′ - iy) = ( xx′ - yy′) - i ( xy′ + x′y ) Z1 . Z2 = Z1 . Z2 : ‫ﻭﻋﻠﻴﻪ‬  1  =  x2 x -i y (3  Z1   + y2 x2 + y2    = x2 x +i y + y2 x2 + y21 = 1 = x + iy = x2 x +i yZ1 x -iy x2 + y2 + y2 x2 + y2 1 = 1 : ‫ﻭﻋﻠﻴﻪ‬   Z1  Z1   Z1  = Z1 (4  Z2  Z2   ( )Z1n = Z1 n : n ∈ `* ‫( ﻤﻥ ﺃﺠل‬5 ( )Z1n = Z1 n : n ∈ ` ‫ ﻭ‬Z1 ≠ 0 :‫ﻭﺇﺫﺍ ﻜﺎﻥ‬

‫ﺃﻤﺜﻠﺔ ‪:‬‬‫)‪1) (1 + 2i) (3 - i) = (1 + 2i) (3 - i‬‬ ‫)‪= (1 - 2i) (3 + i‬‬‫)‪2‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪3+i‬‬ ‫‪3-i‬‬‫)‪3‬‬ ‫‪‬‬ ‫‪2 + 3i‬‬ ‫‪‬‬ ‫=‬ ‫)‪(2 + 3i‬‬ ‫=‬ ‫‪2 - 3i‬‬ ‫‪‬‬ ‫‪5+i‬‬ ‫‪‬‬ ‫)‪(5 + i‬‬ ‫‪5-i‬‬‫)‪4‬‬ ‫‪‬‬ ‫‪a+b‬‬ ‫‪‬‬ ‫=‬ ‫‪a‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫‪‬‬ ‫‪1 - ab‬‬ ‫‪‬‬ ‫‪1-‬‬ ‫‪a‬‬ ‫‪.b‬‬ ‫ﺤﻴﺙ‪ a :‬ﻭ‪ b‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ ‪. ab ≠ 1‬‬ ‫ﺘﻁﺒﻴﻕ ‪:‬‬ ‫‪ M‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ ‪ M′ ، Z = x + iy‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ‬ ‫= ‪Z′‬‬ ‫‪Z+1‬‬ ‫‪Z-1‬‬ ‫‪ (1‬ﺍﻜﺘﺏ ‪ Z′‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ‪.‬‬ ‫‪ (2‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z′‬ﺤﻘﻴﻘﻲ ‪.‬‬ ‫‪ (3‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z′‬ﺘﺨﻴﻠﻲ ﺼﺭﻑ ‪.‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪ (1‬ﻜﺘﺎﺒﺔ ‪ Z′‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ‪:‬‬‫= ‪Z′‬‬ ‫‪x + iy + 1‬‬ ‫=‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1 + iy‬‬ ‫=‬ ‫)‪( x + iy + 1) (x - 1 - iy‬‬ ‫‪x + iy - 1‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪1+ iy‬‬ ‫)‪( x + iy - 1) (x - 1 - iy‬‬‫= ‪Z′‬‬ ‫‪x2 + y2 - 1‬‬ ‫‪+i‬‬ ‫‪-2y‬‬ ‫‪(x - 1)2 + y2‬‬ ‫‪(x - 1)2 + y2‬‬ ‫‪ (2‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z′‬ﺤﻘﻴﻘﻲ ‪:‬‬

‫‪-2y‬‬ ‫‪=0‬‬ ‫‪ Z′‬ﺤﻘﻴﻘﻲ ﻴﻜﺎﻓﺊ ‪:‬‬‫‪(x - 1)2 + y2‬‬ ‫‪y = 0‬‬‫ﻭﻴﻜﺎﻓﺊ ‪. (x ; y) ≠ (1 , 0) :‬‬‫ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻫﻲ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ‬ ‫)‪. A (1 ; 0‬‬‫‪ (3‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z′‬ﺘﺨﻴﻠﻲ ﺼﺭﻑ ‪:‬‬ ‫‪x2 + y2 - 1‬‬ ‫‪ Z′‬ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﻴﻜﺎﻓﺊ ‪= 0 :‬‬‫‪(x - 1)2 + y2‬‬‫ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ O‬ﻭﻨﺼﻑ‬ ‫‪x2 + y2 = 1‬‬ ‫ﻭﻴﻜﺎﻓﺊ ‪(x ; y) ≠ (1 , 0) :‬‬ ‫ﻗﻁﺭﻫﺎ ‪ 1‬ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ )‪. A (1 ; 0‬‬ ‫‪ -6‬ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻋﺩﺩ ﻤﺭﻜﺏ ‪:‬‬ ‫‪( )G G‬‬‫ﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﻓﻲ ﻤﺎ ﻴﻠﻲ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ﻭ ﻤﺒﺎﺸﺭ ‪ M . O ; i , j‬ﻨﻘﻁﺔ ﻤﻥ‬‫ﺍﻟﻤﺴﺘﻭﻱ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ ﺍﻟﻘﻁﺒﻴﺎﻥ ‪ ρ ; θ‬ﺤﻴﺙ ‪ ρ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﻭ ‪ θ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻭ ﻋﻠﻴﻪ ‪[ ]Z‬‬‫)‪ρ (cosθ + i sinθ‬‬ ‫ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ M‬ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ‪:‬‬‫‪ ρ (cosθ + i sinθ) x‬ﻴﺴﻤﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻠﻌﺩﺩ ‪Z‬‬‫‪ x‬ﻨﺼﻑ ﺍﻟﻘﻁﺭ ﺍﻟﻘﻁﺒ‪JG‬ﻲ‪ OJMJJ‬ﻴ‪G‬ﺤﻘﻕ ‪ OM = ρ‬ﻭﻴﺴﻤﻰ ﻁﻭﻴﻠ‪JG‬ﺔ‪JZJJ‬ﻭﻨﺭﻤ‪G‬ﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪. Z‬‬‫‪ x‬ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻘﻁﺒﻴﺔ ‪ i ; OM‬ﺘﺤﻘﻕ ‪ i ; OM = θ + 2kπ‬ﺤﻴﺙ ] ∈ ‪( ) ( )k‬‬ ‫ﻭ ﺘﺴﻤﻰ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ . Z‬ﻭ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ‬‫)‪ arg (Z‬ﻭﻨﻜﺘﺏ ‪ arg(Z) = θ 2π :‬ﻭ ﺘﻘﺭﺃ ‪ θ‬ﺒﺘﺭﺩﻴﺩ ‪[ ]2π‬‬

‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻟﺘﻜﻥ ‪ M‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ‬ ‫‪y‬‬ ‫‪M‬‬ ‫ﺍﻟﻘﻁﺒﻴﺎﻥ ‪ ρ ; θ‬ﻓﻴﻜﻭﻥ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ] [‬ ‫‪ρ‬‬‫‪G‬‬ ‫)‪ (x ; y‬ﻤﻌﺭﻓﺎﻥ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪j‬‬ ‫‪G‬‬ ‫‪θ‬‬ ‫‪ x = ρ cosθ‬‬ ‫‪i‬‬ ‫‪y = ρ sinθ‬‬‫‪O‬‬ ‫‪x‬‬ ‫ﻭﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ ‪ Z‬ﻻﺤﻘﺔ ‪ M‬ﻓﺈﻥ ‪:‬‬ ‫‪Z = x + iy = ρ cosθ + iρ sinθ‬‬ ‫ﻭﻤﻨﻪ ‪Z = ρ (cosθ + i sinθ) :‬‬ ‫‪JJJJG‬‬ ‫‪JJJJG‬‬ ‫ﻤﻼﺤﻅﺎﺕ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ OM = x2 + y2 :‬ﻭﻋﻠﻴﻪ ‪Z = OM = ρ :‬‬ ‫= ‪cosθ‬‬ ‫‪x‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪x2 + y2‬‬ ‫‪‬‬ ‫= ‪sinθ‬‬ ‫‪y‬‬ ‫‪x2 + y2‬‬ ‫ﻭﺇﺫﺍ ﻜﺎﻥ ‪ Z = 0‬ﻓﺈﻥ ‪ ρ = 0 :‬ﻟﻜﻥ ‪ Z‬ﻟﻴﺱ ﻟﻪ ﻋﻤﺩﺓ‪.‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫ﻋﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ ‪:‬‬ ‫‪Z3 = 3 - i ; Z2 = i ; Z1 = 1 + i‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪Z1 = (1)2 + (1)2 = 2 ; Z1 = 1 + i x‬‬‫= ‪sinθ1‬‬ ‫‪y‬‬ ‫و‬ ‫= ‪cosθ1‬‬ ‫‪x‬‬ ‫ﻨﻔﺭﺽ ‪ θ1‬ﻋﻤﺩﺓ ‪ Z1‬ﻓﻴﻜﻭﻥ ‪:‬‬ ‫‪Z1‬‬ ‫‪Z1‬‬

sinθ1 = 1= 2 ‫ و‬cosθ1 = 1= 2 2 2 2 2 : ‫ﻭﻤﻨﻪ‬ θ1 = π + 2kπ ; k∈] : ‫ﺇﺫﻥ‬ 4 Z2 = 02 + (1)2 = 1 ; Z2 = i xsinθ2 = y ‫و‬ cosθ2 = x : ‫ ﻓﻴﻜﻭﻥ‬Z2 ‫ ﻋﻤﺩﺓ‬θ2 ‫ﻨﻔﺭﺽ‬ Z2 Z2 sinθ2 = 1 , cosθ2 = 0 =0 1 1 θ2 = π + 2kπ ; k∈] : ‫ﺇﺫﻥ‬ 2 ( )Z3 = 3 2 + (-1)2 = 2 ; Z3 = 3 - i xsinθ3 = y , cosθ3 = x : ‫ ﻓﻴﻜﻭﻥ‬Z3 ‫ ﻋﻤﺩﺓ‬θ3 ‫ ﻨﻔﺭﺽ‬x Z3 Z3 sinθ3 = -1 ‫و‬ cosθ3 = 3 : ‫ﺇﺫﻥ‬ 2 2 θ3 = −π + 2kπ ; k∈ ] : ‫ﻭﻋﻠﻴﻪ‬ 6 : ‫ﺨﻭﺍﺹ‬ .‫ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‬Z (Aarg(Z) = 0 + 2kπ ; k ∈ ] : ‫ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﻴﻜﺎﻓﺊ‬Z (1arg(Z) = π + 2kπ ; k ∈ ] : ‫ ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻴﻜﺎﻓﺊ‬Z (2 : ‫ ﻴﻜﺎﻓﺊ‬Re(Z) = 0 ‫ ﻭ‬Im(Z) > 0 (3 arg(Z) = π + 2kπ ; k ∈ ] 2

‫‪ Im(Z) < 0 (4‬ﻭ ‪ Re(Z) = 0‬ﻴﻜﺎﻓﺊ ‪:‬‬‫)‪arg(Z‬‬ ‫=‬ ‫‪-‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪k‬‬ ‫∈‬ ‫]‬ ‫‪2‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫ﻋﻴﻥ ﻋﻤﺩﺓ ﻜﻼ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ ﺩﻭﻥ ﺤﺴﺎﺏ‬‫‪Z4 = -2i ; Z3 = 5i ; Z2 = -4 ; Z1 = 3‬‬ ‫ﺍﻟﺤل ‪:‬‬‫‪ Z1 = 3 x‬ﻭﻤﻨﻪ ‪arg(Z1 ) = 0 + 2kπ ; k ∈ ] :‬‬‫‪ Z2 = -4 x‬ﻭﻤﻨﻪ‪arg(Z2 ) = π + 2kπ ; k ∈ ] :‬‬‫) ‪arg(Z3‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪;k‬‬ ‫∈‬ ‫]‬ ‫ﻭﻤﻨﻪ‪:‬‬ ‫‪Z3 = 5i‬‬ ‫‪x‬‬ ‫‪2‬‬‫= ) ‪arg(Z4‬‬ ‫‪-‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫∈ ‪;k‬‬ ‫]‬ ‫‪ Z4 = -2i‬ﻭﻤﻨﻪ‪:‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪ (B‬ﻤﺭﺍﻓﻕ ﻋﺩﺩ ﻤﺭﻜﺏ ‪:‬‬ ‫ﻟﺘﻜﻥ ‪ M′ , M‬ﺼﻭﺭﺘﻲ ‪ Z‬و ‪ Z‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‬ ‫ﻟﺩﻴﻨﺎ ‪ M‬و ‪ M′‬ﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻋﻠﻴﻪ ‪:‬‬‫‪ Z = Z‬ﻭ ] ∈ ‪arg(Z) = -arg(Z) + 2kπ ; k‬‬ ‫‪ (C‬ﺠﺩﺍﺀ ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ‪:‬‬ ‫‪ Z , Z‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺤﻴﺙ ‪:‬‬ ‫)‪ Z = ρ (cosθ + i sinθ‬ﻭ )‪Z′ = ρ′ (cosθ′ + i sinθ′‬‬‫])‪Z . Z′ =ρρ′[cosθ.cosθ′- sinθ.sinθ′+i (sinθ.cosθ′+cosθ.sinθ′‬‬‫ﻭﻤﻨﻪ ‪ZZ′ = ρρ′ [cos (θ + θ′) + i sin (θ + θ′)] :‬‬ ‫‪Z . Z′ = Z . Z′‬‬ ‫ﺇﺫﻥ ‪:‬‬‫] ∈ ‪arg(Z . Z′) = arg(Z) + arg(Z′) + 2kπ ; k‬‬ ‫‪ (D‬ﻤﻘﻠﻭﺏ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ ‪Z = ρ (cosθ + i sinθ) :‬‬

1 = 1 = cosθ - i sinθZ ρ(cosθ + i sinθ) ρ(cosθ+i sinθ) (cosθ- i sinθ)1 = cosθ - i sinθZ ρ(cos2θ + i sin2θ) 1 = 1 [cos(-θ) + i sin(-θ)] : ‫ﺇﺫﻥ‬ Z ρ 1 = 1 ‫ﻭ‬ arg  1  = -arg(Z) + 2kπ : ‫ﻭﻋﻠﻴﻪ‬ Z Z  Z  : ‫( ﺤﺎﺼل ﻗﺴﻤﺔ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥ‬E Z′ ≠ 0 ‫ ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ‬Z′ ‫ ﻭ‬ZZ = Z. 1 = Z . 1 = Z . 1Z′ Z′ Z′ Z′ Z = Z : ‫ﻭﻤﻨﻪ‬ Z′ Z′ arg  Z  = arg  Z × 1  = arg(Z) + arg  1  Z′   Z′   Z′  arg  Z  = arg(Z) - arg(Z′) : ‫ﻭﻤﻨﻪ‬  Z′  : ‫( ﺘﺴﺎﻭﻱ ﻋﺩﺩﻴﻥ ﻤﺭﻜﺒﻴﻥ‬F : ‫ ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺤﻴﺙ‬Z′ ‫ ﻭ‬Z Z′ = ρ′ (cosθ′ + i sinθ′) ‫ ﻭ‬Z = ρ (cosθ + i sinθ) θ = θ′ + 2kπ ; k ∈ ] ‫ ﻭ‬ρ = ρ′ : ‫ ﻴﻜﺎﻓﺊ‬Z = Z′ : Zn ‫( ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ‬G .‫ ﻋﺩﺩ ﺼﺤﻴﺢ‬n ، ‫ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‬Z

arg(Zn ) = n . arg(Z) ‫ ﻭ‬Zn = Z n ‫ ﻟﺩﻴﻨﺎ‬x : ‫ﺍﻟﺒﺭﻫﺎﻥ‬ n ≥ 2 ‫ ﻨﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل‬n ∈ ] + ‫ﻤﻥ ﺃﺠل‬ Z2 = Z 2 : n = 2 ‫ ﻟﻤﺎ‬x .‫ ﻜﻤﺎ ﺴﺒﻕ‬arg(Z2 ) = arg(Z) + arg(Z) = 2arg(Z) : ‫ ﺃﻱ‬k ‫ ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ ﺇﻟﻰ ﺭﺘﺒﺔ‬x arg(Zk ) = k arg(Z) ‫ ﻭ‬Zk = Z k : k + 1 ‫ﻭﻨﺒﺭﻫﻥ ﺼﺤﺘﻬﺎ ﻓﻲ ﺍﻟﺭﺘﺒﺔ‬Zk+1 = Zk . Z = Zk . Z = Z k . Z = Z k+1arg(Zk+1 ) = arg(Zk . Z) = arg(Zk ) + arg(Z) = k arg(Z) + arg(Z) = (k + 1) arg(Z) n = -p ‫ ﺒﻭﻀﻊ‬: n ∈ ] − ‫ﻤﻥ ﺃﺠل‬Zn = Z-p = 1 = 1 = 1 = 1 = Zn Zp Zp Zp Z -n( ) ( )arg Zn  1  = arg Z-p = arg  Zp  = -arg( Zp ) = -p arg(Z) = n arg(Z) : ‫ﻨﺘﻴﺠﺔ‬ (cosθ + i sinθ)n = cosθ + i sinθ . θ ∈ \ ; n ∈ ] ‫ﻤﻥ ﺃﺠل‬ . ‫ﻭﻫﻭ ﻤﺎ ﻴﻌﺭﻑ ﺒﺩﺴﺘﻭﺭ ﻤﻭﺍﻓﺭ‬ZB ‫ ﻭ‬ZB ‫ ﻭ‬ZA ‫ ﺜﻼﺙ ﻨﻘﻁ ﻤﺘﻤﺎﻴﺯﺓ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻟﻭﺍﺤﻘﻬﺎ‬C ‫ ﻭ‬B ‫ ﻭ‬A ‫( ﺇﺫﺍ ﻜﺎﻨﺕ‬H : ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ‬

• ZC - ZA = AC ZB - ZA AB  ZC - ZA  JJJG JJJG  ZB - ZA  AB , AC( ) [ ]•arg  = Z′ ‫ﻭ‬ 2π  vG uG ‫ﻻﺤﻘﺘﻴﻬﻤﺎ‬ : ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ‬ Z ‫ﺸﻌﺎﻋﺎﻥ‬ ‫ﻭ‬ ‫ﻜﺎﻥ‬ ‫( ﺇﺫﺍ‬I (uG , vG) = arg  Z′  [2π]  Z  : ‫ﺘﻁﺒﻴﻘﺎﺕ‬ Z2 = -1 + i 3 ; Z1 = 3i : ‫ ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ‬Z2 , Z1 (1 Z12 , Z1 × Z2 , Z2 , Z1 ‫ﺍﺤﺴﺏ ﻁﻭﻴﻠﺔ ﻭﻋﻤﺩﺓ ﻜل ﻤﻥ‬ Z1 , 1 , Z100 Z2 Z1 2 : ‫ﺍﻟﺤل‬ Z2 = 2 , Z1 = 3 x π cosθ1 = 0 =0 2 3 θ1 ≡ [2π] : ‫ﻭﻤﻨﻪ‬  : Z1 ‫ ﻋﻤﺩﺓ‬θ1 ‫ﻟﺘﻜﻥ‬ sinθ1 3 = 3 =1 2π  cosθ2 = - 1 3  2 [ ]θ2 ≡ 2π : ‫ﻭﻤﻨﻪ‬  : Z2 ‫ﻋﻤﺩﺓ‬ θ2 ‫ﻭﻟﺘﻜﻥ‬ sinθ2 = 3 2 Z1 . Z2 = Z1 . Z2 = 6 xarg ( Z1 . Z2 ) = arg ( Z1 ) + arg ( Z2 )

= π + 2π = 7π 2 3 6 Z12 = Z1 2 = 32 = 9 x( )arg Z12 = 2arg( Z1 ) = 2. π [2π] 2 ( )arg Z12 = π [2π] : ‫ﻭ ﻤﻨﻪ‬ ( ) ( )arg Z100 Z 100 = 3100 Z100 = 100arg Z1 ‫؛‬ 1 = 1 x 1 ( )arg π Z100 = 100 2 [2π] = 0 [2π] : ‫ﻭﻤﻨﻪ‬ 1• 1 = 1 = 1 Z1 Z1 3 arg  1  = -arg( Z1 ) [2π] = - π [2π]  Z1  2  • Z1 = Z1 = 3 Z2 Z2 2 arg  Z1  = arg( Z1 ) - arg( Z2 ) = π - 2π [2π]  Z2  2 3   arg  Z1  = -π [2π] : ‫ﻭﻤﻨﻪ‬  Z2  6   : ‫ ﻫﻲ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‬A , B , C ‫ ﻤﺜﻠﺙ ﺤﻴﺙ ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ‬ABC (2 . 2+i , 4+i , 2+3i . ‫ ﻭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ‬A ‫ ﻗﺎﺌﻡ ﻓﻲ‬ABC ‫ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ‬ : ‫ﺍﻟﺤل‬

‫‪ZC - ZA‬‬ ‫=‬ ‫‪2 + 3i - 2 - i‬‬ ‫=‬ ‫‪i‬‬ ‫‪=1‬‬‫‪ZB - ZA‬‬ ‫‪4+i-2-i‬‬ ‫ﻭﻋﻠﻴﻪ ‪AC = AB :‬‬ ‫‪AC‬‬ ‫‪=1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪AB‬‬‫‪arg‬‬ ‫‪‬‬ ‫‪ZC‬‬ ‫‪-‬‬ ‫‪ZA‬‬ ‫‪‬‬ ‫)‪= arg (i‬‬ ‫=‬ ‫‪π‬‬ ‫]‪[2π‬‬ ‫‪‬‬ ‫‪ZB‬‬ ‫‪-‬‬ ‫‪ZA‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻗﺎﺌﻡ ﻓﻲ ‪ A‬ﻭ ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ ‪:‬‬ ‫‪ -7‬ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ )ﺘﺭﻤﻴﺯ ﺃﻭﻟﻴﺭ(‬ ‫‪ -‬ﺍﻟﺘﻌﺭﻴﻑ ‪:‬‬ ‫ﻨﻀﻊ ﺍﺼﻁﻼﺤﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪cosθ + i sinθ = eiθ : θ‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻥ ‪ Z‬ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺤﻴﺙ ‪ Z = ρ cosθ + i sinθ :‬ﻓﺈﻥ ‪( ):‬‬ ‫‪. Z = ρ . eiθ‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z = -2 2 + 2 6 i‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ‪:‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪Z=4‬‬ ‫‪2‬‬ ‫‪.‬‬ ‫‪e 2π‬‬ ‫‪i‬‬ ‫‪Z =4‬‬ ‫‪2‬‬ ‫‪,‬‬ ‫= )‪arg(Z‬‬ ‫‪2π‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪ -‬ﺨﻭﺍﺹ ‪:‬‬ ‫ﻟﻴﻜﻥ ‪ Z2 , Z1‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﺤﻴﺙ ‪:‬‬ ‫‪Z2‬‬ ‫=‬ ‫‪ρ‬‬ ‫‪eiθ2‬‬ ‫‪, Z2 = ρ1eiθ1‬‬ ‫‪2‬‬‫)‪1‬‬ ‫‪Z1‬‬ ‫‪.‬‬ ‫‪Z2‬‬ ‫=‬ ‫‪ρ1‬‬ ‫‪.‬‬ ‫) ‪ρ ei(θ1+θ2‬‬ ‫‪2‬‬

‫‪2) 1 = 1 . e-iθ1‬‬ ‫‪Z1 ρ1‬‬‫) ‪3) Z1 = ρ1 . ei(θ1−θ2‬‬ ‫‪Z2 ρ2‬‬‫‪4) Z1n = ρ1n . einθ‬‬‫‪5) Z1 = ρ1 . e-iθ1‬‬ ‫ﻤﻼﺤﻅﺔ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ eiθ′ = cosθ′ + i sinθ′ ; eiθ = cosθ + i sinθ :‬ﻭﻋﻠﻴﻪ ‪:‬‬‫)‪eiθ . eiθ′ = ei(θ+θ′) = cos (θ + θ′) + i sin(θ + θ′) . . . (1‬‬‫ﻭﻟﺩﻴﻨﺎ ‪eiθ . e2θ′ = (cosθ + i sinθ) (cosθ′ + i sinθ′) :‬‬‫)‪= cosθ.cosθ′- sinθ. sinθ′+i(cosθ. sinθ′+ sinθ. cosθ′) . . .(2‬‬‫ﻤﻥ )‪cos(θ + θ′) = cosθ . cosθ′ - sinθ . sinθ′ : (2) ; (1‬‬‫‪sin(θ + θ′) = cosθ . sinθ′ + sinθ . cosθ′‬‬ ‫‪ -‬ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺩﺍﺌﺭﺓ ﺒﺎﻟﻌﻼﻗﺔ ‪Z = Z0 + k . eiθ‬‬ ‫ﻟﺘﻜﻥ)‪ (C‬ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ ω‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪.k‬‬ ‫ﻨﻔﺭﺽ ‪ Z0‬ﻻﺤﻘﺔ ‪ k ، ω‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪.‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﻤﻥ )‪(C‬‬ ‫ﻟﺩﻴﻨﺎ ‪ M ∈ (C) :‬ﺘﻜﺎﻓﺊ ‪Z - Z0 = k :‬‬‫ﻭ ﺘﻜﺎﻓﺊ ‪ Z - Z0‬ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻁﻭﻴﻠﺘﻪ ‪ k‬ﻭ ﺘﻜﺎﻓﺊ ‪ :‬ﻴﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪) θ‬ﻴﻤﻜﻥ‬ ‫ﺍﻟﻘﻭل ﺃﻥ ‪[ [( θ ∈ 0 ; 2π‬‬ ‫ﺒﺤﻴﺙ ‪. Z = Z0 + k . eiθ :‬‬ ‫=‪Z‬‬ ‫‪Z0 + k . eiθ‬‬ ‫ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﺒﺎﻟﻌﻼﻗﺔ‬ ‫‪ -‬ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ‬‫‪ vG‬ﻤﻌﻁﻰ‬ ‫‪ ω‬ﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ‬ ‫ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ‬ ‫ﻟﻴﻜﻥ ‪wx‬‬‫‪[ ).‬‬

‫ﻨﻔﺭﺽ ‪ Z0‬ﻻﺤﻘﺔ ‪ u ، w‬ﻻﺤﻘﺔ ‪( )u ∈ ^* , vG‬‬ ‫ﺤﻴﺙ ‪u = 1 ; arg (u) = θ [2π] :‬‬‫ﻭﺘﻜﺎﻓﺊ‬ ‫(‬ ‫‪JJJJG‬‬ ‫=‬ ‫‪k‬‬ ‫‪.‬‬ ‫‪vG‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪wM‬‬ ‫‪ M ∈ wx‬ﺘﻜﺎﻓﺊ )ﻴﻭﺠﺩ ﻋﺩﺩ ‪ k‬ﻤﻥ ‪ \ +‬ﺒﺤﻴﺙ ‪[ ):‬‬ ‫)ﻴﻭﺠﺩ ﻋﺩﺩ ‪ k‬ﻤﻥ ‪ \ +‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪( Z = Z0 + k . eiθ‬‬ ‫‪ – 8‬ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ^ ‪.‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪ Z′ , Z‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻓﺈﻥ ‪:‬‬ ‫‪ Z . Z′ = 0‬ﺘﻜﺎﻓﺊ ‪ Z = 0 :‬ﺃﻭ ‪Z′ = 0‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻨﻔﺭﺽ ‪ Z = x + iy‬ﻭ ‪Z′ = x′ + iy′‬‬ ‫ﻟﺩﻴﻨﺎ ‪Z . Z′ = ( xx′ + yy′) + i ( xy - x′y) :‬‬ ‫‪ xx′ - yy′ = 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫و‬ ‫ﻭﻤﻨﻪ ‪ Z . Z′ = 0 :‬ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪ xy′ + x′y = 0‬‬ ‫ﻨﻔﺭﺽ ‪ Z′ ≠ 0‬ﺤل ﺍﻟﺠﻤﻠﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ‪ x ; y‬ﻫﻭ ‪( ):‬‬ ‫‪-y′ 0‬‬ ‫=‪x‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫=‬ ‫‪0‬‬ ‫‪=0‬‬ ‫‪x′‬‬ ‫‪-y′‬‬ ‫‪x′2 + y′2‬‬ ‫‪y′ x′‬‬

‫‪0 x′‬‬ ‫=‪y‬‬ ‫‪0‬‬ ‫‪y′‬‬ ‫=‬ ‫‪0‬‬ ‫‪=0‬‬ ‫‪x′‬‬ ‫‪-y′‬‬ ‫‪x′2 + y′2‬‬ ‫‪y′ x′‬‬ ‫ﻓﻨﺠﺩ ‪. Z = 0‬‬ ‫ﻭﺇﺫﺍ ﻓﺭﻀﻨﺎ ‪ Z ≠ 0‬ﻨﺠﺩ ‪ Z′ = 0 :‬ﻭﻤﻨﻪ ‪Z . Z′ = 0 :‬‬ ‫ﺘﻜﺎﻓﺊ ‪ Z = 0 :‬ﺃﻭ ‪Z′ = 0‬‬ ‫* ﺤل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫)‪aZ2 + bZ + C = 0 . . . (1‬‬ ‫ﻤﻊ ‪ c , b , a‬ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ ‪ Z ; a ≠ 0‬ﻤﺘﻐﻴﺭ ﻓﻲ ^‬ ‫ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﻟﻠﻌﺒﺎﺭﺓ ‪ aZ2 + bZ + C‬ﻫﻭ ‪:‬‬ ‫‪aZ2‬‬ ‫‪+ bZ + C = a‬‬ ‫‪ Z +‬‬ ‫‪b 2‬‬ ‫‪-‬‬ ‫‪b2 - 4ac ‬‬ ‫‪2a ‬‬ ‫‪‬‬ ‫‪4a2‬‬ ‫‪‬‬ ‫‪aZ2‬‬ ‫‪+‬‬ ‫‪bZ‬‬ ‫‪+‬‬ ‫‪C‬‬ ‫=‬ ‫‪a‬‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫∆‬ ‫‪‬‬ ‫‪:‬‬ ‫ﻨﺠﺩ‬ ‫∆‬ ‫=‬ ‫‪b2‬‬ ‫‪-‬‬ ‫‪4ac‬‬ ‫ﺒﻭﻀﻊ‬ ‫‪2a‬‬ ‫‪‬‬ ‫‪4a2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ‪ : ∆ ≥ 0‬ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻠﻴﻥ ﻜﻤﺎ ﺴﺒﻕ ﻓﻲ \ ‪.‬‬ ‫‪Z2‬‬ ‫=‬ ‫‪-b +‬‬ ‫∆‬ ‫ﻭ‬ ‫‪Z1‬‬ ‫=‬ ‫‪-b +‬‬ ‫∆‬ ‫‪2a‬‬ ‫‪2a‬‬ ‫‪( )2‬‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ‪ : ∆ < 0‬ﻨﻀﻊ ∆‪∆ = i -‬‬ ‫ﻓﻴﻜﻭﻥ ‪:‬‬‫‪aZ2‬‬ ‫‪+ bZ + C = a‬‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪-‬‬ ‫‪-b - i −∆ ‬‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪-‬‬ ‫‪-b + i‬‬ ‫‪−∆ ‬‬ ‫‪‬‬ ‫‪2a ‬‬ ‫‪‬‬ ‫‪2a‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺘﻜﺎﻓﺊ ‪:‬‬

‫‪Z‬‬ ‫=‬ ‫‪-b‬‬ ‫‪+i‬‬ ‫∆‪−‬‬ ‫ﺃﻭ‬ ‫=‪Z‬‬ ‫∆‪-b - i −‬‬ ‫‪2a‬‬ ‫‪2a‬‬ ‫ﺃﻱ ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ‪.‬‬ ‫* ﺍﻟﺠﺫﻭﺭ ﺍﻟﺭﺒﻴﻌﻴﺔ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ‪:‬‬‫ﻟﻴﻜﻥ ‪ Z‬ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪ .‬ﻟﻨﺒﺤﺙ ﻋﻥ ﻭﺠﻭﺩ ﻋﺩﺩ ﻤﺭﻜﺏ ‪ k‬ﺒﺤﻴﺙ ‪. k 2 = Z‬‬ ‫ﻨﻔﺭﺽ ‪ Z = x + iy‬ﻭ ‪k = α + iβ‬‬ ‫‪(α + iβ)2 = x + iy‬‬ ‫ﻟﺩﻴﻨﺎ ‪ k 2 = Z :‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪k‬‬ ‫‪2‬‬ ‫=‬ ‫‪Z‬‬ ‫‪α2α2 β-‬‬ ‫= ‪β2‬‬ ‫‪x‬‬ ‫‪...‬‬ ‫)‪(1‬‬ ‫‪=y.‬‬ ‫‪.‬‬ ‫)‪. (2‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪β2‬‬ ‫=‬ ‫)‪x2 + y2 . . . (3‬‬ ‫‪α‬‬ ‫ﻨﺠﻤﻊ )‪ (1‬ﻭ )‪ (3‬ﻨﺠﺩ ‪2α2 + β2 = x+ x2 + y2 :‬‬ ‫= ‪ α2‬ﻟﻜﻥ ‪x2 + y2 > -x‬‬ ‫‪x2 + y2 + x‬‬ ‫ﻭﻋﻠﻴﻪ ‪2 :‬‬‫‪α=-‬‬ ‫‪x2 + y2 + x‬‬ ‫= ‪ α‬ﺃﻭ‬ ‫‪x2 + y2 + x‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪2‬‬‫= ‪α2‬‬ ‫‪x2 + y2 + x‬‬ ‫ﻭ‬ ‫= ‪α1‬‬ ‫‪x2 + y2 + x‬‬ ‫‪2‬‬ ‫ﻨﻔﺭﺽ ‪2 :‬‬ ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪: (2‬‬ ‫‪β2‬‬ ‫=‬ ‫‪y‬‬ ‫‪: α = α2‬‬ ‫‪ ،‬ﻟﻤﺎ‬ ‫= ‪β1‬‬ ‫‪y‬‬ ‫ﻟﻤﺎ ‪: α = α1‬‬ ‫‪2α2‬‬ ‫‪2α1‬‬ ‫ﺤﻴﺙ ‪p2 = −β1 ، α2 = -α1 :‬‬

‫* ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫)‪aZ2 + bZ + C = 0 . . . (1‬‬ ‫ﺤﻴﺙ ‪ b , c , a‬ﺃﻋﺩﺍﺩ ﻤﺭﻜﺒﺔ ﻭ ‪a ≠ 0‬‬ ‫‪ x‬ﻨﻜﺘﺏ ‪ aZ2 + bC + C‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﻓﻨﺠﺩ ‪:‬‬ ‫‪aZ2‬‬ ‫‪+ bZ + c = a‬‬ ‫‪ x‬‬ ‫‪+‬‬ ‫‪b 2‬‬ ‫‪-‬‬ ‫‪∆‬‬ ‫‪2a ‬‬ ‫‪‬‬ ‫‪4a‬‬ ‫‪2‬‬ ‫‪‬‬ ‫ﻤﻊ ‪ ∆ = b2 - 4ac‬ﻜﻤﺎ ﺴﺒﻕ ‪.‬‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ‪ :‬ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻠﻴﻥ‬‫‪Z2‬‬ ‫=‬ ‫‪-b +‬‬ ‫∆‬ ‫ﻭ‬ ‫‪Z1‬‬ ‫=‬ ‫‪-b -‬‬ ‫∆‬ ‫‪2a‬‬ ‫‪2a‬‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ‪ :‬ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻠﻴﻥ‬‫‪Z2‬‬ ‫=‬ ‫‪-b + i‬‬ ‫∆‪−‬‬ ‫ﻭ‬ ‫‪Z1‬‬ ‫=‬ ‫‪-b - i‬‬ ‫∆‬ ‫‪2a‬‬ ‫‪2a‬‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ∆ ﻋﺩﺩ ﻤﺭﻜﺏ ﻏﻴﺭ ﺤﻘﻴﻘﻲ ‪:‬‬ ‫ﻨﺒﺤﺙ ﻋﻥ ﺠﺫﺭﻴﻪ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻭ ﻟﻴﻜﻥ ‪ k‬ﺃﺤﺩﻫﻤﺎ ﻭﻤﻨﻪ )‪ (1‬ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪a‬‬ ‫‪ x +‬‬ ‫‪b 2‬‬ ‫‪-‬‬ ‫‪k2 ‬‬ ‫‪=0‬‬ ‫ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪2a ‬‬ ‫‪‬‬ ‫‪4a2‬‬ ‫‪‬‬‫‪Z2‬‬ ‫=‬ ‫‪-b + k‬‬ ‫‪,‬‬ ‫‪Z1‬‬ ‫=‬ ‫‪-b - k‬‬ ‫‪ Z1‬ﻭ ‪ Z2‬ﺤﻴﺙ ‪:‬‬ ‫‪2a‬‬ ‫‪2a‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - (3 - 2i) Z + 5 - i = 0 :‬‬ ‫‪ ∆ = b2 - 4a C‬ﻭﻤﻨﻪ ‪∆ = (3 - 2i)2 - 4 (5 - i) :‬‬‫ﺇﺫﻥ ‪ ∆ = 9 - 12i - 4 - 20 + 4i :‬ﻭﻤﻨﻪ ‪∆ = -15 - 8i :‬‬

‫ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ∆ ‪.‬‬ ‫ﻟﻴﻜﻥ ‪ k‬ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ∆ ‪.‬‬ ‫∆ = ‪k2‬‬ ‫ﻨﻔﺭﺽ ‪k = x + iy :‬‬ ‫‪‬‬ ‫ﻓﻴﻜﻭﻥ ‪:‬‬ ‫‪‬‬ ‫‪k‬‬ ‫‪2‬‬ ‫∆=‬ ‫‪( x + iy)2 = -15 - 8i‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫=‬ ‫‪(-15)2 + (-8)2‬‬ ‫)‪ x - y2 = -15 . . . (1‬‬ ‫)‪2xy = -8 . . . (2‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫=‬ ‫‪17‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪(3‬‬ ‫‪‬‬ ‫ﺒﺠﻤﻊ )‪ (1‬ﻭ )‪ (2‬ﻨﺠﺩ ‪ 2 x2 = 2 :‬ﻭﻤﻨﻪ ‪x2 = 1 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ x = 1 :‬ﺃﻭ ‪. x = -1‬‬ ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ)‪ (2‬ﻨﺠﺩ ‪ :‬ﻟﻤﺎ ‪y = -4 : x = 1‬‬ ‫ﻟﻤﺎ ‪. y = 4 : x = 1‬‬ ‫ﺇﺫﻥ ‪ k = 1 - 4i‬ﺃﻭ ‪k = -1 + 4i‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎ ‪:‬‬‫‪Z2‬‬ ‫=‬ ‫‪3 - 2i + 1 - 4i‬‬ ‫‪= 2 - 3i‬‬ ‫‪,‬‬ ‫‪Z1‬‬ ‫=‬ ‫‪3 - 2i - 1 + 4i‬‬ ‫‪=1+i‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ -9‬ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻭ ﺍﻟﺘﺤﻭﻴﻼﺕ ﺍﻟﻨﻘﻁﻴﺔ ‪:‬‬ ‫* ﻤﺒﺭﻫﻨﺔ ‪:‬‬‫ﻟﻴﻜﻥ ‪ f‬ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ ‪ M‬ﻻﺤﻘﺘﻬﺎ ‪ Z‬ﺍﻟﻨﻘﻁﺔ ‪ M′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪. Z′‬‬ ‫‪β‬‬ ‫∈‬ ‫‪ ZvG′‬ﺫﻭﺤﻴﺍﻟﺙﻼ ‪:‬ﺤﻘﺔ^‪β‬‬ ‫‪=Z‬‬ ‫‪+β‬‬ ‫‪:‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ‬ ‫‪x‬‬ ‫‪f‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪.‬‬ ‫ﺸﻌﺎﻋﻪ‬ ‫ﺍﻨﺴﺤﺎﺏ‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ‪ Z′ - Z0 = k (Z - Z0 ) :‬ﺤﻴﺙ ^ ∈ ‪ Z0‬ﻭ‬ ‫*\ ∈ ‪ k‬ﻓﺈﻥ ‪ f‬ﺘﺤﺎﻜﻲ ﻨﺴﺒﺘﻪ ‪ k‬ﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ M0‬ﺫﺍﺕ‬

‫ﺍﻟﻼﺤﻘﺔ ‪. Z0‬‬‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ‪ Z′ - Z0 = eiθ (Z - Z0 ) :‬ﺤﻴﺙ ^ ∈ ‪ Z0‬ﻭ \ ∈ ‪θ‬‬ ‫ﻓﺈﻥ ‪ f‬ﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ M0‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z0‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫= ‪Z′ - Z‬‬ ‫‪Z JJJJJG‬‬ ‫=‬ ‫‪β‬‬ ‫ﻓﺈﻥ‬ ‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ‪Z′ = Z + β‬‬ ‫‪JJJJJG‬‬ ‫‪MM′‬‬‫ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﺈﻥ ﺍﻟﺸﻌﺎﻉ ‪ MM′‬ﺜﺎﺒﺕ‪.‬‬ ‫ﻭﻋﻠﻴﻪ ﻓﻬﻭ ﻴﻌﺭﻑ ﺍﻨﺴﺤﺎﺏ ‪.‬‬‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ) ‪ Z′ - Z0 = k (Z - Z0‬ﻓﺈﻥ ﺼﻭﺭﺓ ﺍﻟﻨﻘﻁﺔ ‪ M0‬ﺫﺍﺕ‬‫ﺍﻟﻼﺤﻘﺔ ‪ Z0‬ﺒﻭﺍﺴﻁﺔ ‪ f‬ﻫﻲ ﻨﻔﺴﻬﺎ‪ .‬ﻭﻤﻥ ﺃﺠل ‪Z ≠ Z0‬‬ ‫‪.‬‬ ‫‪Z′ - Z0‬‬ ‫‪=k‬‬ ‫‪,‬‬ ‫*\ ∈ ‪k‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪Z - Z0‬‬ ‫‪M0M′‬‬ ‫=‬ ‫‪k‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪M0M‬‬‫‪( )JJJJJG JJJJJJG‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻥ ‪ k > 0‬ﻓﺈﻥ ‪[ ]= 0 2π :‬‬ ‫‪M0M ; M0M′‬‬‫‪( )JJJJJG JJJJJJG‬‬‫ﻭ ﺇﺫﺍ ﻜﺎﻥ ‪ k < 0‬ﻓﺈﻥ ‪[ ]M0M ; M0M′ = π 2π :‬‬‫ﻭﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﻨﻘﻁ ‪ M′ , M , M0‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‪.‬‬‫ﺘﻤﻴﺯ ﺘﺤﺎﻜﻲ ﻤﺭﻜﺯﻩ ‪ M0‬ﻭ ﻨﺴﺒﺘﻪ ‪. k‬‬ ‫‪M0M′‬‬ ‫=‬ ‫‪k‬‬ ‫ﻭ ﺒﺎﻟﻨﺴﺒﺔ‬ ‫‪M0M‬‬‫‪ x‬ﺇﺫﺍ ﻜﺎﻥ ) ‪ Z′ - Z0 = eiθ (Z - Z0‬ﻓﺈﻥ ﺼﻭﺭﺓ ﺍﻟﻨﻘﻁﺔ ‪ M0‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪Z0‬‬ ‫ﺒﻭﺍﺴﻁﺔ ‪ f‬ﻫﻲ ﻨﻔﺴﻬﺎ‪ .‬ﻭﻤﻥ ﺃﺠل ‪Z ≠ Z0 :‬‬ ‫‪Z′ - Z0‬‬ ‫‪= eiθ‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪Z - Z0‬‬

‫‪( )JJJJJG JJJJJJG‬‬ ‫ﻭ ]‪= θ [2π‬‬ ‫‪M0M′‬‬ ‫‪=1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪M0M‬‬ ‫‪M0M ; M0M′‬‬ ‫ﻫﺎﺘﻴﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ﺘﻤﻴﺯﺍﻥ ﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ‪ M0‬ﻭ ﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬‫ﺍﺩﺭﺱ ﻁﺒﻴﻌﺔ ﺍﻟﺘﺤﻭﻴل ‪ f‬ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺒﺎﻟﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺍﻟﻨﻘﻁﺔ ‪ M′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z′‬ﻓﻲ‬ ‫ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪1) Z′ = Z - 1 2) Z′ = Z + i + 1 3) Z′ = 3Z‬‬‫‪4) Z′ = -2Z + i + 2‬‬ ‫‪5) Z′ = iZ‬‬ ‫= ‪6) Z′‬‬ ‫‪2‬‬ ‫‪(i‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪Z‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪2‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫=‪ ′wG‬ﺫ‪Z‬ﻭ‬ ‫ﻟﺩﻴﻨﺎ ‪Z - 1 :‬‬ ‫‪(1‬‬ ‫‪.‬‬ ‫‪-1‬‬ ‫ﺍﻟﻼﺤﻘﺔ‬ ‫‪ f‬ﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ‬ ‫‪ZwG+‬ﺫﻭ ﺍ=ﻟ ‪′‬ﻼﺤﻘ‪Z‬ﺔ‬ ‫ﻟﺩﻴﻨﺎ ‪i + 1 :‬‬ ‫‪(2‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪ f‬ﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪Z′ = 3Z :‬‬ ‫‪ f‬ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ ‪ 3‬ﻭ ﻤﺭﻜﺯﻩ ‪. O‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪Z′ = -2Z + i + 2 :‬‬‫‪.‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪ f‬ﺘﺤﺎﻙ ﻨﺴﺒﺘﻪ ‪ -2‬ﻭ ﻤﺭﻜﺯﻩ ‪ I‬ﺤﻴﺙ ﻻﺤﻘﺘﻪ‬ ‫‪1-i‬‬ ‫ﺇﺫﻥ ‪. Z0 = -1‬‬ ‫‪Z′ = iZ‬‬ ‫‪,‬‬ ‫‪i‬‬ ‫=‬ ‫‪ei‬‬ ‫‪π‬‬ ‫‪ (5‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪π‬‬ ‫‪ f‬ﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ‪ O‬ﻭﺯﺍﻭﻴﺘﻪ ﻋﻤﺩﺓ ‪ i‬ﺃﻱ ‪. 2‬‬ ‫= ‪Z′‬‬ ‫‪2‬‬ ‫‪(i + 1) Z + i‬‬ ‫‪ (6‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪(i‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪ei‬‬ ‫‪π‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪Z0‬‬ ‫ﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪π‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺩﻭﺭﺍﻥ ﺯﺍﻭﻴﺘﻪ‬ ‫‪4‬‬ ‫‪2i‬‬ ‫‪i‬‬‫‪ Z0 = 2 -‬ﺃﻱ ‪:‬‬ ‫‪2-‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫= ‪Z0‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪2i‬‬ ‫‪1-‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫)‪(1 + i‬‬ ‫‪( )2i 2 - 2 + 2i‬‬ ‫‪Z0 = 2 - 2 - 2i 2 - 2 + 2i‬‬ ‫= ‪. Z0‬‬ ‫‪( )-2 2 + 2 2 - 2 i‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪( )2‬‬ ‫‪2- 2 +2‬‬

‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل‬ ‫ﺍﻟﺘﻁﺒﻴﻕ ‪:‬‬‫‪ . z‬‬ ‫‪1  3i 2‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪5  i‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪:‬‬ ‫‪ (1‬ﻋﻴﻥ ﻤﺭﺍﻓﻕ ﺍﻟﻌﺩﺩ ‪ (2 . z‬ﻋﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺤﻘﻴﻘﻲ ﻟﻠﻌﺩﺩ ‪. z‬‬ ‫‪ (3‬ﻋﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ ‪ (4 . z‬ﻋﻴﻥ ﻁﻭﻴﻠﺔ ﺍﻟﻌﺩﺩ ‪. z‬‬‫‪ (5‬ﻋﻴﻥ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ‪ (6 . z‬ﺃﻜﺘﺏ ﺍﻟﻌﺩﺩ ‪ z‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ‪.‬‬ ‫‪ (7‬ﺃﻜﺘﺏ ﺍﻟﻌﺩﺩ ‪ z‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ‪.‬‬ ‫ﺍﻟﺤل‬ ‫‪ (1‬ﺘﻌﻴﻴﻥ ﺍﻟﻤﺭﺍﻓﻕ ‪:‬‬‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬‫ﺍﻟﻰ ‪ CPX‬ﻜﻤﺎﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻓﺘﻅﻬﺭ‬ ‫ﻗﺎﺌﻤﺔ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ‪.‬‬ ‫ﻨﺨﺘﺎﺭ ﺍﻟﺭﻗﻡ ‪ 1‬ﻟﻨﺤﺼل ﻋﻠﻰ ‪:‬‬ ‫(‪1:Conj‬‬ ‫ﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ ‪ z‬ﻜﻤﺎﻴﻠﻲ ‪:‬‬ ‫))‪Conj((1-3i)^2)/(5+i‬‬‫ﻭﻨﻨﻘﺭ ﻋﻠﻰ ‪ Enter‬ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻨﺘﻴﺠﺔ‬ ‫‪-1,77+0,85i‬‬ ‫ﻭﺍﻟﺘﻲ ﺘﻤﺜل ﻤﺭﺍﻓﻕ ‪z‬‬

‫‪ ( 2‬ﺘﻌﻴﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺤﻘﻴﻘﻲ ‪:‬‬‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬ ‫ﺍﻟﻰ ‪ CPX‬ﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪2‬‬‫ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪real( :‬‬‫ﻨﺩﺨل ﻋﺒﺎﺭﺓ ‪real((1-3i)^2)/(5+i)) : :‬‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ‪ Enter‬ﻓﻨﺠﺩ ‪−1,77 :‬‬ ‫‪ ( 3‬ﺘﻌﻴﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺘﺨﻴﻠﻲ ‪:‬‬‫ﻭﻨﺤﺭﻙ‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬‫ﺍﻟﺯﺍﻟﻘﺔ ﺍﻟﻰ ‪ CPX‬ﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪3‬‬‫ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪Imag( :‬‬‫ﻨﺩﺨل ﻋﺒﺎﺭﺓ ‪Imag((1-3i)^2)/(5+i)) : :‬‬‫ﻨﻨﻘﺭ ﻋﻠﻰ ‪ Enter‬ﻓﻨﺠﺩ‪- 0,8 5 :‬‬‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫‪(4‬ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬‫ﺇﻟﻰ ‪ CPX‬ﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪ 5‬ﻓﺘﻅﻬﺭﻋﻠﻰ‬ ‫ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪abs ( :‬‬‫ﻨﺩﺨل ﻋﺒﺎﺭﺓ ‪abs((1-3i)^2)/(5+i)) :‬‬‫ﻨﻨﻘﺭ ﻋﻠﻰ ‪ Enter‬ﻓﻨﺠﺩ‪1,96 :‬‬‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫‪(5‬ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬‫ﺇﻟﻰ ‪ CPX‬ﺜﻡ ﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪ 4‬ﻓﺘﻅﻬﺭﻋﻠﻰ‬‫ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪angle ( :‬‬‫ﻨﺩﺨل ﻋﺒﺎﺭﺓ ‪angle((1-3i)^2)/(5+i)) :‬‬‫ﻨﻨﻘﺭ ﻋﻠﻰ ‪ Enter‬ﻓﻨﺠﺩ‪– 2,70 :‬‬

‫‪(6‬ﻜﺘﺎﺒﺔ ‪ Z‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ‪:‬‬ ‫ﻨﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻋﺒﺎﺭﺓ ‪ Z‬ﻜﻤﺎﻴﻠﻲ ‪:‬‬ ‫)‪(1-3i)^2/(5+i‬‬ ‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬ ‫ﺇﻟﻰ ‪ CPX‬ﺜﻡ ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪6‬‬ ‫ﻭ ﻨﻨﻘﺭ ﻋﻠﻰ ‪Enter‬‬ ‫ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪-1,77- 0,85 i‬‬ ‫‪ (7‬ﻜﺘﺎﺒﺔ ‪ Z‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ‪:‬‬ ‫ﻨﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻋﺒﺎﺭﺓ ‪ Z‬ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫)‪(1-3i)^2/(5+i‬‬ ‫ﻭﻨﺤﺭﻙ ﺍﻟﺯﺍﻟﻘﺔ‬ ‫ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬ ‫ﺇﻟﻰ ‪ CPX‬ﺜﻡ ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﺭﻗﻡ ‪ 7‬ﻭ ﻨﻨﻘﺭ‬‫ﻋﻠﻰ ‪ Enter‬ﻓﺘﻅﻬﺭﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﺍﻟﻌﺒﺎﺭﺓ ‪1,96e2,70i :‬‬ ‫ﻤﻼﺤﻅﺔ ‪: 1‬‬ ‫ﻟﻜﺘﺎﺒﺔ ﺍﻟﺤﺭﻑ ‪ i‬ﻨﻘﻭﻡ ﺒﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫ﺜﻡ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬ ‫ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬ ‫ﻤﻼﺤﻅﺔ ‪: 2‬‬‫ﻭﻨﺤﺩﺩ ﻋﺩﺩ‬ ‫ﻟﺘﻐﻴﻴﺭ ﻋﺩﺩ ﺍﻷﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ‬‫ﺍﻷﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺍﻟﻘﺔ ﻭﻫﺫﺍ ﻓﻲ ﺍﻟﺴﻁﺭ ﺍﻟﺜﺎﻨﻲ ﺜﻡ ﻨﻨﻘﺭ‬‫ﻋﻠﻰ‪ Enter‬ﻭﻗﺩ ﺍﺨﺘﺭﻨﺎ ﻓﻲ ﺍﻟﺸﻜل ﺜﻼﺜﺔ ﺃﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ‪.‬‬

‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬‫ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ×ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ‪:‬‬ ‫‪ (1‬ﺍﻟﻌﺩﺩ ‪ 0‬ﻟﻴﺱ ﻋﺩﺩ ﻤﺭﻜﺏ ‪.‬‬ ‫ﻤﺭﻜﺏ‪.‬‬ ‫ﻋﺩﺩ‬ ‫ﻫﻭ‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪(2‬‬ ‫‪6‬‬ ‫‪ (3‬ﻜل ﻋﺩﺩ ﺤﻘﻴﻕ ﻫﻭ ﻋﺩﺩ ﻤﺭﻜﺏ‪.‬‬ ‫‪ (4‬ﻜل ﻋﺩﺩ ﻤﺭﻜﺏ ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ‪.‬‬‫‪ (5‬ﺇﺫﺍ ﻜﺎﻥ ‪ x + 2i = -3 + yi :‬ﺤﻴﺙ ‪ x‬ﻭ‪ y‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻏﻴﺭ ﺤﻘﻴﻘﻴﻴﻥ ﻓﺈﻥ ‪y = 2 :‬‬ ‫ﻭ ‪x = -3‬‬ ‫‪Z = - Z (6‬‬ ‫‪‬‬ ‫‪i+Z‬‬ ‫=‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪Z‬‬ ‫‪(7‬‬ ‫‪‬‬ ‫‪i - Z ‬‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪Z‬‬ ‫=‪Z‬‬ ‫‪1‬‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ Z = 1‬ﻓﺈﻥ ‪:‬‬ ‫‪(8‬‬ ‫‪Z‬‬‫‪ (9‬ﺇﺫﺍ ﻜﺎﻨﺕ ‪ Z = 4‬ﺤﻴﺙ ‪ Z‬ﻋﺩﺩ ﻤﺭﻜﺏ ﻭﻫﻭ ﻻﺤﻘﺔ )‪ M(x ; y‬ﻓﺈﻨﻪ ﻋﻨﺩﻤﺎ ﻴﺘﻐﻴﺭ ﻜل ﻤﻥ ‪x‬‬ ‫ﻭ‪ y‬ﻓﻲ \ ﻴﺸﻜﻼﻥ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ O‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪. 4‬‬‫ﻫﻲ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ ‪ 4‬ﻭ ﻋﻤﺩﺘﻪ‬ ‫‪4‬‬ ‫‪‬‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪ (10‬ﺍﻟﻌﺒﺎﺭﺓ‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪.2‬‬ ‫‪ (11‬ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪Z‬‬ ‫‪π‬‬ ‫‪Z=2‬‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪+i‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬‫ﻫﻤﺎ‪ 2‬ﻭ ‪ 4‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪‬‬

‫ﻫﻤﺎ ‪ 3‬ﻭ‬ ‫‪Z=3‬‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪ (12‬ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﺤﻴﺙ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪ 6‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫ﻫﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ ‪ 4‬ﻭ ﻋﻤﺩﺘﻪ‬ ‫‪Z‬‬ ‫=‬ ‫‪-4‬‬ ‫‪ei‬‬ ‫‪π‬‬ ‫‪ (13‬ﺍﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪π+‬‬ ‫‪π‬‬ ‫ﻫﻲ ﻟﻌﺩﺩ ﻤﺭﻜﺏ ﻁﻭﻴﻠﺘﻪ ‪ 4‬ﻭ ﻋﻤﺩﺘﻪ‬ ‫‪Z‬‬ ‫=‬ ‫‪-4‬‬ ‫‪ei‬‬ ‫‪π‬‬ ‫‪ (14‬ﺍﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪Z = -2 +‬‬ ‫‪i‬‬ ‫‪+‬‬ ‫‪k‬‬ ‫‪ei‬‬ ‫‪π‬‬ ‫‪ (15‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺤﻴﺙ‬ ‫‪4‬‬ ‫ﻫﻲ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ ﺍﻟﻨﻘﻁﺔ ‪ I‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ -2 + i‬ﻭ ‪ k‬ﻤﺘﻐﻴﺭ ﻓﻲ \‬‫‪ (16‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺤﻴﺙ ‪ Z = i + 3 eiθ‬ﺤﻴﺙ ‪ θ‬ﻤﺘﻐﻴﺭ ﻓﻲ \ ﻫﻲ‬ ‫ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ i‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ i‬ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪3‬‬ ‫‪ (17‬ﺘﻭﺠﺩ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ^ ﻻ ﺘﻘﺒل ﺤﻠﻭل‬ ‫‪ (18‬ﺇﺫﺍ ﻜﺎﻥ ﻤﻤﻴﺯ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺴﺎﻟﺒﺎ ﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺤﻠﻴﻥ ﻤﺘﺭﺍﻓﻘﻴﻥ‪.‬‬ ‫‪ (19‬ﺇﺫﺍ ﻜﺎﻥ‪ ABC‬ﻤﺜﻠﺙ ﺤﻴﺙ ﻟﻭﺍﺤﻕ ‪ A‬ﻭ ‪ B‬ﻭ‪ C‬ﻫﻲ ‪ ZA‬ﻭ ‪ ZB‬ﻭ ‪ ZC‬ﺒﺤﻴﺙ‪:‬‬ ‫‪ZC - ZA‬‬ ‫‪=1‬‬ ‫‪ZB - ZA‬‬ ‫‪ (20‬ﻓﺈﻥ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ‪.‬‬ ‫‪ (21‬ﺇﺫﺍ ﻜﺎﻥ ‪ ABC‬ﻤﺜﻠﺙ ﺤﻴﺙ ‪ ZC , ZB , ZA‬ﻫﻲ ﻟﻭﺍﺤﻕ ‪C, B ,‬‬ ‫ﻓﺈﻥ ﺍﻟﻤﺜﻠﺙ‬ ‫‪π‬‬ ‫ﻫﻲ‬ ‫‪ZC‬‬ ‫‪- ZA‬‬ ‫ﻭ ﻜﺎﻨﺕ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‬ ‫‪A‬‬ ‫‪2‬‬ ‫‪ZB‬‬ ‫‪- ZA‬‬ ‫‪ ABC‬ﻗﺎﺌﻡ ﻓﻲ ‪. A‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ ‪:‬‬‫‪B‬‬‫‪C‬‬ ‫‪A‬‬ ‫‪vG‬‬ ‫‪O uG‬‬ ‫‪ (1‬ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ ‪GA‬ﻭ‪JBJJ‬ﻭ ‪JJJG JJ.JGC‬‬ ‫‪ (2‬ﻋﻴﻥ ﻟﻭﺍﺤﻕ ﺍﻷﺸﻌﺔ ‪(3 . BC , AC , AB‬‬ ‫ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ D‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺭﺒﺎﻋﻲ‬ ‫‪ ABCD‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ‪ .‬ﺜﻡ ﻋﻴﻥ ﻻﺤﻘﺔ ﻤﺭﻜﺯﻩ ‪. I‬‬ ‫‪ (4‬ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ E‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ ABDE‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬‫ﻫل ﺘﻭﺠﺩ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ‪ x‬ﻭ‪ y‬ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z = (x + y) + xyi‬ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ ﺍﻟﻌﺩﺩ‬ ‫ﺍﻟﻤﺭﻜﺏ ‪7 + 12i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ D , C , B , A‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ‪ ZD , ZC , ZB , ZA‬ﺤﻴﺙ ‪:‬‬ ‫‪ZD = ZC ; ZC = -ZA , ZB = ZA ; ZA = α + iβ‬‬ ‫ﺤﻴﺙ ‪ α‬و ‪ β‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪.‬‬

‫ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ ‪. ABCD‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ ‪ Z1 = 2 - i :‬ﻭ ‪Z2 = -5 + 3i‬‬ ‫ﺍﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ‪.‬‬‫‪Z3‬‬ ‫=‬ ‫‪Z1 - Z2‬‬ ‫‪Z4‬‬ ‫=‬ ‫‪Z12‬‬ ‫‪iZ1‬‬ ‫‪1 + Z1‬‬ ‫‪1 - Z2‬‬ ‫‪Z1 + Z2 2‬‬ ‫‪( ),‬‬ ‫= ‪, Z5‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪S1 = 1 + i + i2 + . . . + i2008 :‬‬ ‫ﺜﻡ ﺍﻟﻤﺠﻤﻭﻉ ‪S2 = 1 - i + i2 - i3 + . . . + (-i)2008 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬‫ﻤﺜل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ﺍﻟﻨﻘﻁ ‪ F , E , D , C , B , A‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪:‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪ZA‬‬ ‫‪.ZB‬‬ ‫‪,‬‬ ‫‪ZA‬‬ ‫‪+ ZB ,‬‬ ‫‪ZB‬‬ ‫‪,‬‬ ‫‪ZA‬‬ ‫‪ZB‬‬ ‫‪ZA‬‬ ‫‪ZA‬‬ ‫= ) ‪ arg ( ZA‬ﻭ ‪= 2‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪,‬‬ ‫]∈‪k‬‬ ‫‪3‬‬ ‫‪ZB‬‬ ‫= ) ‪ arg ( ZB‬ﻭ ‪= 1‬‬ ‫‪−π‬‬ ‫‪+ 2kπ‬‬ ‫‪,‬‬ ‫∈‪k‬‬ ‫]‬ ‫‪6‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻤﺭﻜﺒﺎﻥ ‪ Z2 = 3 3 - 3i ; Z1 = -2 - 2i :‬ﻋﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ‬ ‫ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻵﺘﻴﺔ ‪:‬‬ ‫ﻭ ‪ Z12‬ﻭ ‪Z1 . Z2‬‬ ‫‪Z1‬‬ ‫ﻭ‬ ‫‪Z42‬‬ ‫ﻭ‬ ‫‪1‬‬ ‫‪, Z2 , Z1‬‬ ‫‪Z2‬‬ ‫‪Z1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬

‫‪( ) 1 -‬‬‫‪3i 2010‬‬ ‫;‬ ‫‪1+i‬‬ ‫‪1962‬‬ ‫;‬ ‫‪ 1 + i 1418‬‬ ‫ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪:‬‬ ‫‪‬‬ ‫‪ 1 - i ‬‬‫‪ 2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‬‫‪Z3 = -4 6 + 4 2i ; Z2 = -1 - 3i ; Z1 = 1 - i‬‬ ‫ﺍﻜﺘﺏ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻜل ﻤﻥ ‪:‬‬ ‫‪Z1‬‬ ‫‪, Z2‬‬ ‫‪, Z3‬‬ ‫‪, Z1‬‬ ‫‪, Z2‬‬ ‫‪,‬‬ ‫‪Z1‬‬ ‫‪, Z32‬‬ ‫‪, Z1‬‬ ‫‪Z2‬‬ ‫‪Z3‬‬ ‫‪Z2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺘﻴﻥ ‪:‬‬‫‪ cosθ + i sinθ = eiθ‬ﻭ ‪cosθ - i sinθ = e-iθ‬‬ ‫ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ θ‬ﻓﺈﻥ ‪:‬‬‫‪cosθ‬‬ ‫=‬ ‫‪eiθ‬‬ ‫‪+ e-iθ‬‬ ‫ﻭ‬ ‫‪sin θ‬‬ ‫=‬ ‫‪eiθ‬‬ ‫‪- e-iθ‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬‫ﺍﻜﺘﺏ ﺍﻟﻼﺤﻘﺔ ‪ Z′‬ﻟﻠﻨﻘﻁﺔ ‪ M′‬ﺒﺩﻻﻟﺔ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﻟﻠﻨﻘﻁﺔ ‪ M‬ﺇﺫﺍ ﻜﺎﻨﺕ ‪ M ′‬ﻫﻲ ﺼﻭﺭﺓ ‪M‬‬ ‫ﺒﻭﺍﺴﻁﺔ ‪:‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪ wG‬ﻫﻲ‬ ‫ﺍﻟﺫﻱ ﻻﺤﻘﺔ ﺸﻌﺎﻋﻪ‬ ‫‪t‬‬ ‫‪ (1‬ﺍﻻﻨﺴﺤﺎﺏ‬ ‫‪2‬‬‫‪ (2‬ﺍﻟﺘﺤﺎﻜﻲ ‪ H‬ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ O‬ﻭﻴﺤﻭل ﺍﻟﻨﻘﻁﺔ ‪ A‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ 1 + i‬ﺇﻟﻰ ﺍﻟﻨﻘﻁﺔ ‪ B‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪2‬‬ ‫‪. + 2i‬‬‫‪.-‬‬ ‫‪3‬‬ ‫‪+i‬‬ ‫ﻭ ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ C‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪5π‬‬ ‫‪ (3‬ﺍﻟﺩﻭﺭﺍﻥ ‪ R‬ﺍﻟﺫﻱ ﺯﺍﻭﻴﺘﻪ‬ ‫‪6‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 13‬‬ ‫‪ -1‬ﻋﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻜل ﻤﻥ ‪3 + 4i ; 3 – 4i‬‬ ‫‪ -2‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - 6Z + 25 = 0 :‬‬

‫‪ -3‬ﺍﺴﺘﻨﺘﺞ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z4 - 6Z2 + 25 = 0 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬‫‪ A,B,C‬ﺜﻼﺙ ﻨﻘﻁ ﻟﻭﺍﺤﻘﻬﺎ ‪a = -1 - i , b = 2 + i , c = 4i :‬‬ ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪ -1‬ﻤﺜل ﺍﻟﻨﻘﻁ ‪. A,B,C‬‬ ‫ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ‪.‬‬ ‫=‪Z‬‬ ‫‪a-b‬‬ ‫‪ -2‬ﺍﻜﺘﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪:‬‬ ‫‪c-b‬‬ ‫ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪ -3‬ﻋﻴﻥ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ D‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺭﺒﺎﻋﻲ ‪ ABCD‬ﻤﺭﺒﻊ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬‫‪Z‬‬ ‫≠‬ ‫‪i‬‬ ‫‪ Z , i ,‬ﺤﻴﺙ‪:‬‬ ‫‪1‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ M , B , A‬ﺫﺍﺕ ﺍﻟﻠﻭﺍﺤﻕ‬ ‫‪2‬‬ ‫‪1 - 2Z‬‬ ‫‪.‬‬ ‫‪Z1‬‬ ‫=‬ ‫‪iZ + 1‬‬ ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪ .‬ﻨﻀﻊ‪:‬‬ ‫‪.‬‬ ‫‪Z1‬‬ ‫‪=2.‬‬ ‫‪AM‬‬ ‫‪ -1‬ﺒﻴﻥ ﺃﻥ ‪:‬‬ ‫‪BM‬‬‫ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻋﺔ )‪ (E‬ﻟﻠﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪. Z1 = 2‬‬ ‫‪ -2‬ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ )‪ (F‬ﻟﻠﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z1‬ﺤﻘﻴﻘﻲ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪ Z = 1 + 2eiθ (1‬ﺤﻴﺙ ‪ θ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل \ ‪.‬‬ ‫‪ Z = i + 4eiθ (2‬ﺤﻴﺙ ‪ θ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل \ ‪.‬‬‫\‪.‬‬ ‫ﺤﻴﺙ ‪ k‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻤﺴﺢ ﻜل‬ ‫‪Z‬‬ ‫=‬ ‫‪-1‬‬ ‫‪+i‬‬ ‫‪+‬‬ ‫‪kei‬‬ ‫‪π‬‬ ‫‪(3‬‬ ‫‪6‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫ﺤل ﻓﻲ ^ ﺍﻟﺠﻤﻠﺘﻴﻥ ‪:‬‬

‫‪iZ + iZ′ = 3‬‬ ‫‪iZ + (2i - 1) Z′ = 4‬‬‫‪ -iZ + 3iZ′ = -i‬؛ ‪2iZ - Z′ = 1 + i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪Z2 + 2 (1 - cosθ) Z + 2 - 2 cosθ = 0‬‬ ‫ﺤﻴﺙ ‪ . 0 < θ ≤ π‬ﻨﻜﺘﺏ ﻜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻵﺘﻴﺔ ﻓﻲ ^ ‪:‬‬‫)‪Z3 - 12Z2 + 48Z - 128 = 0 . . . (1‬‬ ‫‪ -1‬ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺘﻘﺒل ﺤﻼ ﺤﻘﻴﻘﻴﺎ ‪ Z0‬ﺤﻴﺙ ‪. Z0 = 8‬‬ ‫‪ -2‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪. (1‬‬‫‪ -3‬ﻟﻴﻜﻥ ‪ Z2 , Z1 , Z0‬ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻴﺙ ‪ :‬ﺍﻟﻘﺴﻡ ﺍﻟﺘﺨﻴﻠﻲ ﻟﻠﻌﺩﺩ ‪ Z2‬ﺴﺎﻟﺏ‪.‬‬ ‫‪ -‬ﺍﻜﺘﺏ ﻜل ﻤﻨﻬﺎ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ‪.‬‬‫‪ -‬ﻤﺜل ﺍﻟﻨﻘﻁ ‪ M2 , M1 , M0‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ‪ Z2 , Z1 , Z0‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪Z3‬‬ ‫=‬ ‫‪Z2 - Z0‬‬ ‫‪ -4‬ﻨﻔﺭﺽ ‪:‬‬ ‫‪Z1 - Z0‬‬‫‪ -‬ﺍﺤﺴﺏ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ‪ . Z3‬ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ ‪. M0M1M2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z‬ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪. M‬‬ ‫‪Z1‬‬ ‫=‬ ‫‪iZ+1-i‬‬ ‫ﻭ ﻨﻀﻊ ‪:‬‬ ‫‪Z-2+i‬‬ ‫‪ -1‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ‪ Z1‬ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ‪.‬‬‫‪.‬‬ ‫‪π‬‬ ‫ﺘﺴﺎﻭﻱ‬ ‫‪Z1‬‬ ‫‪ -2‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ‪ :‬ﻋﻤﺩﺓ‬ ‫‪2‬‬

‫‪ -3‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ‪. Z1 = 2‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ‬ ‫‪Z1‬‬ ‫‪ -4‬ﻋﻴﻥ ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ‬ ‫‪4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 21‬‬ ‫ﻋﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪:‬‬ ‫‪ Z = 1 - cosθ + i sinθ‬ﻤﻊ ‪. -π < θ ≤ π‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬‫ﻋﻴﻥ ﺜﻼﺙ ﺃﻋﺩﺍﺩ ﻤﺭﻜﺒﺔ ﺠﺩﺍﺅﻫﺎ ‪ -27i‬ﻭ ﻁﻭﻴﻼﺘﻬﺎ ﺘﺸﻜل ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﺎﻫﺎ ‪3‬‬ ‫‪π‬‬ ‫‪ .‬ﻭ ﻋﻤﺩﺘﻬﺎ ﺘﺸﻜل ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﺎﻫﺎ ‪. 3‬‬‫‪.(2 cm‬‬ ‫)ﺍﻟﻭﺤﺩﺓ‬ ‫؛‬ ‫‪(O‬‬ ‫;‬ ‫‪uG‬‬ ‫‪,‬‬ ‫) ‪vG‬‬ ‫ﻤﺘﺠﺎﻨﺱ‬ ‫ﻭ‬ ‫ﻤﺘﻌﺎﻤﺩ‬ ‫ﻤﻌﻠﻡ‬ ‫ﺇﻟﻰ‬ ‫ﺍﻟﻤﻨﺴﻭﺏ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 23‬‬ ‫ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺔ ‪ A‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ ZA = 1‬ﻭ ﺍﻟﺩﺍﺌﺭﺓ )‪ (C‬ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ‪ A‬ﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ ‪. R = 1‬‬‫ﻭ ﺍﻟﻨﻘﻁﺔ ُ‪ E‬ﺫﺍﺕ‬ ‫‪ZB‬‬ ‫=‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪ei‬‬ ‫‪π‬‬ ‫‪ (I‬ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺔ ‪ F‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ 2‬ﻭ ﺍﻟﻨﻘﻁﺔ ‪ B‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ‬ ‫‪3‬‬ ‫ﺍﻟﻼﺤﻘﺔ ‪. ZE = 1 + ZB2‬‬ ‫‪ -1‬ﺒﻴﻥ ﺃﻥ ‪ B‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩ‪G‬ﺍ‪J‬ﺌ‪J‬ﺭﺓ‪( )JJ.JG(C) J‬‬ ‫‪ -2‬ﻋﻴﻥ ﻗﻴﺱ ﻟﻠﺯﺍﻭﻴﺔ ‪. AF , AB‬‬ ‫‪ -3‬ﻋﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ ﻟﻠﻌﺩﺩ ‪ ZB - ZA‬ﻭ ‪. ZE - ZA‬‬ ‫‪ -4‬ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁ ‪ A‬ﻭ ‪ B‬ﻭ‪ E‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪.‬‬ ‫‪ (II‬ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ ‪ M‬ﻭ ‪ M′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺘﻴﻥ ‪ Z‬ﻭ ‪ Z′‬ﺤﻴﺙ ‪:‬‬ ‫‪ Z′ = 1 + Z2‬ﻭ ‪Z ≠ 0 , Z ≠ 1‬‬ ‫≠‪. Z‬‬ ‫‪Z‬و‪1‬‬ ‫≠‬ ‫‪0‬‬ ‫ﺤﻴﺙ‬ ‫‪Z′ - 1‬‬ ‫‪ -1‬ﻤﺎ ﻫﻭ ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ ﻟـ ‪Z - 1‬‬ ‫‪ -2‬ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁ ‪ A‬ﻭ ‪ M‬ﻭ ‪ M′‬ﺘﻜﻭﻥ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook