Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

‫‪.‬‬ ‫‪Z2‬‬ ‫∈‬ ‫ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪\ :‬‬ ‫‪Z-1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬‫ﻨﻌﺘﺒﺭ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ‪f (Z) = Z3 - (2 - 3i) Z2 + 9Z - 18 + 27i :‬‬ ‫‪(1‬ﺍ ﺤﺴﺏ ‪ f (Z) :‬ﺒﺩﻻﻟﺔ ‪. Z‬‬‫‪ (2‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ f (Z) = 0‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻨﻬﺎ ﺘﻘﺒل ﺤﻠﻴﻥ ﻤﺘﺭﺍﻓﻘﻴﻥ ‪ Z1‬و ‪. Z1‬‬ ‫‪ (3‬ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ A‬ﻭ‪ B‬ﻭ‪ C‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ‪2 – 3i ; -3i ; 3i :‬‬ ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫= ‪. Z′‬‬ ‫‪ZA - ZB‬‬ ‫‪ -‬ﺍﺤﺴﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪ Z′‬ﺤﻴﺙ ‪:‬‬ ‫‪ZC - ZB‬‬ ‫‪ -‬ﺍﺤﺴﺏ ‪ Z′‬ﻭ ﻋﻤﺩﺓ ‪ . Z′‬ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪ M (4‬ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ ‪. Z‬‬‫ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ‪. AM2 + 2MB2 - 2MC2 = 25 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 25‬‬ ‫‪ (1‬ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - (1 + i) Z - 4i = 0 :‬‬ ‫‪ (2‬ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪:‬‬‫‪Z4 - (1 + i) Z3 + (9 - 4i)Z2 - 9 (1 + i) Z - 36 = 0‬‬ ‫‪ -‬ﺒﻴﻥ ﺃﻥ ﻟﻬﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﺘﺨﻴﻠﻴﻴﻥ ﺼﺭﻓﻴﻴﻥ ﻤﺘﻌﺎﻜﺴﻴﻥ ‪ Z3‬و ‪. Z4‬‬ ‫‪ -‬ﺍﺴﺘﻨﺘﺞ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ‪.‬‬‫ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ‬ ‫‪Z - Z3 - Z4‬‬ ‫‪ -3‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪:‬‬ ‫‪Z - Z1 - Z2‬‬ ‫‪-π‬‬ ‫‪.2‬‬‫ﺤﻴﺙ ‪ Z‬ﻫﻲ ﻻﺤﻘﺔ ‪ M‬ﻭ ‪ Z4 , Z3 , Z2 , Z1‬ﻫﻲ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﺍﻟﺴﺅﺍل )‪. (2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 26‬‬

‫‪ ABC‬ﻤﺜﻠﺙ‪ .‬ﻨﺭﺴﻡ ﺨﺎﺭﺝ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻟﻤﻘﺎﻴﺴﺔ ﺍﻷﻀﻼﻉ ‪ ABC‬ﻭ ‪ ACE‬ﻭ ‪ BCF‬ﺍﻟﺘﻲ‬ ‫ﻤﺭﺍﻜﺯ ﺜﻘﻠﻬﺎ ‪ K , J , I‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‪.‬‬ ‫ﺒﺭﻫﻥ ﺃﻥ ﻟﻠﻤﺜﻠﺜﺎﺕ ‪ ABC‬ﻭ ‪ FED‬ﻭ ‪ IJK‬ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 27‬‬ ‫ﻋﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪. 1 + cosx + i sin x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 28‬‬ ‫‪ ABCD‬ﻤﺭﺒﻊ‪ .‬ﻨﺭﺴﻡ ﺍﻟﻤﺭﺒﻌﻴﻥ ‪ DCEF‬ﻭ ‪ GHBA‬ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﻜل ‪:‬‬ ‫‪G AD F‬‬ ‫‪αβ γ‬‬ ‫‪H B CE‬‬ ‫ﺒﺭﻫﻥ ﺃﻥ ‪α + β = γ :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪( )G G . 29‬‬ ‫ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪. O ; i , j‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪ C , B , A‬ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ‪ -4 + 2i ; i + 2 , 3 – i :‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫‪ (1‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ N‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺒﺤﻴﺙ ‪Z - 3 + i = 2‬‬‫‪arg‬‬ ‫‪ Z-2-i ‬‬ ‫=‬ ‫‪π‬‬ ‫‪ (2‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪ Z + 4 - 2i ‬‬ ‫‪2‬‬ ‫‪( )JJJG JJJG‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 30‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﺤﻴﺙ ‪ k ∈ Z , AB , AC = α + 2kπ‬ﻭ‬ ‫[‪. α ∈ ]0 ; π‬‬‫ﻨﻨﺸﺊ ﺨﺎﺭﺝ ﻫﺫﺍ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻤﺭﺒﻌﺎﻥ ‪ ABFG‬ﻭ ‪ ACDE‬ﻭ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ‪ AELG‬ﺒﺭﻫﻥ ﺃﻥ‬ ‫)‪ ( AL) ⊥ (BC‬و ‪AL = BC‬‬

‫ﺍﻟﺤـﻠــــــﻭل‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫‪× (5 × (4‬‬ ‫‪√ (3 √ (2‬‬ ‫‪× (1‬‬ ‫‪× (10 √ (9‬‬ ‫‪√ (8 × (7‬‬ ‫‪× (6‬‬ ‫‪√ (15 × (14 × (13 × (12 × (11‬‬ ‫‪√ (20 √ (19 × (18 × (17 √ (16‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫‪ (1‬ﻻﺤﻘﺔ ‪ A‬ﻫﻲ ‪ZA = 2 + i :‬‬ ‫ﻻﺤﻘﺔ ‪ B‬ﻫﻲ ‪ZB = -1 + 3i :‬‬ ‫ﻻﺤﻘﺔ ‪ C‬ﻫﻲ ‪ZC = -2 +JJi JG:‬‬‫→‪Z‬‬ ‫=‬ ‫‪ZB‬‬ ‫‪-‬‬ ‫‪ZA‬‬ ‫=‬ ‫‪-3‬‬ ‫‪+‬‬ ‫‪2i‬‬ ‫‪ (2‬ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ‪ AB‬ﻫﻲ ‪:‬‬ ‫‪AB‬‬ ‫‪JJJG‬‬ ‫→‪Z‬‬ ‫=‬ ‫‪ZC‬‬ ‫‪-‬‬ ‫‪ZA‬‬ ‫=‬ ‫‪-4‬‬ ‫ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ‪ AC‬ﻫﻲ ‪:‬‬ ‫‪AC‬‬ ‫‪JJJG‬‬‫→‪Z‬‬ ‫=‬ ‫‪ZC‬‬ ‫‪-‬‬ ‫‪ZB‬‬ ‫=‬ ‫‪-1‬‬ ‫‪-‬‬ ‫‪2i‬‬ ‫ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ‪ BC‬ﻫﻲ ‪:‬‬ ‫‪AB‬‬ ‫‪ (3‬ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ ‪ D‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ BCD‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ‪.‬‬ ‫ﺘﻜﻭﻥ ‪ ABCD‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬‫‪ZDC = ZC - ZD‬‬ ‫‪, ZJJJG = -3 + 2i‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪Z JJJG‬‬ ‫‪= ZJJJG‬‬ ‫‪AB‬‬ ‫‪AB‬‬ ‫‪DC‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪Z JJJG‬‬ ‫=‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪ZE‬‬ ‫‪:‬‬ ‫ﺃﻱ‬ ‫‪DC‬‬ ‫‪-2 + i - ZD = -3 + 2i‬‬ ‫ﺇﺫﻥ ‪ZD = 1 - i :‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ ‪ I‬ﻤﺭﻜﺯ ‪ I : ABCD‬ﻫﻭ ﻤﻨﺘﺼﻑ ‪[ ]AC‬‬ ‫‪ZI‬‬ ‫=‬ ‫‪ZA‬‬ ‫‪+ ZC‬‬ ‫=‬ ‫‪2+i-2+i‬‬ ‫‪=i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ ‪ZI = i :‬‬

‫‪ -4‬ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ ‪ E‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ ABCD :‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻴﻜﻭﻥ ‪ DE‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﺇﺫﺍ ﻭﻓﻕ ﺇﺫﺍ‬ ‫ﻜﺎﻥ ‪:‬‬‫‪Z JJJG‬‬ ‫=‬ ‫‪ZD‬‬ ‫‪-‬‬ ‫‪ZE‬‬ ‫‪,‬‬ ‫‪Z JJJG‬‬ ‫=‬ ‫‪-3‬‬ ‫‪+‬‬ ‫‪2i‬‬ ‫ﺤﻴﺙ‬ ‫‪Z JJJG‬‬ ‫=‬ ‫‪Z JJJG‬‬ ‫‪ED‬‬ ‫‪AB‬‬ ‫‪AB‬‬ ‫‪ED‬‬ ‫‪Z JJJG‬‬ ‫=‬ ‫‪-‬‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪ZE‬‬ ‫ﺃﻱ‬ ‫‪ED‬‬ ‫ﻭﻋﻠﻴﻪ ‪1 - i - ZE = -3 + 2i :‬‬ ‫ﺇﺫﻥ ‪. ZE = 4 - 3i :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫ﺇﻴﺠﺎﺩ ﺍﻷﻋﺩﺍﺩ ‪ x‬ﻭ‪ y‬ﺒﺤﻴﺙ ‪Z = 7 + 12i :‬‬ ‫‪x + y = 7‬‬ ‫‪‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪.‬‬ ‫‪y‬‬ ‫=‬ ‫‪12‬‬‫ﻭﻤﻨﻪ ‪ x‬ﻭ‪ y‬ﻫﻤﺎ ﺤﻼﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ t1 = 3 , ∆ = 1 , t2 - 7t + 12 = 0 :‬ﻭ‬ ‫‪. t2 = 4‬‬ ‫ﻭﻤﻨﻪ‪ x = 3‬ﻭ ‪ y = 4‬ﺃﻭ ‪ x = 4‬ﻭ ‪y = 3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ ‪: ABCD‬‬‫ﻟﺩﻴﻨﺎ ‪ ZB = ZA‬ﻭﻤﻨﻪ ‪ A‬ﻭ ‪ B‬ﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪. OA = OB :‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ ZC = - ZA‬ﻓﺈﻥ ‪ A‬ﻭ ‪ C‬ﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﺒﺩﺃ‬ ‫ﺍﻟﻤﻌﻠﻡ ‪ O‬ﻭ ﻟﺩﻴﻨﺎ ‪. OA = OC :‬‬‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ ZD = ZC‬ﻓﺈﻥ ‪ D‬ﻭ‪ C‬ﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪. OC = OD :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ ABCD‬ﻫﻭ ﻤﺴﺘﻁﻴل ﻷﻥ ﻗﻁﺭﺍﻥ ﻤﺘﻘﺎﻴﺴﺎﻥ ﻭ ﻤﺘﻨﺎﺼﻔﺎﻥ ‪.‬‬

‫‪D‬‬ ‫‪β‬‬ ‫‪A‬‬ ‫‪-α‬‬ ‫‪vG‬‬ ‫‪α‬‬ ‫‪O uG‬‬ ‫‪C‬‬ ‫‪B‬‬ ‫‪-β‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ ‪:‬‬‫= ‪Z3‬‬ ‫‪Z1 - Z2‬‬ ‫=‬ ‫‪2 - i + 5 - 3i‬‬ ‫=‬ ‫‪7 - 4i‬‬ ‫×‬ ‫‪3+i‬‬ ‫‪1 + Z1‬‬ ‫‪1+2-i‬‬ ‫‪3-i‬‬ ‫‪3+i‬‬‫‪Z3‬‬ ‫=‬ ‫‪25 - 2i‬‬ ‫=‬ ‫‪5‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪10‬‬ ‫‪2‬‬ ‫‪5‬‬‫‪Z4‬‬ ‫=‬ ‫‪Z12‬‬ ‫=‬ ‫‪(2 - i)2‬‬ ‫=‬ ‫‪4 - 4i - 1‬‬ ‫‪1 - Z2‬‬ ‫‪1 + 5 - 3i‬‬ ‫‪6 - 3i‬‬‫‪Z4‬‬ ‫=‬ ‫‪3 - 4i‬‬ ‫×‬ ‫‪6 + 3i‬‬ ‫=‬ ‫‪30 - 15i‬‬ ‫=‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪6 - 3i‬‬ ‫‪6 + 3i‬‬ ‫‪45‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪i Z1‬‬ ‫)‪i (2 - i‬‬ ‫‪2i + 1‬‬‫‪Z5‬‬ ‫=‬ ‫‪(Z1 + Z2 )2‬‬ ‫=‬ ‫‪(-5 + 3i + 2 - i)2‬‬ ‫=‬ ‫‪(-3 + 2i)2‬‬‫‪Z5‬‬ ‫=‬ ‫‪2i + 1‬‬ ‫×‬ ‫‪5 + 12i‬‬ ‫=‬ ‫‪-19 + 22i‬‬ ‫‪5 - 12i‬‬ ‫‪5 + 12i‬‬ ‫‪169‬‬ ‫‪-19‬‬ ‫‪22‬‬‫‪Z5‬‬ ‫=‬ ‫‪169‬‬ ‫‪+‬‬ ‫‪169‬‬ ‫‪i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫‪ -‬ﺤﺴﺎﺏ ‪ : S‬ﺍﻟﻤﺠﻤﻭﻉ ﻫﻭ ﻤﺠﻤﻭﻉ ‪ n + 1‬ﺤﺩ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ‪ 1‬ﻭ ﺃﺴﺎﺴﻬﺎ ‪i‬‬

S1 = 1 × 1 - i2009 = 1 - i . i2008 1-i 1-iS1 = 1 - i . ( ) i 2 1004 = 1 - i ( )-1 1004 = 1-i =1  1-i  1-i 1-i : S2 ‫ ﺤﺴﺎﺏ‬-S2 = 1 - i + i2 - i3 + . . . + (-i)2008S2 = (-i)0 + (-i)1 + (-i)2 + (-i)3 + . . . + (-i)2008 1 ‫ﺤﺩ ﻤﻥ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل‬2009 ‫ﻭﻫﻭ ﻤﺠﻤﻭﻉ‬ : ‫ ﺇﺫﻥ‬. –i ‫ﻭ ﺃﺴﺎﺴﻬﺎ‬ S2 = 1 × 1 - (-i)2009 = 1 - (-i) (-i)2008 1 - (-i) 1+i 1+i ( -i )2  1004 1 + i ( )-1 1004 S1 = = 1 +i = 1+i =1 1-i 1+i . 7‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺍﻟﺘﻤﺜﻴل ﺍﻟﻬﻨﺩﺴﻲ‬ ZD = 2 ‫ ؛‬ZD = ZA ZB ‫ ؛‬ZD = ZA′ ZBarg( ZD ) = agr ( ZA ) + arg( ZB ) = π - π = π + 2kπ 3 6 6 arg  1  = -arg( ZA ) + 2kπ : ‫ﻟﺩﻴﻨﺎ‬  ZA   ZE = 1 = 1 = 1 ‫ﻭ‬ arg( ZE ) = - π + 2kπ :‫ﻭ ﻤﻨﻪ‬ ZA ZA 2 3

: ‫ﻭ ﻤﻨﻪ‬ arg  1  = -arg(ZB ) + 2kπ , k ∈ Z :‫ﻟﺩﻴﻨﺎ‬  ZB  ZF = 1 = 1 = 1 =1 ‫ﻭ‬ arg( ZF ) = π + 2kπ ZB ZB 1 6 A C D F EB . 8‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺘﻌﻴﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﺍﻟﻌﻤﺩﺓ‬• Z1 = (-2)2 + (-2)2 = 8 = 2 2 π cosθ1 = -2 = −2 4 22 2 θ1 =π + + 2kπ :‫ﻭﻤﻨﻪ‬  -2 −2 sin θ1 = 22 = 2 k∈Z ‫ﻭ‬ θ1 = 5π + 2kπ : ‫ﺃﻱ‬ 4( )• Z2 = 3 3 2 + (-3)2 = 36 = 6

-π cosθ2 = 33 = 3 6  = 6 2 k∈Z ; θ2 = + 2kπ : ‫ﻭﻤﻨﻪ‬ sin θ2 -3 1 6 = - 2• Z1 . Z2 = Z1 . Z2 = 2 2 × 6 = 12 2arg ( Z1 . Z2 ) = arg ( Z1 ) + arg( Z2 ) + 2kπ , k ∈ Z = 5π - π + 2kπ = 15π - 2π + 2k 4 6 12 13π = 12 + 2kπ( )• Z12 = Z1 2 = 2 2 2 =8( )arg Z12 = 2 arg( Z1 ) = 2 × 5π + 2kπ 4 5π = 2 + 2kπ , k∈ Z• Z1 = Z1 = 22 = 2 Z2 Z2 6 3arg  Z1  = arg( Z1 ) - arg( Z2 ) + 2kπ , k∈ Z  Z2    = 5π + π + 2kπ , k ∈ Z 4 6 17π = 12 + 2kπ , k∈ Z

• Z42 = Z2 4 = (6)4 = 1296( )arg Z42 = 4arg ( Z2 ) +2kπ , k ∈ Z = 4 -π  + 2kπ , k∈ Z 6  = −2π + 2kπ , k∈ Z 3• 1 = 1 = 1 = 2 Z1 Z1 22 4arg  1  = -arg( Z1 ) + 2kπ , k∈ Z  Z1    = - 5π + 2kπ , k∈Z 4 . 9‫ﺍﻟﺘﻤﺭﻴﻥ‬  1 - 3i 2010  2  ‫(ﺤﺴﺎﺏ‬1 1 - 3i ‫ ﻋﻤﺩﺓ‬θ ‫ﻨﻔﺭﺽ‬ θ= -π + 2kπ ‫ﻭﻤﻨﻪ‬ cosθ = 1 , 1 - 3i = 2 3  2 sin θ = -3 2 1- 3i = 2 cos  -π  + i sin  -π  :‫ﻭﻤﻨﻪ‬  3   3 

1- 3i 2010 cos  -π   -π  2010  2   3   3  = + i sin : ‫ﻭﻋﻠﻴﻪ‬ = cos  -2010π  + i sin  -2010π   3  3  = cos(-670π) + i sin(-670π) =1 ( )1 + i 1962 : ‫ ﺤﺴﺎﺏ‬x( )1 + i 1962 = (1 + i )2  981 = ( 2i)981 = ( 2)981 . ( i )981  ( )= 2981 . i . i980 = 2981 . i . i2 490 = 2981 . i . ( -1)490 = i . ( )2 981  1 + i 1418  1 - i  : ‫ﺤﺴﺎﺏ‬•  1 + i 1418 =  1 + i 2 709 = (1 + i)2   1 - i       1 - i   (1 - i)2  =  2i 709 = ( )-1 709 = -1  -2i  . 10‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺍﻟﺸﻜل ﺍﻷﺴﻲ‬• Z1 = 2 , cosθ1 = 2  2 sinθ1 = -2 2

Z1 = 2 e-i π : ‫ﻭﻋﻠﻴﻪ‬ k∈ Z , θ1 = -π + 2kπ : ‫ﺇﺫﻥ‬ 4 4  cosθ2 = - 1  2• Z2 = 2 ,  sinθ2 -3 = 2 Z2 = 2 e4i π ‫؛‬ θ2 = 4π + 2kπ , k∈ Z : ‫ﻭﻤﻨﻪ‬ 3 3  cosθ 3 = -4 6 = −3  8 2 2• Z3 = 8 2 ,  4 2 1 sinθ12 = 8 2 = 2 Z3 = 8 2 e5i π ‫؛‬ θ3 = 5π + 2kπ , k ∈ Z ‫ﻭﻤﻨﻪ‬ 6 6• Z1 . Z2 = 2 2 ei  -π + 4π  = 2 2 ei1132π  4 3 • Z1 = 2 ei  -π - 4π  = 22 ei  -19π  Z2 2  4 3   12 ( )• Z23 =8 2 3 ei 3× 5π  = 1024 2e 6 ( ) ( ) ( )• Z1Z2Z3 = 2 e = 32 . ei-π+ 4π + 5π  i 23π 2 82  4 3 6  12 . 11‫ﺍﻟﺘﻤﺭﻴﻥ‬

‫‪cosθ + i sinθ = eiθ‬‬ ‫ﻟﺩﻴﻨﺎ ‪cosθ - i sinθ = e-iθ :‬‬ ‫ﻭﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ ‪2cosθ = eiθ + e-iθ :‬‬ ‫ﻭﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ‪2i sinθ = eiθ - e-iθ :‬‬ ‫‪cosθ‬‬ ‫=‬ ‫‪eiθ‬‬ ‫‪+ e-iθ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫‪sinθ‬‬ ‫=‬ ‫‪eiθ - e-iθ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬ ‫‪Z′ = Z +‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪ (1‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻻﻨﺴﺤﺎﺏ ‪: T‬‬ ‫‪2‬‬ ‫‪ (2‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺤﺎﻜﻲ ‪Z′ = kZ : H‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ T(A) = B :‬ﻓﺈﻥ ‪2 + 2i = k (i + 1) :‬‬ ‫ﺇﺫﻥ ‪k = 1 :‬‬ ‫=‪k‬‬ ‫)‪2(i + 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫=‪k‬‬ ‫‪2 + 2i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪i+1‬‬ ‫‪i+1‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪Z′ = 2Z :‬‬ ‫‪ (3‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺩﻭﺭﺍﻥ ‪Z′ = aZ + b : R‬‬ ‫=‪a‬‬ ‫‪-3‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪a‬‬ ‫=‬ ‫‪cos‬‬ ‫‪5π‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪sin‬‬ ‫‪5π‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪b‬‬ ‫‪b‬‬ ‫‪1-a‬‬ ‫=‬ ‫‪3 +i‬‬ ‫ﻻﺤﻘﺔ ﺍﻟﻤﺭﻜﺯ ﻫﻲ ‪ 1 - a :‬ﻭﻤﻨﻪ ‪:‬‬ ‫ﻭﻤﻨﻪ ‪b = (- 3 + i) a :‬‬ ‫= ‪( )b‬‬ ‫‪- 3‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪- 3 +i‬‬ ‫‪ 2‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪i‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ‪:‬‬‫=‪b‬‬ ‫‪3‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫‪i‬‬ ‫‪-‬‬ ‫‪i‬‬ ‫‪3‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪=1-i‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪Z′‬‬ ‫‪- 3‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪i‬‬ ‫‪‬‬ ‫‪Z+1-i‬‬ ‫‪3‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪ 2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 13‬‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ‪:‬‬‫‪ 3 – 4i x‬ﻨﻔﺭﺽ ‪ δ = x + iy‬ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ‪3 - 4i‬‬‫ﻴﻜﻭﻥ ‪ δ2 = 3 - 4i :‬ﻭﻤﻨﻪ ‪(x + iy)2 = 3 - 4i :‬‬ ‫‪x2 - y2 = 3‬‬ ‫‪‬‬ ‫ﺃﻱ ﺃﻥ ‪:‬‬ ‫‪‬‬ ‫‪2xy‬‬ ‫=‬ ‫‪-4‬‬‫ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺍﻟﻌﻼﻤﺔ ‪δ2 = 3 - 4i : δ2 = 3 - 4i‬‬‫ﺇﺫﻥ ‪ δ 2 = (3)2 + (-4)2‬ﺃﻱ ﺃﻥ ‪x2 + y2 = 5 :‬‬ ‫)‪ x2 - y2 = 3 . . . (1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪xy‬‬ ‫=‬ ‫‪-2‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪(2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫=‬ ‫‪5‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪(3‬‬ ‫‪‬‬ ‫ﺒﺠﻤﻊ )‪ (1‬ﻭ )‪ (3‬ﻨﺠﺩ ‪ 2 x2 = 8 :‬ﻭﻤﻨﻪ ‪x2 = 4‬‬ ‫ﺇﺫﻥ ‪ x = 2 :‬ﺃﻭ ‪ x = -1‬ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪ (2‬ﻨﺠﺩ‪:‬‬ ‫ﻟﻤﺎ ‪ y = -1 : x = 2‬ﻭﻟﻤﺎ ‪y = 1 : x = -2‬‬ ‫ﻭﻤﻨﻪ ‪ δ1 = 2 - i‬ﻭ ‪δ2 = -2 + i‬‬ ‫ﻫﻤﺎ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ‪. 3 – 4i‬‬ ‫• ‪3 + 4i‬‬ ‫ﻟﻴﻜﻥ ‪ δ‬ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ ‪ 3 + 4i‬ﺃﻱ ‪δ2 = 3 + 4i‬‬‫ﻨﻀﻊ ‪ δ = α + iβ‬ﻭﻤﻨﻪ ‪(α + iβ)2 = 3 + 4i‬‬ ‫‪α2 - β2 = 3‬‬ ‫‪2αβ = 4‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬

‫ﻭ ﻤﻥ ﺍﻟﻌﻼﻗﺔ ‪ δ2 = 3 + 4i‬ﻟﺩﻴﻨﺎ ‪δ2 = 3 + 4i :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ δ 2 = (3)2 + (4)2 :‬ﻭﻤﻨﻪ ‪α2 + β2 = 5 :‬‬ ‫)‪α2 - β2 = 3 . . . (1‬‬ ‫)‪α β = 2 . . . (2‬‬ ‫)‪α2 + β2 = 5 . . . (3‬‬ ‫ﺒﺠﻤﻊ )‪ (1‬ﻭ )‪ (3‬ﻨﺠﺩ ‪ 2α2 = 8 :‬ﻭﻤﻨﻪ ‪α2 = 4‬‬ ‫ﺇﺫﻥ ‪ α = 2 :‬ﺃﻭ ‪ α = -2‬ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪ (2‬ﻨﺠﺩ‪:‬‬ ‫ﻟﻤﺎ ‪ β = 1 : α = 2‬ﻭ ﻟﻤﺎ ‪β = -1 : α = -2‬‬ ‫ﺇﺫﻥ ‪ δ1 = 2 + i :‬ﻭ ‪δ2 = 2 + i‬‬ ‫ﻫﻤﺎ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ ‪3 + 4i‬‬ ‫‪ -2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - 6Z + 25 = 0 :‬‬‫)‪ ∆′ = (-3)2 - 25(1‬ﻭﻤﻨﻪ ‪ ∆′ = -16‬ﺃﻱ ‪∆′ = 16i2‬‬ ‫ﺇﺫﻥ ﺍﻟﺠﺫﺭﻴﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻫﻤﺎ ‪ 4i :‬ﻭ ‪-4i‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪ Z1 = 3 - 4i :‬ﻭ ‪Z2 = 3 + 4i‬‬ ‫‪ -3‬ﺍﺴﺘﻨﺘﺎﺝ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z4 - 6Z2 + 25 = 0 :‬‬ ‫ﺒﻭﻀﻊ ‪ Z2 = T‬ﻨﺠﺩ ‪T2 - 6T + 25 = 0 :‬‬ ‫ﻭﻟﻬﺎ ﺤﻠﻴﻥ ‪ T1 = 3 - 4i‬ﻭ ‪T2 = 3 - 4i‬‬ ‫ﻭﻤﻨﻪ ‪ Z2 = 3 - 4i :‬ﺃﻭ ‪Z2 = 3 + 4i‬‬ ‫ﺇﺫﻥ ‪ Z = 2 – i :‬ﺃﻭ ‪ Z = -2 + i‬ﺃﻭ ‪Z =-2 - i‬‬ ‫}‪S = {2 - i , -2 + i , 2 + i , -2 - i‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫‪ -1‬ﺘﻤﺜﻴل ﺍﻟﻨﻘﻁ ‪:‬‬

C D B O A .‫ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ‬Z ‫ ﻜﺘﺎﺒﺔ‬-2Z= -1 - i - 2 - i = -3 - 2i × -2 - 3i 4i - 2 - i -2 + 3i -2+3 i 6 + 9i + 4i - 6Z= 4+9 =i arg(Z) = π , Z = 1 ‫ﻭﻤﻨﻪ‬ 2 ( )JJJG JJJG BA ‫ﻭ‬ Z = BC : ‫ﻭﺒﻤﺎ ﺃﻥ‬ arg(Z) = BC , BA ( )JJJG JJJG = π ‫ﻭ‬ BA =1 : ‫ﻓﺈﻥ‬ 2 BC BC , BA ( )JJJG JJJG = π ‫ﻭ‬ BC = BA : ‫ﺇﺫﻥ‬ 2 BC , BA . ‫ ﻭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ‬B ‫ ﻗﺎﺌﻡ ﻓﻲ‬ABC ‫ﻭﻤﻨﻪ ﺍﻟﻤﺜﻠﺙ‬ . ‫ ﻤﺭﺒﻊ ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻥ‬ABCD ‫ﻲ‬J‫ﻋ‬J‫ﺎ‬JG‫ﻭﻥ ﺍﻟﺭﺒ‬J‫ﻴﻜ‬J-JG3 ZJJJG = ZJJJG : ‫ ﻭﻤﻨﻪ‬BC = AD BC AD ZC - ZB = ZD - ZA : ‫ﻭﻤﻨﻪ‬

ZD = 2i - 3 : ‫ ﺇﺫﻥ‬4i - 2 - i = ZD + 1 + i : ‫ﺇﺫﻥ‬ . 15‫ﺍﻟﺘﻤﺭﻴﻥ‬ Z1 =2. AM ‫ ﻨﺒﻴﻥ ﺃﻥ‬-1 BM 1 - 2Z -2  Z - 1 -2 Z- 1 iZ + 1  2  i 2Z1 = = 1 =  i  Z-i i  Z + Z- 1 2Z1 = 2i Z-i Z- 1 Z- 1 AM 2 2 BMZ1 = 2i . =2. =2. Z-i Z-i : (E) ‫ﺍﺴﺘﻨﺘﺎﺝ‬ AM = BM : ‫ﻭﻤﻨﻪ‬ AM =1 : ‫ ﻤﻌﻨﺎﻩ‬Z1 = 2 BM [ ] [ ]AB ‫ ﻫﻭ ﻤﺤﻭﺭ‬E ‫ﺇﺫﻥ‬. AB ‫ ﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭ‬M ‫ﻭﻤﻨﻪ‬ Z1 = Z1 : ‫ ﺤﻘﻴﻘﻲ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ‬Z1 ‫ ﻴﻜﻭﻥ‬-2 : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ 1 - 2Z = 1 - 2Z : ‫ﻭﻋﻠﻴﻪ‬ iZ + 1 -iZ + 1(1 - 2Z) (-iZ + 1) = (iZ + 1) (1 - 2Z)-iZ + 1 + 2i ZZ - 2Z = iZ - 2i ZZ + 1 -2 Z-iZ + 2i ZZ - 2Z - iZ + 2i ZZ + 2Z = 0-i (Z + Z) - 2 (Z - Z) + 4i ZZ = 0

‫‪-i (2x) - 2 (2iy) + 4i (x2 + y2 ) = 0‬‬‫‪( )( )2i - x - 2y + 2 x2 + y2 = 0‬‬ ‫ﺇﺫﻥ ‪( )2 x2 + y - x - 2y = 0 :‬‬ ‫‪x2‬‬ ‫‪+ y2‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪-y=0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪1 2‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪1 2‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪=0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪4 ‬‬ ‫‪16‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪1 2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪1 2‬‬ ‫=‬ ‫‪5‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫‪4 ‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪16‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪ Z ≠ i‬ﻭﻤﻨﻪ )‪(x ; y) ≠ (0 ; 1‬‬‫‪5‬‬ ‫ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ‬ ‫‪W‬‬ ‫‪1‬‬ ‫;‬ ‫‪1‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ F‬ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬‫‪4‬‬ ‫‪ 4‬‬ ‫‪2 ‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬ ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪:‬‬ ‫‪ (1‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ w1‬ﺫﻭ ﺍﻟﻼﺤﻘﺔ ‪ 1‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪2‬‬ ‫‪ (2‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ w2‬ﺫﻭ ﺍﻟﻼﺤﻘﺔ ‪ i‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪4‬‬ ‫‪ (3‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ ﺍﻟﻨﻘﻁﺔ ‪ I‬ﺫﺍﺕ‬ ‫‪ei‬‬ ‫‪π‬‬ ‫ﻭ ﻻﺤﻘﺔ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ‬ ‫ﺍﻟﻼﺤﻘﺔ ‪-1 + i‬‬ ‫‪6‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫)‪iZ + (2i - 1) Z′ = 4 . . . (1‬‬ ‫‪ x‬ﺤل ﺍﻟﺠﻤﻠﺔ‬ ‫)‪-iZ + 3i Z′ =- i . . . (2‬‬ ‫ﺒﺠﻤﻊ )‪ (1‬ﻭ )‪ (2‬ﻨﺠﺩ ‪(5i - 1) Z′ = 4 - i :‬‬

Z′ = (4 - i) (5i + 1) : ‫ﺃﻱ ﺃﻥ‬ Z′ = 4-i ‫ﻭﻤﻨﻪ‬ (5i - 1) (5i + 1) 5i - 1 Z′ = 9 + 19 i : ‫ﻭﻋﻠﻴﻪ‬ 26 26 -iZ + 3i  9 + 19i  = -i : ‫( ﻨﺠﺩ‬2) ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ‬  26  -iZ = -i - 27i - 57 = -53i - 57 : ‫ﻭ ﻤﻨﻪ‬ 26 26 53 57 -53i - 57 iZ= 26 - 26 i :‫ﺃﻱ‬ Z= -26i × i : ‫ﻭ ﻋﻠﻴﻪ‬ S =  59 - 57 i ; 9 + 19 i   : ‫ﺇﺫﻥ‬  26 26 26 26    -2 ×iZ + iZ′ = 3 2iZ - Z′ = 1 + i : ‫ ﺤل ﺍﻟﺠﻤﻠﺔ‬x -2i Z - 2i Z′ = -6 2iZ - Z′ = 1 + i : ‫ﻭ ﻤﻨﻪ‬ -(2i + 1) Z′ = -5 + i : ‫ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ‬Z′ = -5 + i × -2i + 1 = 10i - 5+ 2 + i : ‫ﺇﺫﻥ‬ -2i - 1 -2i + 1 5 -3 11 -3 11Z′= 5 - 5 i : ‫ﺇﺫﻥ‬ Z′ = 5 + 5 i : ‫ﻭ ﻤﻨﻪ‬iZ + iZ′ = 3 iZ + iZ′ = 3-2Z - iZ′ = i - 1 :‫ﺃﻱ‬ i × 2iZ - Z′ = 1 + i : ‫ﻟﺩﻴﻨﺎ‬ : ‫( ﻭ ﻤﻨﻪ‬i - 2) Z = i + 2 : ‫ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ‬

Z= i+2 × i+2 = +3 + 4i = - 3 - 4 i i-2 i+2 -5 5 5 S =  - 3 - 4 i ; - 3 - 11 i   5 5 5 5   : ‫ﺇﺫﻥ‬  . 18‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬∆′ = (1 - cosθ)2 - 2 + 2 cosθ∆ = 1 - 2 cosθ + cos2θ - 2 +2 cosθ∆′ = -1 + cos2θ∆′ = -sin2θ = i2 sin2θ -i sinθ ‫ ﺃﻭ‬i sinθ ‫ﻭﻤﻨﻪ ﺠﺫﺭﻱ ∆ ﻫﻤﺎ‬ : ‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ‬ Z2 = -1 + cosθ + i sinθ ‫ ﻭ‬Z1 = -1 + cosθ - i sinθ : ‫ﻜﺘﺎﺒﺔ ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ‬Z1 = -1 + cosθ - i sinθZ1 = -1 + 1 - 2sin2 θ -i × 2 sin θ cos θ 2 2 2Z1 = -2 sin2 θ - 2i sin θ . cos θ 2 2 2Z1 = 2 sin θ -sin θ - i cos θ  2 2 2 Z1 = 2 sin θ sin  θ + π  + i cos  θ + π  2  2   2 Z1 = 2 sin θ cos  θ - π  + i sin  -θ - π  2  2   2 2 

sin θ > 0 ‫ ﻭﻤﻨﻪ‬0 ≤ θ ≤ π ‫ ﻓﺈﻥ‬0 ≤ θ ≤ π ‫ﺒﻤﺎ ﺃﻥ‬ 2 2 2 .‫ ﻤﻜﺘﻭﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ‬Z1 : ‫ﻭﻋﻠﻴﻪ‬Z2 = -1 + cosθ + i sinθZ2 = - 1 + 1 - 2sin2 θ + 2i sin θ cos θ 2 2 2Z2 = -2 sin2 θ + 2i θ + 2i sin θ . cos θ 2 2 2 2Z2 = 2 sin θ -sin θ + i cos θ  2 2 2 Z2 = 2 sin θ sin  -θ  + i cos  -θ  2  2  2 Z2 = 2 sin θ cos  π + θ  + i sin  π + θ  2  2 2   2 2  . Z2 ‫ﻭ ﻫﻭ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻠﻌﺩﺩ‬ . 19‫ﺍﻟﺘﻤﺭﻴﻥ‬ Z0 = 8 ‫( ﺘﻘﺒل ﺤل ﺤﻘﻴﻘﻲ‬1) ‫( ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ‬183 - 12(8)2 + 48(8) - 128 = 0512 - 768 + 384 - 128 = 896 - 896 = 0 .‫ ﺤل ﻟﻬﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ‬8 ‫ﻭﻤﻨﻪ‬ : (1) ‫( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬2 (Z - 8) (aZ2 + bZ + c) = 0 : ‫( ﺘﻜﺎﻓﺊ‬1) ‫ﺍﻟﻤﻌﺎﺩﻟﺔ‬ aZ3 + bZ2 + cZ - 8aZ2 - 2bZ - 8c = 0 : ‫ﺃﻱ‬ aZ3 - (-b + 8a) Z2 + (c - 8b) Z - 8c = 0 : ‫ﻭﻋﻠﻴﻪ‬

‫‪a = 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪a = 1‬‬ ‫ﺇﺫﻥ ‪:‬‬‫‪b = -4‬‬ ‫‪-b + 8a = +12‬‬‫‪c = 16‬‬ ‫‪c - 8b = 48‬‬ ‫‪-8c = -128‬‬‫ﻭﻤﻨﻪ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺘﻜﺎﻓﺊ ‪(Z - 8) (Z2 - 4Z + 16) = 0 :‬‬‫ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ ‪ Z - 8 = 0 :‬ﺃﻭ ‪Z2 - 4Z + 16 = 0‬‬ ‫ﺇﺫﻥ ‪ Z = 8 :‬ﺃﻭ ‪Z2 - 4Z + 16 = 0‬‬ ‫ﻨﺠﺩ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - 4Z + 16 = 0‬‬‫‪ ∆′ = 4 - 16 = -12‬ﻭﻤﻨﻪ ‪∆′ = 12i2 :‬‬ ‫ﺠﺫﺭﻱ ‪ ∆′‬ﻫﻤﺎ ‪ i 12‬ﺃﻭ ‪-i 12‬‬‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪ Z1 = 2 +i 12 :‬ﻭ ‪Z2 = 2 - i 12‬‬‫‪ Z1 = 2 + 2i 3‬ﻭ ‪Z2 = 2 - 2i 3‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ‪ Z1‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ‪:‬‬‫‪‬‬ ‫‪cosθ1‬‬ ‫=‬ ‫‪1‬‬‫‪‬‬ ‫‪2‬‬‫‪‬‬ ‫ﻟﺩﻴﻨﺎ ‪ Z1 = 4 :‬ﻭ‬‫= ‪sinθ1‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪θ1‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪,‬‬ ‫‪k∈Z‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪3‬‬ ‫‪Z1‬‬ ‫=‬ ‫‪4‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪i‬‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ‪ Z2‬ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ‪:‬‬

cosθ2 = 1 2  ‫ ﻭ‬Z2 = 4 : ‫ﻟﺩﻴﻨﺎ‬ sinθ2 - 3 = 2 θ2 = -π + 2kπ , k∈ Z : ‫ﻭﻤﻨﻪ‬ 3 Z2 = 4 cos −π + i sin  −π  3  3  ‫ ﺍﻟﺘﻤﺜﻴل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ‬- M1 M0 M2 : Z3 ‫ ﺤﺴﺎﺏ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ‬-4Z3 = Z2 - Z0 = 2-2i 3 - 8 = -6 - 2i 3 Z1 - Z0 2+2i 3 - 8 -6 2i 3

(-6 - 2i 3 ) (-6 - 2 3 )( ) ( )Z3 = -6 + 2i 3 -6 - 2i 3Z3 = 36 + 12i 3 + 12i 3 - 12 36 + 12 Z3 = 24 + 24i 3 = 1 + 1 i 3 : ‫ﻭ ﻤﻨﻪ‬ 48 2 2 Z3 = 1 + 3 =1 : ‫ﺇﺫﻥ‬ 4 4 cosθ = 1 2 arg(Z3 ) = θ :  sin θ = 3 2 θ= π + 2kπ , k ∈ Z : ‫ﻭﻤﻨﻪ‬ 3 : M0 M1 M2 ‫ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ‬ M0 M2 = M0 M1 : ‫ﻭﻤﻨﻪ‬ Z = M0 M2 =1 M0 M1 JJJJJJG JJJJJJG M0M1 ; M0M2 π ( )argZ1 = = 3 .‫ ﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ‬M0 M1 M2 ‫ﻭﻋﻠﻴﻪ ﺍﻟﻤﺜﻠﺙ‬ . 20‫ﺍﻟﺘﻤﺭﻴﻥ‬ Z = x + iy ‫ ﻨﻔﺭﺽ‬.‫ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ‬Z1 ‫ﻨﻜﺘﺏ‬

Z1 = i (x + iy) + 1 - i = 1 - y + i (x - 1) x + iy - 2 + i x - 2 + i (y + 1)Z1 = 1 - y + i (x - 1) × x - 2 - (y + 1) x - 2 + i (y + 1) x - 2 - i (y + 1)Z1 = (1- y)(x- 2) - i(y+ 1)(1- y)+ i(x- 1)(x- 2) +(x- 1)(y+ 1) (x - 2)2 + (y + 1)2Z1 = x- 2- xy+2y- i(1- y2 )+ i(x2 - 3x+ 2)+ xy+ x- y-1 (x - 2)2 + (y + 1)2Z1 = 2x + y - 3 + i (-1 + y2 + x2 - 3x + 2) (x - 2)2 + (y + 1)2Z1 = 2x + y - 3 +i x2 + y2 - 3x + 1 (x - 2)2 + (y + 1)2 (x - 2)2 + (y + 1)2 : ‫ ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ‬Z1 ‫ ﺒﺤﻴﺙ ﺘﻜﻭﻥ‬M ‫ ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬-1  x2 + y2 - 3x + 1 = 0  2x + ‫و‬ : ‫ ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻴﻜﺎﻓﺊ‬Z1 y-3<0  ‫و‬  (x ; y) ≠ (2 ; -1)  x - 3 2 - 9 + y2 + 1 = 0 :‫ﺃﻱ‬ x2 + y2 - 3x + = 0 x  2  4  x - 3 2 + y2 = 5 : ‫ﻭﻤﻨﻪ‬  2  4 (‫)ﺍﻟﺸﻜل‬

‫=‪R‬‬ ‫‪5‬‬ ‫و‬ ‫‪W‬‬ ‫‪3‬‬ ‫;‬ ‫‪0‬‬ ‫‪‬‬ ‫ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬ ‫‪2‬‬ ‫‪ 2‬‬ ‫‪‬‬ ‫‪ x‬ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪2x + y - 3 < 0‬‬ ‫ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( )2x + y - 3 = 0 :‬‬ ‫‪x03‬‬ ‫‪y 3 -3‬‬ ‫ﻫل )‪ (0 ; 0‬ﺤل ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ‪ 2(0) + 0 - 3 < 0 :‬ﺃﻱ ‪-3 < 0 :‬‬ ‫ﻤﺤﻘﻘﺔ ﻭﻤﻨﻪ )‪ (0 ; 0‬ﺤل ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ‪.‬‬‫ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻡ ∆ ﻭ ﻴﺸﻤل ‪ . O‬ﻭﻤﻨﻪ) (‬‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ Z1‬ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻫﻲ ﺍﻟﻘﻭﺱ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﻭﺍﻗﻊ ﺘﺤﺕ ﺍﻟﻤﺴﺘﻘﻴﻡ‬ ‫)∆( ‪.‬‬ ‫‪:‬‬ ‫‪Z1‬‬ ‫ﻋﻤﺩﺓ ﻟـ‬ ‫‪π‬‬ ‫‪ (2‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﻴﻜﻭﻥ‬ ‫‪2‬‬ ‫‪2x + y - 3 = 0‬‬ ‫ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ ‪ Re (Z1 ) = 0 :‬ﻭﻤﻨﻪ ‪:‬‬ ‫)‪(x ; y) ≠ (2 ; -1‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺎﺴﺘﺜﻨﺎﺀ) (‬ ‫ﺍﻟﻨﻘﻁﺔ )‪. A (2 ; -1‬‬ ‫‪ -3‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﺘﻜﻭﻥ ‪. Z1 = 2‬‬‫‪Z1‬‬ ‫=‬ ‫‪iZ + 1 - i‬‬ ‫=‬ ‫)‪1 - y + i (x - 1‬‬ ‫‪Z-2+i‬‬ ‫)‪x - 2 + i (y - 1‬‬‫‪Z1‬‬ ‫=‬ ‫)‪1 - y + i (x - 1‬‬ ‫=‬ ‫‪(1 - y)2 + (x - 1)2‬‬ ‫)‪x - 2 + i (y - 1‬‬ ‫‪( x - 2)2 + (y - 1)2‬‬

‫= ‪(1 - y)2 + (x - 1)2‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪( x - 2)2 + (y - 1)2‬‬ ‫‪(1 −‬‬ ‫‪y)2‬‬ ‫‪+(x‬‬ ‫‪− 1)2‬‬ ‫=‬ ‫‪2‬‬ ‫ﻭ ﺒﺘﺭﺒﻴﻊ ﺍﻟﻁﺭﻓﻲ ﻨﺠﺩ ‪:‬‬ ‫‪(x−‬‬ ‫‪2)2‬‬ ‫‪+(y‬‬ ‫‪− 1)2‬‬ ‫ﺇﺫﻥ ‪(1 - y)2 + (x - 1)2 = 2 (x - 2)2 + (y - 1)2  :‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬‫‪1 - 2y + y2 + x2 - 2x + 1 = 2x2 - 8x + 8 + 2y2 - 4y + 2‬‬‫‪1 - 2y + y2 + x2 - 2x + 1 - 2x2 + 8x - 8 - 2y2 + 4y - 2 = 0‬‬‫‪- x2 - y2 + 6x + 2y - 8 = 0‬‬‫‪(x - 3)2 - 9 + (y - 1)2 - 1 + 8 = 0‬‬‫‪(x - 3)2 + (y - 1)2 = 2‬‬ ‫ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ )‪ (C‬ﻤﺭﻜﺯﻫﺎ )‪ B(3 ; 1‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪2‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ‬ ‫‪Z1‬‬ ‫‪ -4‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ‬ ‫‪4‬‬ ‫ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ )‪. IM (Z) Re (Z‬‬ ‫‪2x + y - 3‬‬ ‫=‬ ‫‪x2 + y2 - 3x + 1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪(x - 2)2 + (y + 1)2‬‬ ‫‪(x - 2)2 + (y + 1)2‬‬ ‫‪ x2 + y2 - 3x + 1 = 2x + y - 3‬‬ ‫)‪(x ; y) ≠ (2 ; - 1‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪5 2‬‬ ‫‪-‬‬ ‫‪25‬‬ ‫‪+ y2‬‬ ‫‪=-4‬‬ ‫‪:‬‬ ‫ﻭﻋﻠﻴﻪ‬ ‫‪x2 + y2 -‬‬ ‫‪5x = -4‬‬ ‫‪:‬‬ ‫ﻭﻤﻨﻪ‬‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫≠ )‪(x ; y‬‬ ‫)‪(2 ; - 1‬‬

‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬  x - 5 2 + y2 = 9 : ‫ﺃﻱ‬  2  4 . 3 ‫ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ‬ C 5 ; 0  2  2  . 21‫ﺍﻟﺘﻤﺭﻴﻥ‬ : Z ‫ﺘﻌﻴﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ‬Z = 1 - cosθ + i sinθZ=1-  1 - 2 sin2 θ + 2i sin θ cos θ  2  2 2Z = +2 sin2 θ + 2i sin θ cos θ 2 2 2Z1 = 2 sin θ sin θ + i cos θ  2 2 2  - π < θ ≤ π : ‫ ﻓﺈﻥ‬-π < θ ≤ π : ‫ﺒﻤﺎ ﺃﻥ‬ 2 2 2 sin θ >0 ‫ﻴﻜﻭﻥ‬ 0 ; π ‫ﻭﻤﻨﻪ ﻓﻲ ﺍﻟﻤﺠﺎل‬ 2 2  Z1 = 2 sin θ cos  π - θ + i sin  π - θ  : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ 2  2 2   2 2  arg( Z1 ) = π - θ + 2kπ ; k∈Z‫ﻭ‬ Z1 = 2sin θ : ‫ﺇﺫﻥ‬ 2 2 2 -sin θ >0 : ‫ﺃﻱ‬ sin θ <0 :  -π ; 0 ‫ﻓﻲ ﺍﻟﻤﺠﺎل‬ 2 2  2 Z1 = -sin θ -sin θ - i cos θ  : ‫ﻭﻋﻠﻴﻪ‬ 2 2 2 

Z1 = -sin θ -cos  π - θ + i sin  π - θ  2  2 2   2 2 Z1 = -sin θ cos  π + π - θ + i sin  π + π - θ  2  2 2   2 2 Z1 = -sin θ cos  3π - θ + i sin  3π - θ  2  2 2   2 2  arg( Z1 ) = 3π - θ +2kπ ; k∈Z ‫ﻭ‬ Z1 = - sin θ : ‫ﻭﻤﻨﻪ‬ 2 2 2 . 22‫ﺍﻟﺘﻤﺭﻴﻥ‬‫ ﻭ ﻁﻭﻴﻠﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ‬A 3 , A 2 , A1 ‫ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻭ‬Z3 , Z2 , Z1 ‫ﻨﻔﺭﺽ‬ : ‫ ﻭﻤﻨﻪ‬Z1 . Z2 . Z3 = −27i : ‫ ﻋﻤﺩﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻴﻜﻭﻥ‬θ3 , θ2 , θ1 Z1 . Z2 . Z3 = 27 . A1 . A 2 . A 3 = 27 : ‫ ﺇﺫﻥ‬Z1 . Z2 . Z3 = 27 : ‫ﺃﻱ‬ A 2 = A1 . A3 : ‫ ﻭﻤﻨﻪ‬A 3 ‫ و‬A1 ‫ ﻭﺴﻁ ﻫﻨﺩﺴﻲ ﻟﻠﻌﺩﺩﻴﻥ‬A 2 ‫ﻟﻜﻥ‬ 2 A1 . A3 = 9 : ‫ﻭﻋﻠﻴﻪ‬ A 2 = 3 : ‫ﺃﻱ ﺃﻥ‬ A 3 = 27 : ‫ﻭﻤﻨﻪ‬ 2 A 2 = 1 : ‫ﺇﺫﻥ‬ 9A 2 = 9 : ‫ﻭﻤﻨﻪ‬ A 3 = A1 . 9 : ‫ﻟﻜﻥ‬ 1 1 A 3 = 9 : ‫ ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬A1 = 1 : ‫ﻭﻤﻨﻪ‬ arg ( Z1 . Z2 . Z3 ) = arg( -27i) : ‫ﻭﻜﺫﻟﻙ‬ arg( Z1 ) + arg( Z2 ) + arg( Z3 ) = 3π 2 3π θ3 ‫ و‬θ1 ‫ ﻭﺴﻁ ﺤﺴﺎﺒﻲ ﻟﻠﻌﺩﺩﻴﻥ‬θ2 ‫ﻟﻜﻥ‬ θ1 + θ2 + θ3 = 2 . θ2 = π : ‫ﺇﺫﻥ‬ 3θ2 = 3π :‫ﻭﻤﻨﻪ‬ 2θ2 = θ1 + θ3 : ‫ﺃﻱ ﺃﻥ‬ 2 2

θ1 = θ2 - π = π - π ‫ﺃﻱ‬ θ2 = θ1 + π : ‫ﻟﻜﻥ‬ 3 2 3 3 5π. θ3 = 6 : ‫ﺃﻱ‬ θ3 = θ2 + π : ‫ﻭﻤﻨﻪ‬ θ1 = π : ‫ﺃﻱ ﺃﻥ‬ 3 6Z1 = 3 + 1 i : ‫ﻭﻋﻠﻴﻪ‬ Z1 = cos π + i sin π : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ 2 2 6 6 Z2 = 3i : ‫ﻭﻋﻠﻴﻪ‬ Z2 =3 cos π + i sin π  : ‫ﻭﻤﻨﻪ‬ 2 2 Z3 = -9 3 + 9 i : ‫ﻭﻋﻠﻴﻪ‬ Z3 = 9 cos 5π + i sin 5π  9 2 6 6  . 23‫ﺍﻟﺘﻤﺭﻴﻥ‬ : (C) ‫ ﻨﻘﻁﺔ ﻤﻥ‬B ‫( ﻨﺒﻴﻥ ﺃﻥ‬1 (I AB = ZB - ZA = 1 - ei π -1 = ei π =1 3 3 ( )JJJG JJ.JGB ∈ (C) : ‫ﻭﻤﻨﻪ‬ : AF ; AB ‫( ﺘﻌﻴﻴﻥ ﻗﻴﺴﺎ ﻟﻠﺯﺍﻭﻴﺔ‬2 JJJG JJJG JJJG G JG JJJG( ) ( ) ( )AF ; AB = AF , u + U , AB + 2kπ ; k ∞ Z ( ) ( )JG JJJG JG JJJG = - U ; AF + U , AB + 2kπ ( ) ( )JG JJJG JG JJJG = U ; AB - U ; AF + 2kπ ( ) ( )= arg ZJJJG - arg ZJJJG AB AF( )arg ZJJJG = π : ‫ﻭﻤﻨﻪ‬ Z JJJG = ZB - ZA = ei π : ‫ﻟﻜﻥ‬ AB 3 AB 3

( )arg ZJJJG =0 : ‫ﻭﻤﻨﻪ‬ Z JJJG = ZF - ZA = 2 - 1 = 1 = ei×0 AF AF JJJG JJJG π AF ; AB 3 ( ). = + 2kπ ; k ∈ Z : ‫ﻭﻤﻨﻪ‬ : ‫ ﺘﻌﻴﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ‬-3 ZB - ZA : ‫ ﻟﻠﻌﺩﺩ‬xZB - ZA = 1 + ei π - 1 = ei π 3 3ZE - ZA = 1 + ZB2 - 1 = Z 2 =  1 + ei π 2 B  3   =  1 + cos π + i sin π 2 =  1 + 1 +i 6 3 2  3 3   2 2  =  3 +i 3 2 =  3 ei π 2 = 3 ei π  2 2   6  3   JJJG : ‫ﺴﺒﻕ‬J‫ﺎ‬J‫ﻤ‬J‫ﻤ‬G‫ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬E , B , A ‫ ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻟﻨﻘﻁ‬-4 AE = 3 AB : ‫ ﻭﻤﻨﻪ‬ZE - ZA =JJ3JG ( ZJBJ-JGZA ) . ‫ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬E , B , A ‫ ﻭﻋﻠﻴﻪ ﺍﻟﻨﻘﻁ‬AB // AE : ‫ﺇﺫﻥ‬  Z′ - 1  JJJJG JJJJG  Z - 1  AM , AM′ ( )arg = : ‫( ﻟﺩﻴﻨﺎ‬1 -II

‫‪( )JJJJG JJJJG‬‬ ‫‪Z′ - 1‬‬ ‫ﻭﻤﻨﻪ ﻋﻤﺩﺓ ‪ Z - 1‬ﻫﻲ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪AM , AM′‬‬‫‪ (2‬ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁ ‪ A‬ﻭ‪ M‬ﻭ ‪ M′‬ﻋﻠﻰ ﺍﺴﺘ‪G‬ﻘﺎ‪J‬ﻤ‪J‬ﺔ‪J‬ﻭ‪J‬ﺍﺤﺩﺓ ﺇ‪JG‬ﺫﺍ‪JJ‬ﻭﻓ‪J‬ﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ‪( ):‬‬ ‫‪AM , AM′ = kπ , k ∈ Z‬‬‫‪Z′ - 1‬‬ ‫∈‬ ‫\‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪arg‬‬ ‫‪‬‬ ‫‪Z′‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪= kπ‬‬ ‫ﺃﻱ ‪:‬‬‫‪Z-1‬‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪Z2‬‬ ‫\∈‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪1 + Z2 - 1‬‬ ‫∈‬ ‫\‬ ‫ﻭﻤﻨﻪ ‪:‬‬‫‪Z-1‬‬ ‫‪Z-1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬ ‫‪ -1‬ﺤﺴﺎﺏ ‪ f Z‬ﺒﺩﻻﻟﺔ ‪( ): Z‬‬ ‫‪f ( Z) = Z2 - (2 + 3i) Z2 + 9Z - 18 - 27i‬‬ ‫‪ -2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪( ): f Z = 0‬‬ ‫ﻟﺩﻴﻨﺎ ‪ f Z1 = 0 :‬ﻭ ‪( ) ( ). f Z1 = 0‬‬ ‫ﺤﻴﺙ ‪ f Z1 = 0 :‬ﺘﻜﺎﻓﺊ ‪( ) ( )f Z1 = 0 :‬‬‫ﻭﻤﻨﻪ ‪Z13 - (2 + 3i) Z12 + 9Z1 - 18 - 27i = 0 . . . (1) :‬‬ ‫‪ f Z1 = 0‬ﺘﻜﺎﻓﺊ ‪( ):‬‬ ‫)‪Z13 - (2 - 3i) Z12 + 9Z1 - 18 + 27i = 0 . . . (2‬‬ ‫ﺒﻁﺭﺡ )‪ (2‬ﻤﻥ )‪ (1‬ﻨﺠﺩ ‪(-2 - 3i + 2 - 3i) Z12 - 54i = 0 :‬‬ ‫ﻭﻤﻨﻪ ‪ -6iZ12 - 54i = 0 :‬ﺇﺫﻥ ‪ Z12 = -9 :‬ﺃﻱ ‪Z12 = 9i2 :‬‬ ‫ﻭﻤﻨﻪ ‪ Z1 = 3i :‬ﺃﻭ ‪Z1 = -3i‬‬ ‫ﻭﻋﻠﻴﻪ ‪f (Z) = (Z - 3i) (Z + 3i) (aZ + b) :‬‬

‫)‪f (Z) = (Z2 + 9) (aZ + b‬‬‫‪f (Z) = aZ3 + bZ2 + 9aZ + 9b‬‬ ‫‪a = 1‬‬ ‫ﻭﻤﻨﻪ ‪b = -2 + 3i :‬‬ ‫ﻭﻋﻠﻴﻪ ‪f (Z) = (Z - 3i) (Z + 3i) (Z - 2 + 3i) :‬‬‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪ Z - 3i = 0 :‬ﺃﻭ ‪ Z + 3i = 0‬ﺃﻭ ‪Z - 2 + 3i = 0‬‬ ‫ﻭﻤﻨﻪ ‪ Z = 3i :‬ﺃﻭ ‪ Z = -3i‬ﺃﻭ ‪Z = 2 – 3i‬‬ ‫ﺇﺫﻥ ‪S = {3i , -3i , 2 - 3i} :‬‬ ‫= ‪Z′‬‬ ‫‪3i + 3i‬‬ ‫‪= 3i‬‬ ‫‪ (3‬ﺤﺴﺎﺏ ‪: Z′‬‬ ‫‪2 - 3i + 3i‬‬‫= )‪arg(Z′‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪,‬‬ ‫‪Z′‬‬ ‫‪=3‬‬ ‫‪; k∈Z‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻗﺎﺌﻡ ﻓﻲ ‪ B‬ﻭ ﻏﻴﺭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ‪.‬‬‫‪ (1‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪AM2 + 2MB2 - 2MC2 = 25 :‬‬ ‫ﻨﻔﺭﺽ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪ M‬ﻫﻲ ‪. Z‬‬ ‫ﻓﻴﻜﻭﻥ ‪:‬‬‫‪Z - 3i 2 + 2 Z + 3i 2 - 2 Z - 2 + 3i 2 = 25‬‬‫‪x2 +(y - 3)2 + 2  x2 +(y+ 3)2  -2 (x- 2)2 +(y+ 3)2  = 25‬‬‫‪x2 +2x2 - 2(x- 2)2 +(y - 3)2 +2(y + 3)2 -2(y + 3)2 = 25‬‬‫‪x2 + 2x2 - 2x2 + 8x - 8 + y2 - 6y + 9 + 2y2 + 12y‬‬‫‪+ 18 - 2y2 - 12y - 18 = 25‬‬ ‫ﻭﻤﻨﻪ ‪x2 + 8x + y2 - 6y = 24 :‬‬‫ﺃﻱ‪( x + 4)2 - 16 + (y - 3)2 - 9 = 24 :‬‬ ‫ﺃﻱ‪(x + 4)2 + (y - 3)2 = 49 :‬‬

‫ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ )‪ w(-4 ; 3‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪. 7‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 25‬‬ ‫‪ (1‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪Z2 - (1 + i) Z - 4i = 0 :‬‬ ‫)‪ ∆ = (1 + i)2 - 4 (-4i‬ﻭﻤﻨﻪ ‪∆ = 18i‬‬‫ﺇﺫﻥ ‪ ∆ = 9 . 2i :‬ﻭ ﻤﻨﻪ ‪∆ = 9(1 + i)2 = [3(1 + i)]2 :‬‬‫ﻭﻤﻨﻪ ﺠﺫﺭﻱ ∆ ﻫﻤﺎ ‪ - (3 + 3i) , 3 + 3i‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪ Z2 , Z1 :‬ﺤﻴﺙ ‪:‬‬‫= ‪Z2‬‬ ‫‪1 + i + 3 + 3i‬‬ ‫ﻭ‬ ‫= ‪Z1‬‬ ‫‪1 + i - 3 - 3i‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ Z1 = -1 - i‬و ‪Z2 = 2 + 2i‬‬ ‫‪ (2‬ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤﻠﻴﻥ ﺘﺨﻴﻠﻴﻴﻥ ﻤﺘﻌﺎﻜﺴﻴﻥ ‪:‬‬ ‫‪ Z4 , Z3‬ﺃﻱ ‪ Z3 = yi :‬ﻭ ‪Z4 = - yi‬‬ ‫ﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ ‪:‬‬‫‪(Z - yi) (Z + yi) (aZ2 + bZ + c) = 0‬‬‫‪(Z2 + y2 ) (aZ2 + bZ + c) = 0‬‬‫‪aZ4 + bZ3 + cZ2 + ay2 Z2 + by2 Z + cy2 = 0‬‬‫ﺇﺫﻥ ‪aZ4 + bZ3 + (c + ay2 ) Z2 + by2Z + cy2 = 0 :‬‬‫‪a = 1‬‬ ‫‪a = 1‬‬‫‪b = -1 - i‬‬ ‫‪b = -1 - i‬‬‫‪c + y2 = 9 - 4i‬‬ ‫ﻭﻋﻠﻴﻪ ‪ c + ay2 = -9 - n :‬ﺃﻱ ﺃﻥ ‪:‬‬‫‪(-1 - i) y2 = -9 - 9i‬‬ ‫‪ by2 = −9 − 9i‬‬‫ﻭﻋﻠﻴﻪ ‪y2 = 9 :‬‬ ‫‪y2‬‬ ‫=‬ ‫)‪-9 (1 + i‬‬ ‫‪=9‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪- (1 + i‬‬‫ﻭﻤﻨﻪ ‪ y = 3 :‬ﺃﻭ ‪ y = -3‬ﺇﺫﻥ ‪C + 9 = 9 - 4i :‬‬ ‫ﻭﻤﻨﻪ ‪C = - 4i :‬‬

‫ﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ ‪( )(Z - 3i) (Z + 3i) Z2 - (1 + i) Z - 4i = 0 :‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪ Z – 3i = 0 :‬ﺃﻭ ‪ Z + 3i = 0‬ﺃﻭ ‪Z2- (1 + i) Z - 4i = 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ Z = 3i :‬ﺃﻭ ‪ Z = -3i‬ﺃﻭ ‪ Z = -1 - i‬ﺃﻭ ‪) Z = 2 + 2i‬ﻤﻤﺎ ﺴﺒﻕ( ‪ .‬ﺇﺫﻥ ‪:‬‬ ‫}‪. S = {3i ; -3i ; -1 - i ; 2 + 2i‬‬ ‫‪ -3‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪:‬‬‫‪Z - Z3 - Z4‬‬ ‫‪Z - 3i + 3i‬‬ ‫=‬ ‫‪Z‬‬‫‪Z - Z1 - Z2‬‬ ‫‪Z + 1 + i - 2 -2i‬‬ ‫‪Z-1-i‬‬ ‫‪Z‬‬ ‫ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ‬ ‫‪-‬‬ ‫‪π‬‬ ‫ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ‬ ‫‪Z‬‬ ‫ﺘﻜﻭﻥ ﻋﻤﺩﺓ‬‫‪Z-1-i‬‬ ‫‪2‬‬ ‫‪Z-1-i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪Z‬‬ ‫=‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪Z‬‬ ‫‪-‬‬ ‫‪i‬‬ ‫‪‬‬ ‫ﻭ‬ ‫‪Z‬‬ ‫≠‬ ‫‪1-i‬‬ ‫ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﺃﻱ ‪:‬‬ ‫‪Z-1-i‬‬ ‫‪‬‬ ‫‪-1‬‬ ‫‪‬‬ ‫)‪Z(Z - 1 + i) = Z (Z - 1 - i‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪Z‬‬ ‫=‬ ‫‪Z‬‬ ‫‪Z-1-i‬‬ ‫‪Z-1+i‬‬ ‫ﻭﻤﻨﻪ ‪ZZ - Z + iZ = ZZ - Z - iZ :‬‬ ‫ﻭﻤﻨﻪ ‪-Z + Z + iZ + iZ = 0 :‬‬ ‫‪-(Z - Z) + i (Z + Z) = 0‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ -2iy + 2ix = 0 :‬ﺤﻴﺙ ‪Z = x + iy :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ 2i (x - y) = 0 :‬ﺇﺫﻥ ‪. x – y = 0 :‬‬‫ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪ x – y = 0‬ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ )‪A(1 ; 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 26‬‬ ‫ﻨﺭﻤﺯ ﺒـ )‪ R(w ; θ‬ﻟﻠﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ w‬ﻭ ﺯﺍﻭﻴﺘﻪ ‪. θ‬‬‫‪D‬‬ ‫‪A‬‬ ‫ﻭ ﺒﺎﻟﺭﻤﺯ ‪ ZM‬ﻟﻼﺤﻘﺔ ‪. M‬‬ ‫ﻟﺩﻴﻨﺎ ‪ E :‬ﺼﻭﺭﺓ ‪C‬‬ ‫‪I‬‬ ‫‪E‬‬ ‫‪R‬‬ ‫‪‬‬ ‫‪A‬‬ ‫;‬ ‫‪π‬‬ ‫‪‬‬ ‫ﺒﺎﻟﺩﻭﺭﺍﻥ ‪3 ‬‬ ‫‪J‬‬ ‫‪BC‬‬

: ‫ﻭﻋﻠﻴﻪ‬ ( )(1) ei π ... ZE - ZA = 3 ZC- ZA A ‫ ﻫﻲ ﺼﻭﺭﺓ‬D ‫ﻭ ﻜﺫﻟﻙ‬ R  B ; π ‫ﺒﺎﻟﺩﻭﺭﺍﻥ‬  3  ( )(2) - ZB = ei π . . . ZD 3 ZA - ZB : ‫ﻭﻋﻠﻴﻪ‬ R  C ; π ‫ ﺒﺎﻟﺩﻭﺭﺍﻥ‬B ‫ ﻫﻲ ﺼﻭﺭﺓ‬F ‫ﻭ ﻟﺩﻴﻨﺎ‬  3  ( )(3) . . . ZF - ZC ei π = 3 ZB - ZC : ‫ﻭﻋﻠﻴﻪ‬ : ‫( ﻁﺭﻓﺎ ﻟﻁﺭﻑ‬3) ‫( ﻭ‬2) ‫( ﻭ‬1) ‫ﺒﺠﻤﻊ‬( )ZEZA+ ZD ZF = ei π- - ZB + - ZC 3 ZC-ZA +ZA -ZB +ZB -ZC ( )ZE + ZD + ZF - ZA + ZB + ZC = 0 : ‫ﻭﻤﻨﻪ‬ (4) . . . ZE + ZD + ZF = ZA + ZB + ZC : ‫ﻭﻤﻨﻪ‬: ‫ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ ﻤﻨﻪ‬BCF‫ ﻭ‬ACE ‫ ﻭ‬ABD ‫ ﻤﺭﺍﻜﺯ ﺜﻘل ﻜل ﻤﻥ ﺍﻟﻤﺜﻠﺜﺎﺕ‬K , J , I ‫ﻭﻟﺩﻴﻨﺎ‬ ZI = ZA + ZB + ZD ; ZJ = ZA + ZC + ZE 3 3 : ‫ﻭﻤﻨﻪ‬ ZK = ZB + ZC + ZF 3( )ZI+ ZJ + ZK = 2ZA + 2ZB + 2ZC + ZD + ZE + ZF 3 : ‫ﻭﻋﻠﻴﻪ‬( )ZI 2ZA+ ZJ + ZK = + 2ZB + 2ZC + ZA + ZB + ZC 3

‫=‬ ‫‪3ZA‬‬ ‫‪+ 3ZB‬‬ ‫‪+ 3ZC‬‬ ‫‪3‬‬ ‫‪= ZA + ZB + ZC‬‬‫ﻭﻤﻨﻪ ‪ZI + ZJ + ZK = ZA + ZB + ZC = ZD + ZE + ZF :‬‬‫‪ZI + ZJ + ZK‬‬ ‫=‬ ‫‪ZA + ZB + ZC‬‬ ‫=‬ ‫‪ZD + ZE + ZF‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﻭ ﻋﻠﻴﻪ ﺍﻟﻤﺜﻠﺜﺎﺕ ‪ IJK‬ﻭ ‪ ABC‬ﻭ‪ FED‬ﻟﻬﺎ ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 27‬‬ ‫ﺘﻌﻴﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻟﻠﻌﺩﺩ ‪1 + cosx + i sin x :‬‬ ‫ﻟﺩﻴﻨﺎ ‪( )G G 1 + cosx + i sin x = 1 + eix :‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﺎﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﺍﻟﻤﺘﺠﺎﻨﺱ ‪. O ; i , j‬‬ ‫‪H‬‬ ‫‪M‬‬ ‫ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁ ‪M′ , M , I‬‬‫’‪I‬‬ ‫‪I‬‬ ‫ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ ‪-1 , eix , 1‬‬ ‫‪O‬‬ ‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‪.‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫]‪( )arg eix + 1 =JJ2xJG [2π‬‬ ‫ﺤﻴﺙ ‪eix + 1 = I′M :‬‬ ‫ﻭ ﻟﺘﻜﻥ ‪ H‬ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ ‪ O‬ﻋﻠﻰ ‪[ ]. I′M‬‬‫ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ‪ OMI′‬ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﺈﻥ ‪ H‬ﻤﻨﺘﺼﻑ ‪ I′M‬ﻭﻤﻨﻪ ‪[ ]:‬‬ ‫‪. I′M = 2I′H‬‬ ‫‪cos‬‬ ‫‪x‬‬ ‫=‬ ‫‪I′H‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ ‪OMI′‬‬ ‫‪2‬‬ ‫‪I′O‬‬ ‫‪x‬‬ ‫‪x‬‬‫‪I′M‬‬ ‫=‬ ‫‪2cos‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪I′O = 1‬‬ ‫ﻷﻥ ‪:‬‬ ‫‪I′H‬‬ ‫=‬ ‫‪cos‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬

( ) [ ]arg eix + 1 = x 2π : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ eix +1 = 2 cos x : ‫ﻭﻋﻠﻴﻪ‬ 2 2 . 28‫ﺍﻟﺘﻤﺭﻴﻥ‬ ( ) ( ) ( )JJJG JJJG : ‫ﺠﻬﺔ‬J‫ﻭ‬J‫ﻟﻤ‬JG‫ﺯﻭﺍﻴﺎ ﺍ‬J‫ﺍﻟ‬J‫ﻥ‬G‫ﺎﺱ ﻟﻜل ﻤ‬J‫ﻗﻴ‬J‫ﺃ‬JGγ , βJJJ,Gα ‫ﻨﻌﻠﻡ ﺃﻥ‬ CE ; CF ; BC ; BF ; HB ; HF ( )JJJG JJJG B ; BC ; BA ‫ﻨﺯﻭﺩ ﺍﻟﻤﺴﺘﻭﻯ ﺒﺎﻟﻤﻌﻠﻡ‬ 2 + i , 2 , 1 , 0 , -1 : ‫ﻓﺘﻜﻭﻥ ﻟﺩﻴﻨﺎ‬ .‫ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﻌﻠﻡ‬F , E , C , B , H ‫ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ‬ JJJG JJJG  ZF - ZH  HB ; HP ( )arg  ZB - ZH  = α : ‫ﻋﻠﻴﻪ‬ ‫ﻭ‬ =α : ‫ﻟﺩﻴﻨﺎ‬    ZF - ZB  JJJG JJG  ZC - ZB  BC ; BF = α : ‫ﻭﻜﺫﻟﻙ‬ ( )arg   = β : ‫ﻭﻋﻠﻴﻪ‬  ZF - ZC  JJJG JJJG  ZE - ZC  CE ; CF = γ : ‫ﻭﺃﻴﻀﺎ‬ ( )arg  = γ : ‫ﻭﻋﻠﻴﻪ‬ α = arg  2 + i + 1 = arg (3 + i) : ‫ﺇﺫﻥ‬  0 + 1 β = arg  2+i- 0  = arg (2 + i)  1-0 γ = arg  2 +i - 1 = arg (1 + i) = π  2 - 1  4 γ = π : ‫ﻭﻋﻠﻴﻪ‬ 4 : ‫ﻟﻜﻥ‬ α + β = arg(3 + i) + arg(2 + i)

‫)‪= arg [(3 + i) (2 + i)] = arg(6 + 3i + 2i - 1‬‬ ‫])‪= arg(5 + 5i) = arg[5 (1 + i‬‬ ‫‪= arg5 + arg(1 + i) = 0 +‬‬ ‫‪π‬‬ ‫‪4‬‬ ‫ﻭﻤﻨﻪ ‪α + β = γ :‬‬ ‫‪α‬‬ ‫‪+β‬‬ ‫=‬ ‫‪π‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 29‬‬ ‫‪Z-3+i =2‬‬ ‫‪ (1‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ N‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪JJJG‬‬ ‫ﺃﻱ ‪ Z - (3 - i) = 2 :‬ﻭﻤﻨﻪ ‪AN = 2 :‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ N‬ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ‪ A‬ﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ ‪. 2‬‬‫ﺃﻱ ‪:‬‬ ‫‪arg‬‬ ‫‪‬‬ ‫‪Z-‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪i‬‬ ‫‪‬‬ ‫=‬ ‫‪π‬‬ ‫‪ (2‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ 2‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪‬‬ ‫‪Z+‬‬ ‫‪4‬‬ ‫‪-‬‬ ‫‪2i‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪arg‬‬ ‫‪‬‬ ‫‪Z - (2 + i) ‬‬ ‫=‬ ‫‪π‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪Z‬‬ ‫‪-‬‬ ‫)‪(-4+2i‬‬ ‫‪‬‬ ‫‪( )JJJG JJJG‬‬ ‫=‬ ‫‪π‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ‪:‬‬ ‫‪2‬‬ ‫‪MB ; MC‬‬‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﺼﻑ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪ AB‬ﺍﻟﻤﺤﺘﻭﺍﺓ ﻓﻲ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﺫﻱ] [‬ ‫ﺤﺩﻩ )‪ (AB‬ﻭ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ ‪. O‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 30‬‬ ‫ﻨﺒﺭﻫﻥ ﺃﻥ ‪ ( AL) ⊥ ( )BC‬ﻭ ‪AL = BC‬‬ ‫‪π‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﻭﺭﺍﻥ ‪ R‬ﺫﻭ ﺍﻟﻤﺭﻜﺯ ‪ A‬ﻭ ﺍﻟﺯﺍﻭﻴﺔ ‪. 2‬‬ ‫ﻭﻟﺘﻜﻥ ‪ZE , ZG , ZL , ZC , ZB , ZA‬‬ ‫ﻻﺤﻘﺎﺕ ﺍﻟﻨﻘﻁ ‪ F , G , L , C , B , A‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬

( )(1) . . . ZB - ZA = i ZG - ZA : ‫ ﻭﻋﻠﻴﻪ‬R (G) = B : ‫ﻟﺩﻴﻨﺎ‬ R(C) = E : ‫ﻭ ﻟﺩﻴﻨﺎ‬( )(2) . . . ZE - ZJAJJ=G i JZJJCG - ZA : ‫ﻭﻋﻠﻴﻪ‬ AE + AG = AL : ‫ﻭﻟﺩﻴﻨﺎ‬(3) . . . ZE - ZA + ZG - ZA = ZL - ZA : ‫ﻭﻋﻠﻴﻪ‬( )ZG- ZA = i ZB- ZA : ‫ﻭﻤﻨﻪ‬ ZG - ZA = ZB - ZA : (1) ‫ﻤﻥ‬ i‫( ﺒﻘﻴﻤﺘﻴﻬﻤﺎ‬3) ‫ ﻓﻲ‬ZE - ZA ‫ ﻭ‬ZG - ZA ‫ﻨﻌﻭﺽ ﻜل ﻤﻥ‬( ) ( )i ZC - ZA - i ZB - ZA = ZL - ZA : ‫ﻓﻨﺠﺩ‬( ) ( )ZA - ZL = i ZB - ZC : ‫ ﺃﻱ‬ZL - ZA = ZC - ZB : ‫ﺇﺫﻥ‬ZA - ZL = 1 : ‫ﺤﻴﺙ‬ ZA - ZL = i : ‫ﻭﻋﻠﻴﻪ‬ZB - ZC ZB - ZC arg  ZA - ZL  = π ‫ﻭ‬  ZB - ZC  2  ( )JJJG JJJG = π ‫ﻭ‬ LA =1 : ‫ﺇﺫﻥ‬ BC , AL 2 BC( BC) ⊥ ( AL) ‫ ﻭ‬LA = CB : ‫ﻭﻤﻨﻪ‬

LG AEF DBC

‫‪ -7‬ﺍﻟﺘﺸﺎﺒﻬﺎﺕ ﺍﻟﻤﺴﺘﻭﻴﺔ ﺍﻟﻤﺒﺎﺸﺭﺓ‬ ‫ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫‪ -1‬ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ‪.‬‬ ‫‪ - 2‬ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﺎﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ‪.‬‬ ‫‪ -3‬ﺘﺭﻜﻴﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭ ‪.‬‬ ‫‪ -4‬ﺘﻌﻴﻴﻥ ﺍﻟﺘﺤﻠﻴل ﺍﻟﻘﺎﻨﻭﻨﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‪.‬‬‫‪ -5‬ﺘﻭﻅﻴﻑ ﺍﻟﺘﺤﻠﻴل ﺍﻟﻘﺎﻨﻭﻨﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ‪.‬‬ ‫‪ -6‬ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﺘﺸﺎﺒﻬﺎﺕ ﺍﻟﻤﺒﺎﺸﺭﺓ ﻟﺤل ﻤﺴﺎﺌل ﻫﻨﺩﺴﻴﺔ‪.‬‬ ‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫ﺃﻨﺸﻁﺔ‬‫‪ -2‬ﺤﺎﻻﺕ ﺨﺎﺼﺔ‬ ‫‪ -1‬ﺘﻌﺭﻴﻑ‬ ‫‪ -3‬ﺘﻌﺭﻴﻑ ‪2‬‬‫‪ -4‬ﺍﻟﺸﻜل ﺍﻟﻤﻤﻴﺯ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ‬‫‪ -5‬ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻨﻘﻁ ﺍﻟﺼﺎﻤﺩﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ‬‫‪ -7‬ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭﺩﻭﺭﺍﻥ‬ ‫‪ -6‬ﺍﻟﺸﻜل ﺍﻟﻤﺨﺘﺼﺭ ﻟﺘﺸﺎﺒﻪ‬‫‪ -9‬ﻤﺭﻜﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭﻴﻥ‬ ‫‪ -8‬ﻨﻅﺭﻴﺔ ﻭ ﺘﻌﺭﻴﻑ‬ ‫‪ -10‬ﺍﻟﺨﺎﺼﺔ ﺍﻟﻤﻤﻴﺯﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ‬ ‫‪ -11‬ﺼﻭﺭ ﺒﻌﺽ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ‬‫ﺍﻟﺤـﻠــــــﻭل‬ ‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬

‫ﺃﻨﺸﻁﺔ‬‫‪( )G G‬‬ ‫ﺍﻟﻨﺸﺎﻁ ‪:‬‬‫ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻭﺠﻪ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻤﺒﺎﺸﺭ ‪O; i , j‬‬ ‫‪ ω‬ﻨﻘﻁﺔ ﻻﺤﻘﺘﻬﺎ ‪Z0 = 1 + i‬‬ ‫‪.‬‬ ‫‪π‬‬ ‫‪ ω‬ﻭﺯﺍﻭﻴﺘﻪ‬ ‫ﺍﻟﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ‬ ‫‪R‬‬ ‫‪2‬‬ ‫‪ H‬ﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ ω‬ﻭﻨﺴﺒﺘﻪ ‪. 2‬‬ ‫‪ -1‬ﺃﻜﺘﺏ ﻋﺒﺎﺭﺘﻲ ‪ R‬ﻭ ‪ H‬ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪ -2‬ﻋﻴﻥ ‪ HOR‬ﻭ ‪. ROH‬‬‫‪ -3‬ﻟﺘﻜﻥ ‪ A‬ﻭ ‪ B‬ﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻴﻬﻤﺎ ‪ 3i ،1 − i‬ﻋﻠﻰ‬ ‫ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬‫ﻋﻴﻥ ﻻﺤﻘﺘﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ ‪ A′‬ﻭ ‪ B′‬ﺼﻭﺭﺘﻲ ‪ A‬ﻭ ‪ B‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‬ ‫ﺒﺎﻟﺘﺤﻭﻴل ‪. HOR‬‬ ‫‪ -4‬ﻗﺎﺭﻥ ﺒﻴﻥ ‪ AB‬ﻭ ‪. A′B′‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪ -1‬ﺘﻌﻴﻴﻥ ﻋﺒﺎﺭﺓ ‪: R‬‬‫ﻟﺘﻜﻥ ‪ M‬ﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻬﺎ ‪ Z‬ﻭﻟﺘﻜﻥ ‪ M ′‬ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z ′‬ﻭﺼﻭﺭﺓ‬ ‫‪ M‬ﺒﻭﺍﺴﻁﺔ ‪. R‬‬ ‫ﻟﺩﻴﻨﺎ ‪ Z′ = aZ + b‬ﺤﻴﺙ ‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ ‪a = 1‬‬‫ﻭﻋﻠﻴﻪ ‪Z′ = iZ + b :‬‬ ‫‪a =i‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫= )‪arg(a‬‬ ‫‪π‬‬ ‫[‬ ‫]‪2π‬‬ ‫ﻭ‬ ‫‪2‬‬‫ﻭﻟﺩﻴﻨﺎ ‪ R(ω) = ω :‬ﻭﻤﻨﻪ ‪Z0 = iZ0 + b :‬‬‫ﺇﺫﻥ ‪ b = (1 − i)Z0 :‬ﺃﻱ ‪b = (1 − i)(1 + i) = 2 :‬‬‫ﺇﺫﻥ ‪ Z ′ = iZ + 2 :‬ﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺩﻭﺭﺍﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻋﺒﺎﺭﺓ ‪: H‬‬

‫ﻟﺘﻜﻥ ‪ M‬ﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻬﺎ ‪ Z‬ﻭﺼﻭﺭﺘﻬﺎ ﺒﻭﺍﺴﻁﺔ ‪ H‬ﺍﻟﻨﻘﻁﺔ ‪ M ′‬ﺫﺍﺕ‬ ‫ﺍﻟﻼﺤﻘﺔ ‪. Z ′‬‬ ‫ﻟﺩﻴﻨﺎ ‪ Z′ = aZ + b‬ﺤﻴﺙ ‪ a = 2‬ﻭ ‪ b‬ﻋﺩﺩ ﻤﺭﻜﺏ ﺃﻱ ‪Z′ = 2Z + b‬‬ ‫ﻟﻜﻥ ‪ H (ω) = ω‬ﻭﻤﻨﻪ ‪ Z0 = 2Z0 + b :‬ﻭﻋﻠﻴﻪ ‪b = − Z0 :‬‬‫ﺃﻱ ﺃﻥ ‪ b = − 1 − i‬ﺇﺫﻥ ‪ Z′ = 2Z − 1 − i‬ﻭﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺤﺎﻜﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ‬ ‫ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪ -2‬ﺘﻌﻴﻴﻥ ‪: HOR‬‬ ‫ﻟﺘﻜﻥ )‪M ( Z ) R→ M1 ( Z1 ) H→ M′( Z′‬‬ ‫‪ Z′ = 2Z1 − 1 − i‬؛ ‪Z1 = iZ + 2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ Z′ = 2( iZ + 2) − 1 − i‬ﺇﺫﻥ ‪Z′ = 2iZ + 4 − 1 − i‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ Z′ = 2iZ + 3 − i‬ﻭﻫﻲ ﻋﺒﺎﺭﺓ ‪ HOR‬ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ‪.‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ‪: ROH‬‬ ‫)‪M ( Z ) H→ M1 ( Z1 ) R→ M′( Z′‬‬ ‫‪ Z′ = iZ1 + 2‬؛ ‪Z1 = 2Z − 1 − i‬‬ ‫ﻭﻋﻠﻴﻪ ‪ Z′ = i ( 2Z − 1 − i ) + 2 :‬ﺇﺫﻥ ‪Z′ = 2iZ − i + 1 + 2 :‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ Z′ = 2iZ + 3 − i‬ﻨﻼﺤﻅ ﺃﻥ ‪. HOR = ROH‬‬ ‫‪ -3‬ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ ‪ A′‬ﻭﻟﺘﻜﻥ ‪: Z1‬‬ ‫ﻟﺩﻴﻨﺎ ‪ ( HOR)( A) = A' :‬ﻭﻤﻨﻪ ‪Z1 = 2i (1 − i ) + 3 − i :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ Z1 = 2i + 2 + 3 − i :‬ﺇﺫﻥ ‪Z1 = 5 + i :‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ ‪ B′‬ﻭﻟﺘﻜﻥ ‪: Z2‬‬ ‫ﻟﺩﻴﻨﺎ ‪ ( HOR)( B) = B′ :‬ﻭﻤﻨﻪ ‪Z2 = 2i ( 3i ) + 3 − i :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ Z2 = − 6 + 3 − i :‬ﺇﺫﻥ ‪Z2 = − 3 − i :‬‬ ‫‪ -4‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ‪ AB‬ﻭ ‪: A′B′‬‬ ‫‪AB = ZB − ZA = 3i − 1 + i = −1 + 4i = 17‬‬

‫‪A′B′ = ZB′ − ZA′ = Z2 − Z1 = −3 − i − 5 − i = −8 − 2i‬‬ ‫‪= 64 + 4 = 68‬‬ ‫‪= 22.17‬‬ ‫‪= 2 17‬‬ ‫ﻭﻋﻠﻴﻪ ‪. A′B′ = 2.AB‬‬ ‫‪ -1‬ﺘﻌﺭﻴﻑ ‪:‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻭﺠﻪ ﻤﺭﻓﻕ ﺒﻭﺤﺩﺓ ﺃﻗﻴﺎﺱ ‪.‬‬‫ﻨﻘﻭل ﻋﻥ ﺘﺤﻭﻴل ﻨﻘﻁﻲ ‪ S‬ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺃﻨﻪ ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫ﻤﻬﻤﺎ ﺘﻜﻥ ﺍﻟﻨﻘﻁ ‪ N ، M ، B ، A‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺤﻴﺙ ‪ A≠ B‬ﻭ ‪M ≠ N‬‬ ‫ﻭﺍﻟﺘﻲ ﺼﻭﺭﻫﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪ N′ ، M ′ ، B′ ، A′‬ﺒﺎﻟﺘﺤﻭﻴل ‪ S‬ﻓﺈﻥ ‪:‬‬‫‪‬‬ ‫‪A′ ≠ B′ ; M′ ≠ N ′‬‬‫‪‬‬ ‫‪AB‬‬ ‫)‪=JJMJAJG′′BN′′JJJ.J.JG. (1‬‬ ‫‪JJJJGMN‬‬ ‫= ‪MN‬‬ ‫]‪A′B′ ; M′N ′ [2π‬‬‫‪( ) ( )‬‬‫‪JJJG‬‬‫;‬ ‫)‪. . . (2‬‬ ‫‪AB‬‬‫‪‬‬‫‪‬‬‫‪‬‬‫‪‬‬ ‫ﻤﻥ )‪ (1‬ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ﻴﺤﺎﻓﻅ ﻋﻠﻰ ﻨﺴﺏ ﺍﻟﻤﺴﺎﻓﺎﺕ ‪.‬‬ ‫ﻤﻥ )‪ (2‬ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ﻴﺤﺎﻓﻅ ﻋﻠﻰ ﺍﻟﺯﻭﺍﻴﺎ ﺍﻟﻤﻭﺠﻬﺔ ‪.‬‬

: ‫ ﺤﺎﻻﺕ ﺨﺎﺼﺔ‬-2 : ‫( ﺘﻜﺎﻓﺌﺎﻥ‬2) ‫( ﻭ‬1) ‫ﺍﻟﻤﺴﺎﻭﺍﺘﻴﻥ‬ M′N ′ J=JJAJGA′BBJ′ JJJJG JJJJGMN( ) ( ) JJJG AB ; A′B′ = MN ; M′N ′ [2π]( )JJJJG JJJJJG = 0[2πJ]J‫ﻭ‬JGMM'NN ' = 1 ‫ﺃ( ﺇﺫﺍ ﻜﺎﻥ‬ MN ; M′N ′ . AA′ ‫ ﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪ‬S ‫ﻓﺈﻥ‬ ( )JJJJG JJJJJG MN ; M ′N ′ [ ]= 0 π ‫ﺏ( ﺇﺫﺍ ﻜﺎﻥ‬ . ‫ ﺘﺤﺎﻜﻲ‬S ‫ﻓﺈﻥ‬( )JJJJG JJJJJG ≠ 0[π] ‫ﻭ‬ M′N ′ =1 ‫ﺝ( ﺇﺫﺍ ﻜﺎﻥ‬ MN ; M′N ′ MN . ‫ ﺩﻭﺭﺍﻥ‬S ‫ﻓﺈﻥ‬

‫‪ -3‬ﺘﻌﺭﻴﻑ ‪: 2‬‬ ‫ﻟﻴﻜﻥ ‪ S‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ‪.‬‬‫‪ N ، M‬ﻨﻘﻁﺘﺎﻥ ﻤﺘﻤﺎﻴﺯﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ ‪ N ′ ، M ′‬ﺼﻭﺭﺘﻴﻬﻤﺎ ﺒﺎﻟﺘﺸﺎﺒﻪ ‪. S‬‬‫ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭﻴﺴﻤﻰ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ ‪. S‬‬ ‫‪M′N′‬‬ ‫‪ -‬ﺍﻟﻨﺴﺒﺔ‬ ‫‪JJJJG JJJJJG‬‬ ‫‪MN‬‬‫‪ -‬ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻤﻭﺠﻬﺔ ‪ MN ; M ′N ′‬ﻫﻲ ﺯﺍﻭﻴﺔ ﺜﺎﺒﺘﺔ ﻭ ﺘﺴﻤﻰ ﺯﺍﻭﻴﺔ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ‪( )S‬‬ ‫ﻭﻨﻁﺎﺒﻘﻬﺎ ﻜﻤﺎ ﺠﺭﺕ ﺍﻟﻌﺎﺩﺓ ﻤﻊ ﺃﺤﺩ ﺃﻗﻴﺎﺴﻬﺎ ‪. θ‬‬‫‪ -4‬ﺍﻟﺸﻜل ﺍﻟﻤﻤﻴﺯ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ ‪:‬‬ ‫‪ S‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬‫ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻤﺒﺎﺸﺭ ﻟﺘﻜﻥ ‪ O′‬ﺼﻭﺭﺓ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ‪ O‬ﺒﺎﻟﺘﺸﺎﺒﻪ‬ ‫‪ S‬ﺤﻴﺙ ‪ b‬ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ ‪. O′‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺤﻴﺙ ‪. M ≠ O‬‬‫ﻓﺈﻥ ﺍﻟﻨﻘﻁﺔ ‪ M ′‬ﺼﻭﺭﺓ ‪ M‬ﺒﺎﻟﺘﺸﺎﺒﻪ ‪JGS‬ﺘﻌ‪J‬ﺭ‪JJ‬ﻑ‪J‬ﻜﻤﺎ ﻴﻠ‪JG‬ﻲ‪( ) [ ]JJ:J‬‬‫)‪ OM ; O′M′ = θ 2π . . . (1‬‬‫‪‬‬‫)‪ O′M′ = k.OM . . . (2‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻨﺕ ‪ Z ′‬ﻻﺤﻘﺔ ‪ M ′‬ﻓﺈﻥ ‪:‬‬ ‫‪arg‬‬ ‫‪‬‬ ‫‪Z′ − b‬‬ ‫‪‬‬ ‫=‬ ‫]‪θ[2π‬‬ ‫ﻤﻥ )‪: (1‬‬ ‫‪‬‬ ‫‪Z −0‬‬ ‫‪‬‬ ‫‪Z′ − b = k Z‬‬ ‫ﻤﻥ )‪: (2‬‬‫]‪arg ( Z′ − b) − arg ( Z ) = θ[2π‬‬‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬‫‪‬‬ ‫‪Z′ − b = k Z‬‬

‫]‪arg ( Z′ − b) = arg ( Z ) + θ[2π‬‬‫‪‬‬ ‫ﻭﺘﻜﺎﻓﺊ ‪:‬‬‫‪‬‬ ‫‪Z′ − b = k Z‬‬‫ﻭﺘﻜﺎﻓﺊ ‪ Z′ − b = a.z :‬ﺤﻴﺙ ‪ a = k‬ﻭ ]‪arg (a ) = θ[2π‬‬‫ﺃﻱ ﺃﻥ ‪ a = keiθ :‬ﻭﻋﻠﻴﻪ ‪Z′ − b = k.eiθ Z :‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪Z′ = keiθ Z + b :‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ‪ S‬ﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪. Z‬‬‫ﺍﻟﻨﻘﻁﺔ ‪ M ′‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z′‬ﺒﺤﻴﺙ ‪Z′ = k.eiθ .Z + b :‬‬ ‫‪ -5‬ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻨﻘﻁ ﺍﻟﺼﺎﻤﺩﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ‪:‬‬ ‫‪ S‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫ﻟﺘﻜﻥ ‪ ω‬ﻨﻘﻁﺔ ﺼﺎﻤﺩﺓ ﺒﺎﻟﺘﺤﻭﻴل ‪ S‬ﺃﻱ ‪( )S ω = ω‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻨﺕ ‪ Z0‬ﻻﺤﻘﺔ ‪ ω‬ﻓﺈﻥ ‪Z0 = keiθ .Z0 + b‬‬ ‫ﻭﻤﻨﻪ )‪( )1 − keiθ Z0 = b . . . (1‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪ k = 1‬ﻭ ‪: θ = 0‬‬‫ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺤﻠﻭل ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﻨﻘﻁ ﺼﺎﻤﺩﺓ ﻷﻥ ﺍﻟﺘﺤﻭﻴل ‪S‬‬ ‫ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻨﺴﺤﺎﺏ ‪.‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪ k ≠ 1‬ﻭ ‪: θ ≠ 0‬‬ ‫‪Z0‬‬ ‫=‬ ‫‪b‬‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪1 − keiθ‬‬ ‫ﻭﻫﻭ ﺤل ﻭﺤﻴﺩ ﻭﻋﻠﻴﻪ ‪ S‬ﻴﻘﺒل ﻨﻘﻁﺔ ﺼﺎﻤﺩﺓ ﻭﺤﻴﺩﺓ ‪.‬‬ ‫ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺘﺩﻋﻰ ﻤﺭﻜﺯ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ‪. S‬‬

‫‪ -6‬ﺍﻟﺸﻜل ﺍﻟﻤﺨﺘﺼﺭ ﻟﺘﺸﺎﺒﻪ ‪:‬‬ ‫ﻟﻴﻜﻥ ‪ S‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻤﺭﻜﺯﻩ ‪ ω‬ﻨﺴﺒﺘﻪ ‪ k‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫ﻟﺘﻜﻥ ‪ Z0‬ﻻﺤﻘﺔ ﺍﻟﻤﺭﻜﺯ ‪.‬‬ ‫ﻟﻜﻥ ﺍﻟﻨﻘﻁﺔ ‪ M‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z‬ﺼﻭﺭﺘﻬﺎ ﺒﻭﺍﺴﻁﺔ ‪ S‬ﻫﻲ ﺍﻟﻨﻘﻁﺔ ‪M ′‬‬ ‫ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z′‬ﺤﻴﺙ ‪ Z′ = keiθ Z + b‬ﻟﻜﻥ ‪Z0 = keiθ Z0 + b :‬‬ ‫ﻭﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ‪( )Z′ − Z0 = k.eiθ Z − Z0 :‬‬‫ﻭﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺨﺘﺼﺭﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ‪ S‬ﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪ Z0‬ﻭﻨﺴﺒﺘﻪ ‪k‬‬ ‫ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫‪ -7‬ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭﺩﻭﺭﺍﻥ ‪:‬‬ ‫‪ H‬ﺘﺤﺎﻜﻲ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ ‪. Z0‬‬ ‫‪ R‬ﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ‪ ω‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬ ‫ﻨﻔﺭﺽ ‪( )( ) ( )M Z H(ω;k)→ M1 Z1 R(ω;θ)→ M ′ Z′ :‬‬ ‫‪Z1 − Z0 = k ( Z − Z0 ) ، ( )Z′ − Z0 = eiθ Z1 − Z0‬‬ ‫ﻭﻋﻠﻴﻪ ‪( )Z′ − Z0 = keiθ Z − Z0 :‬‬ ‫ﺇﺫﻥ ‪R(ω,θ)OH (ω,k ) = S (ω,k,θ) :‬‬ ‫ﻭﻋﻠﻴﻪ ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭ ﺩﻭﺭﺍﻥ ﻫﻭ ﺘﺸﺎﺒﻪ ‪.‬‬ ‫ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ‪H (ω, k )OR(ω,θ) = S (ω, k,θ) :‬‬

‫‪ -8‬ﻨﻅﺭﻴﺔ ﻭ ﺘﻌﺭﻴﻑ ‪:‬‬‫ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺒﺎﺸﺭ ‪ S‬ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ ω‬ﻭﻨﺴﺒﺘﻪ ‪ k‬ﻭﺯﺍﻭﻴﺘﻪ ‪ θ‬ﻫﻭ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ﺍﻟﺫﻱ‬ ‫ﻴﺭﻓﻕ ﺍﻟﻨﻘﻁﺔ ‪ ω‬ﺒﻨ‪G‬ﻔ‪J‬ﺴ‪J‬ﻬ‪J‬ﺎ‪J‬ﻭ ﻴﺭﻓ‪JG‬ﻕ‪J‬ﺒ‪J‬ﻜل‪ J‬ﻨﻘﻁﺔ ‪ M‬ﺘﺨﺘﻠﻑ ﻋﻥ ‪ ω‬ﺍﻟﻨﻘﻁﺔ ‪ M ′‬ﺤﻴﺙ ‪:‬‬ ‫‪( ) [ ] OM ; OM′ = θ 2π‬‬ ‫‪‬‬ ‫‪ OM′ = k.OM‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻨﺕ ‪ Z0‬ﻭ ‪ Z‬ﻭ ‪ Z ′‬ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ ‪ M ′ ، M ، ω‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ ‪:‬‬ ‫) ‪Z′ − Z0 = keiθ ( Z − Z0‬‬ ‫‪ -9‬ﻤﺭﻜﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭﻴﻥ ‪:‬‬ ‫ﻟﻴﻜﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ ﺍﻟﻤﺒﺎﺸﺭﻴﻥ ‪( ) ( )S2 ω2 , k2 ,θ2 ، S1 ω1, k1, θ1‬‬ ‫ﺤﻴﺙ ‪ Z0′ ، Z0‬ﻻﺤﻘﺘﻲ ‪ ω2 ، ω1‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫ﻨﻔﺭﺽ ‪M ( Z ) S1→ M1 ( Z1 ) S2→ M ′( Z′) :‬‬ ‫‪( ) ( )Z1 − Z0 = k1eiθ1 Z − Z0 ، Z′ − Z0′ = k2eiθ2 Z1 − Z0‬‬ ‫ﺇﺫﻥ ‪( )Z1 = k1eiθ1 Z − Z0 + Z0 :‬‬ ‫‪( )Z′ = k2eiθ2 Z1 − Z0′ + Z0′‬‬ ‫ﻭﻤﻨﻪ ‪( )Z′ = k2eiθ2 k1eiθ1 Z − Z0 + Z0 − Z0′  + Z0′ :‬‬ ‫‪( ) ( )Z′ = k1k2ei(θ1+θ2) Z − Z0 + k2eiθ2 Z0 − Z0′ + Z0′‬‬ ‫ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل ‪Z ′ = k1k2ei(θ1+θ2 ) Z + b :‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪ k1 .k2 = 1‬ﻭ ‪ θ1 + θ2 = 0‬ﻓﺈﻥ ‪ S2oS1‬ﻫﻭ ﺍﻨﺴﺤﺎﺏ ‪.‬‬

‫* ﺇﺫﺍ ﻜﺎﻥ ‪ k.k2 = 1‬ﻭ ‪ θ1 + θ2 ≠ 0‬ﻓﺈﻥ ‪ S2oS1‬ﻫﻭ ﺩﻭﺭﺍﻥ ‪.‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ k1 .k2 ≠ 1‬ﻭ ‪ θ1 + θ2 = 0‬ﻓﺈﻥ ‪ S2oS1‬ﻫﻭ ﺘﺤﺎﻜﻲ ‪.‬‬‫‪ -10‬ﺍﻟﺨﺎﺼﺔ ﺍﻟﻤﻤﻴﺯﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬ ‫‪ k‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪ θ ،‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪.‬‬‫ﻴﻜﻭﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ‪ S‬ﺘﺸﺎﺒﻬﺎ ﻤﺒﺎﺸﺭﺍ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﺯﺍﻭﻴﺘﻪ ‪ θ‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل‬‫ﻨﻘﻁﺘﻴﻥ ‪ A‬ﻭ ‪ B‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺼﻭﺭﺘﻴﻬﻤﺎ ‪ A′‬ﻭ ‪ B′‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺒﻭﺍﺴﻁﺔ ‪ S‬ﻓﺈﻥ ‪:‬‬ ‫‪A′B′ = k.AB‬‬‫‪JJJG JJJJG‬‬‫]‪AB ; A′B′ = θ[2π‬‬‫‪( )‬‬‫‪‬‬‫‪‬‬ ‫ﺤﺎﻻﺕ ﺨﺎﺼﺔ ‪:‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ : k = 1‬ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ ﺇﺯﺍﺤﺔ ﺃﻱ ﺇﻤﺎ ﺩﻭﺭﺍﻥ ﺃﻭ ﺍﻨﺴﺤﺎﺏ ﻭﻫﻭ‬ ‫ﺘﻘﺎﻴﺱ ‪.‬‬‫* ﺇﺫﺍ ﻜﺎﻥ ‪ : θ = 0‬ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ ﺘﺤﺎﻜﻲ ‪.‬‬ ‫‪ -11‬ﺼﻭﺭ ﺒﻌﺽ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ ‪:‬‬ ‫‪ S‬ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ ‪ k‬ﻭﻤﺭﻜﺯﻩ ‪ ω‬ﻭﺯﺍﻭﻴﺘﻪ ‪. θ‬‬‫* ﺼﻭﺭﺓ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ‪ AB‬ﺒﻭﺍﺴﻁﺔ ‪ S‬ﻫﻲ ﺍﻟﻘﻁﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ‪ A′B′‬ﺤﻴﺙ ‪[ ] [ ]:‬‬ ‫)‪ A′ = S ( A‬ﻭ )‪ B′ = S ( B‬ﻭ ‪A′B′ = k.AB‬‬ ‫* ﺼﻭﺭﺓ ﻤﺴﺘﻘﻴﻡ ∆ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ‪ ∆′‬ﺒﻭﺍﺴﻁﺔ ‪ S‬ﺤﻴﺙ ‪[ ]( ) ( ) ( )∆;∆′ = θ π‬‬ ‫* ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ﻫﻲ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ‪.‬‬ ‫* ﺼﻭﺭﺓ ﺩﺍﺌﺭﺓ )‪ C ( F , R‬ﻫﻲ ﺩﺍﺌﺭﺓ )‪C′( F ′, R′‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook