. Z2 ∈ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ \ : Z-1 ﺍﻟﺘﻤﺭﻴﻥ. 24ﻨﻌﺘﺒﺭ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ f (Z) = Z3 - (2 - 3i) Z2 + 9Z - 18 + 27i : (1ﺍ ﺤﺴﺏ f (Z) :ﺒﺩﻻﻟﺔ . Z (2ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ f (Z) = 0ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻨﻬﺎ ﺘﻘﺒل ﺤﻠﻴﻥ ﻤﺘﺭﺍﻓﻘﻴﻥ Z1و . Z1 (3ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ Aﻭ Bﻭ Cﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ 2 – 3i ; -3i ; 3i : ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . = . Z′ ZA - ZB -ﺍﺤﺴﺏ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ Z′ﺤﻴﺙ : ZC - ZB -ﺍﺤﺴﺏ Z′ﻭ ﻋﻤﺩﺓ . Z′ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ . ABC M (4ﻨﻘﻁﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﻻﺤﻘﺘﻬﺎ . Zﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ . AM2 + 2MB2 - 2MC2 = 25 : ﺍﻟﺘﻤﺭﻴﻥ. 25 (1ﺤل ﻓﻲ ^ ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - (1 + i) Z - 4i = 0 : (2ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ :Z4 - (1 + i) Z3 + (9 - 4i)Z2 - 9 (1 + i) Z - 36 = 0 -ﺒﻴﻥ ﺃﻥ ﻟﻬﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﺘﺨﻴﻠﻴﻴﻥ ﺼﺭﻓﻴﻴﻥ ﻤﺘﻌﺎﻜﺴﻴﻥ Z3و . Z4 -ﺍﺴﺘﻨﺘﺞ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل .ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ Z - Z3 - Z4 -3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ : Z - Z1 - Z2 -π .2ﺤﻴﺙ Zﻫﻲ ﻻﺤﻘﺔ Mﻭ Z4 , Z3 , Z2 , Z1ﻫﻲ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﺍﻟﺴﺅﺍل ). (2 ﺍﻟﺘﻤﺭﻴﻥ. 26
ABCﻤﺜﻠﺙ .ﻨﺭﺴﻡ ﺨﺎﺭﺝ ﺍﻟﻤﺜﻠﺙ ABCﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻟﻤﻘﺎﻴﺴﺔ ﺍﻷﻀﻼﻉ ABCﻭ ACEﻭ BCFﺍﻟﺘﻲ ﻤﺭﺍﻜﺯ ﺜﻘﻠﻬﺎ K , J , Iﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ. ﺒﺭﻫﻥ ﺃﻥ ﻟﻠﻤﺜﻠﺜﺎﺕ ABCﻭ FEDﻭ IJKﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل. ﺍﻟﺘﻤﺭﻴﻥ. 27 ﻋﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ . 1 + cosx + i sin x ﺍﻟﺘﻤﺭﻴﻥ. 28 ABCDﻤﺭﺒﻊ .ﻨﺭﺴﻡ ﺍﻟﻤﺭﺒﻌﻴﻥ DCEFﻭ GHBAﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﻜل : G AD F αβ γ H B CE ﺒﺭﻫﻥ ﺃﻥ α + β = γ : ﺍﻟﺘﻤﺭﻴﻥ( )G G . 29 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O ; i , j ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ C , B , Aﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ -4 + 2i ; i + 2 , 3 – i :ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . (1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Nﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺒﺤﻴﺙ Z - 3 + i = 2arg Z-2-i = π (2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺒﺤﻴﺙ : Z + 4 - 2i 2 ( )JJJG JJJG ﺍﻟﺘﻤﺭﻴﻥ. 30 ABCﻤﺜﻠﺙ ﺤﻴﺙ k ∈ Z , AB , AC = α + 2kπﻭ [. α ∈ ]0 ; πﻨﻨﺸﺊ ﺨﺎﺭﺝ ﻫﺫﺍ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻤﺭﺒﻌﺎﻥ ABFGﻭ ACDEﻭ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ AELGﺒﺭﻫﻥ ﺃﻥ ) ( AL) ⊥ (BCو AL = BC
ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1 × (5 × (4 √ (3 √ (2 × (1 × (10 √ (9 √ (8 × (7 × (6 √ (15 × (14 × (13 × (12 × (11 √ (20 √ (19 × (18 × (17 √ (16 ﺍﻟﺘﻤﺭﻴﻥ. 2 (1ﻻﺤﻘﺔ Aﻫﻲ ZA = 2 + i : ﻻﺤﻘﺔ Bﻫﻲ ZB = -1 + 3i : ﻻﺤﻘﺔ Cﻫﻲ ZC = -2 +JJi JG:→Z = ZB - ZA = -3 + 2i (2ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ABﻫﻲ : AB JJJG →Z = ZC - ZA = -4 ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ ACﻫﻲ : AC JJJG→Z = ZC - ZB = -1 - 2i ﻻﺤﻘﺔ ﺍﻟﺸﻌﺎﻉ BCﻫﻲ : AB (3ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ Dﺒﺤﻴﺙ ﻴﻜﻭﻥ BCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ. ﺘﻜﻭﻥ ABCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ :ZDC = ZC - ZD , ZJJJG = -3 + 2i ﻭﻟﺩﻴﻨﺎ : Z JJJG = ZJJJG AB AB DC ﻭﻋﻠﻴﻪ : Z JJJG = - 1 - i - ZE : ﺃﻱ DC -2 + i - ZD = -3 + 2i ﺇﺫﻥ ZD = 1 - i : -ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ Iﻤﺭﻜﺯ I : ABCDﻫﻭ ﻤﻨﺘﺼﻑ [ ]AC ZI = ZA + ZC = 2+i-2+i =i ﻭﻤﻨﻪ : 2 2 ﺇﺫﻥ ZI = i :
-4ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ Eﺒﺤﻴﺙ ﻴﻜﻭﻥ ABCD :ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻴﻜﻭﻥ DEﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﺇﺫﺍ ﻭﻓﻕ ﺇﺫﺍ ﻜﺎﻥ :Z JJJG = ZD - ZE , Z JJJG = -3 + 2i ﺤﻴﺙ Z JJJG = Z JJJG ED AB AB ED Z JJJG = - i - ZE ﺃﻱ ED ﻭﻋﻠﻴﻪ 1 - i - ZE = -3 + 2i : ﺇﺫﻥ . ZE = 4 - 3i : ﺍﻟﺘﻤﺭﻴﻥ. 3 ﺇﻴﺠﺎﺩ ﺍﻷﻋﺩﺍﺩ xﻭ yﺒﺤﻴﺙ Z = 7 + 12i : x + y = 7 ﺃﻱ : x . y = 12ﻭﻤﻨﻪ xﻭ yﻫﻤﺎ ﺤﻼﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ t1 = 3 , ∆ = 1 , t2 - 7t + 12 = 0 :ﻭ . t2 = 4 ﻭﻤﻨﻪ x = 3ﻭ y = 4ﺃﻭ x = 4ﻭ y = 3 ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ : ABCDﻟﺩﻴﻨﺎ ZB = ZAﻭﻤﻨﻪ Aﻭ Bﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ . OA = OB : ﻭ ﺒﻤﺎ ﺃﻥ ZC = - ZAﻓﺈﻥ Aﻭ Cﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﻭ ﻟﺩﻴﻨﺎ . OA = OC :ﻭ ﺒﻤﺎ ﺃﻥ ZD = ZCﻓﺈﻥ Dﻭ Cﻤﺘﻨﺎﻅﺭﺘﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻟﺩﻴﻨﺎ . OC = OD : ﻭﻋﻠﻴﻪ ABCDﻫﻭ ﻤﺴﺘﻁﻴل ﻷﻥ ﻗﻁﺭﺍﻥ ﻤﺘﻘﺎﻴﺴﺎﻥ ﻭ ﻤﺘﻨﺎﺼﻔﺎﻥ .
D β A -α vG α O uG C B -β ﺍﻟﺘﻤﺭﻴﻥ. 5 ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱ := Z3 Z1 - Z2 = 2 - i + 5 - 3i = 7 - 4i × 3+i 1 + Z1 1+2-i 3-i 3+iZ3 = 25 - 2i = 5 - 1 i 10 2 5Z4 = Z12 = (2 - i)2 = 4 - 4i - 1 1 - Z2 1 + 5 - 3i 6 - 3iZ4 = 3 - 4i × 6 + 3i = 30 - 15i = 2 - 1 i 6 - 3i 6 + 3i 45 3 3 i Z1 )i (2 - i 2i + 1Z5 = (Z1 + Z2 )2 = (-5 + 3i + 2 - i)2 = (-3 + 2i)2Z5 = 2i + 1 × 5 + 12i = -19 + 22i 5 - 12i 5 + 12i 169 -19 22Z5 = 169 + 169 i ﺍﻟﺘﻤﺭﻴﻥ. 6 -ﺤﺴﺎﺏ : Sﺍﻟﻤﺠﻤﻭﻉ ﻫﻭ ﻤﺠﻤﻭﻉ n + 1ﺤﺩ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1ﻭ ﺃﺴﺎﺴﻬﺎ i
S1 = 1 × 1 - i2009 = 1 - i . i2008 1-i 1-iS1 = 1 - i . ( ) i 2 1004 = 1 - i ( )-1 1004 = 1-i =1 1-i 1-i 1-i : S2 ﺤﺴﺎﺏ-S2 = 1 - i + i2 - i3 + . . . + (-i)2008S2 = (-i)0 + (-i)1 + (-i)2 + (-i)3 + . . . + (-i)2008 1 ﺤﺩ ﻤﻥ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل2009 ﻭﻫﻭ ﻤﺠﻤﻭﻉ : ﺇﺫﻥ. –i ﻭ ﺃﺴﺎﺴﻬﺎ S2 = 1 × 1 - (-i)2009 = 1 - (-i) (-i)2008 1 - (-i) 1+i 1+i ( -i )2 1004 1 + i ( )-1 1004 S1 = = 1 +i = 1+i =1 1-i 1+i . 7ﺍﻟﺘﻤﺭﻴﻥ : ﺍﻟﺘﻤﺜﻴل ﺍﻟﻬﻨﺩﺴﻲ ZD = 2 ؛ZD = ZA ZB ؛ZD = ZA′ ZBarg( ZD ) = agr ( ZA ) + arg( ZB ) = π - π = π + 2kπ 3 6 6 arg 1 = -arg( ZA ) + 2kπ : ﻟﺩﻴﻨﺎ ZA ZE = 1 = 1 = 1 ﻭ arg( ZE ) = - π + 2kπ :ﻭ ﻤﻨﻪ ZA ZA 2 3
: ﻭ ﻤﻨﻪ arg 1 = -arg(ZB ) + 2kπ , k ∈ Z :ﻟﺩﻴﻨﺎ ZB ZF = 1 = 1 = 1 =1 ﻭ arg( ZF ) = π + 2kπ ZB ZB 1 6 A C D F EB . 8ﺍﻟﺘﻤﺭﻴﻥ : ﺘﻌﻴﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﺍﻟﻌﻤﺩﺓ• Z1 = (-2)2 + (-2)2 = 8 = 2 2 π cosθ1 = -2 = −2 4 22 2 θ1 =π + + 2kπ :ﻭﻤﻨﻪ -2 −2 sin θ1 = 22 = 2 k∈Z ﻭ θ1 = 5π + 2kπ : ﺃﻱ 4( )• Z2 = 3 3 2 + (-3)2 = 36 = 6
-π cosθ2 = 33 = 3 6 = 6 2 k∈Z ; θ2 = + 2kπ : ﻭﻤﻨﻪ sin θ2 -3 1 6 = - 2• Z1 . Z2 = Z1 . Z2 = 2 2 × 6 = 12 2arg ( Z1 . Z2 ) = arg ( Z1 ) + arg( Z2 ) + 2kπ , k ∈ Z = 5π - π + 2kπ = 15π - 2π + 2k 4 6 12 13π = 12 + 2kπ( )• Z12 = Z1 2 = 2 2 2 =8( )arg Z12 = 2 arg( Z1 ) = 2 × 5π + 2kπ 4 5π = 2 + 2kπ , k∈ Z• Z1 = Z1 = 22 = 2 Z2 Z2 6 3arg Z1 = arg( Z1 ) - arg( Z2 ) + 2kπ , k∈ Z Z2 = 5π + π + 2kπ , k ∈ Z 4 6 17π = 12 + 2kπ , k∈ Z
• Z42 = Z2 4 = (6)4 = 1296( )arg Z42 = 4arg ( Z2 ) +2kπ , k ∈ Z = 4 -π + 2kπ , k∈ Z 6 = −2π + 2kπ , k∈ Z 3• 1 = 1 = 1 = 2 Z1 Z1 22 4arg 1 = -arg( Z1 ) + 2kπ , k∈ Z Z1 = - 5π + 2kπ , k∈Z 4 . 9ﺍﻟﺘﻤﺭﻴﻥ 1 - 3i 2010 2 (ﺤﺴﺎﺏ1 1 - 3i ﻋﻤﺩﺓθ ﻨﻔﺭﺽ θ= -π + 2kπ ﻭﻤﻨﻪ cosθ = 1 , 1 - 3i = 2 3 2 sin θ = -3 2 1- 3i = 2 cos -π + i sin -π :ﻭﻤﻨﻪ 3 3
1- 3i 2010 cos -π -π 2010 2 3 3 = + i sin : ﻭﻋﻠﻴﻪ = cos -2010π + i sin -2010π 3 3 = cos(-670π) + i sin(-670π) =1 ( )1 + i 1962 : ﺤﺴﺎﺏx( )1 + i 1962 = (1 + i )2 981 = ( 2i)981 = ( 2)981 . ( i )981 ( )= 2981 . i . i980 = 2981 . i . i2 490 = 2981 . i . ( -1)490 = i . ( )2 981 1 + i 1418 1 - i : ﺤﺴﺎﺏ• 1 + i 1418 = 1 + i 2 709 = (1 + i)2 1 - i 1 - i (1 - i)2 = 2i 709 = ( )-1 709 = -1 -2i . 10ﺍﻟﺘﻤﺭﻴﻥ : ﺍﻟﺸﻜل ﺍﻷﺴﻲ• Z1 = 2 , cosθ1 = 2 2 sinθ1 = -2 2
Z1 = 2 e-i π : ﻭﻋﻠﻴﻪ k∈ Z , θ1 = -π + 2kπ : ﺇﺫﻥ 4 4 cosθ2 = - 1 2• Z2 = 2 , sinθ2 -3 = 2 Z2 = 2 e4i π ؛ θ2 = 4π + 2kπ , k∈ Z : ﻭﻤﻨﻪ 3 3 cosθ 3 = -4 6 = −3 8 2 2• Z3 = 8 2 , 4 2 1 sinθ12 = 8 2 = 2 Z3 = 8 2 e5i π ؛ θ3 = 5π + 2kπ , k ∈ Z ﻭﻤﻨﻪ 6 6• Z1 . Z2 = 2 2 ei -π + 4π = 2 2 ei1132π 4 3 • Z1 = 2 ei -π - 4π = 22 ei -19π Z2 2 4 3 12 ( )• Z23 =8 2 3 ei 3× 5π = 1024 2e 6 ( ) ( ) ( )• Z1Z2Z3 = 2 e = 32 . ei-π+ 4π + 5π i 23π 2 82 4 3 6 12 . 11ﺍﻟﺘﻤﺭﻴﻥ
cosθ + i sinθ = eiθ ﻟﺩﻴﻨﺎ cosθ - i sinθ = e-iθ : ﻭﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2cosθ = eiθ + e-iθ : ﻭﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ 2i sinθ = eiθ - e-iθ : cosθ = eiθ + e-iθ ﻭﻤﻨﻪ : 2 sinθ = eiθ - e-iθ ﻭﻤﻨﻪ : 2i ﺍﻟﺘﻤﺭﻴﻥ. 12 Z′ = Z + 1 i (1ﻓﻲ ﺤﺎﻟﺔ ﺍﻻﻨﺴﺤﺎﺏ : T 2 (2ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺤﺎﻜﻲ Z′ = kZ : H ﻭ ﺒﻤﺎ ﺃﻥ T(A) = B :ﻓﺈﻥ 2 + 2i = k (i + 1) : ﺇﺫﻥ k = 1 : =k )2(i + 1 ﻭﻋﻠﻴﻪ : =k 2 + 2i ﻭﻤﻨﻪ : i+1 i+1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ Z′ = 2Z : (3ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺩﻭﺭﺍﻥ Z′ = aZ + b : R =a -3 + 1 i ﻭﻋﻠﻴﻪ : a = cos 5π + i sin 5π ﻭﻟﺩﻴﻨﺎ : 2 2 6 6 b b 1-a = 3 +i ﻻﺤﻘﺔ ﺍﻟﻤﺭﻜﺯ ﻫﻲ 1 - a :ﻭﻤﻨﻪ : ﻭﻤﻨﻪ b = (- 3 + i) a : = ( )b - 3 1 - 3 +i 2 + 2 i ﺇﺫﻥ :=b 3 - 3 i - i 3 - 1 =1-i 3 2 2 2 2
Z′ - 3 + 1 i Z+1-i 3 ﻭﺒﺎﻟﺘﺎﻟﻲ : 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 13 -1ﺘﻌﻴﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ : 3 – 4i xﻨﻔﺭﺽ δ = x + iyﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ 3 - 4iﻴﻜﻭﻥ δ2 = 3 - 4i :ﻭﻤﻨﻪ (x + iy)2 = 3 - 4i : x2 - y2 = 3 ﺃﻱ ﺃﻥ : 2xy = -4ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺍﻟﻌﻼﻤﺔ δ2 = 3 - 4i : δ2 = 3 - 4iﺇﺫﻥ δ 2 = (3)2 + (-4)2ﺃﻱ ﺃﻥ x2 + y2 = 5 : ) x2 - y2 = 3 . . . (1 xy = -2 . . . )(2 ﻭﻤﻨﻪ : x 2 + y2 = 5 . . . )(3 ﺒﺠﻤﻊ ) (1ﻭ ) (3ﻨﺠﺩ 2 x2 = 8 :ﻭﻤﻨﻪ x2 = 4 ﺇﺫﻥ x = 2 :ﺃﻭ x = -1ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (2ﻨﺠﺩ: ﻟﻤﺎ y = -1 : x = 2ﻭﻟﻤﺎ y = 1 : x = -2 ﻭﻤﻨﻪ δ1 = 2 - iﻭ δ2 = -2 + i ﻫﻤﺎ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ . 3 – 4i • 3 + 4i ﻟﻴﻜﻥ δﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻟﻠﻌﺩﺩ 3 + 4iﺃﻱ δ2 = 3 + 4iﻨﻀﻊ δ = α + iβﻭﻤﻨﻪ (α + iβ)2 = 3 + 4i α2 - β2 = 3 2αβ = 4 ﻭﻋﻠﻴﻪ :
ﻭ ﻤﻥ ﺍﻟﻌﻼﻗﺔ δ2 = 3 + 4iﻟﺩﻴﻨﺎ δ2 = 3 + 4i : ﻭﻋﻠﻴﻪ δ 2 = (3)2 + (4)2 :ﻭﻤﻨﻪ α2 + β2 = 5 : )α2 - β2 = 3 . . . (1 )α β = 2 . . . (2 )α2 + β2 = 5 . . . (3 ﺒﺠﻤﻊ ) (1ﻭ ) (3ﻨﺠﺩ 2α2 = 8 :ﻭﻤﻨﻪ α2 = 4 ﺇﺫﻥ α = 2 :ﺃﻭ α = -2ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (2ﻨﺠﺩ: ﻟﻤﺎ β = 1 : α = 2ﻭ ﻟﻤﺎ β = -1 : α = -2 ﺇﺫﻥ δ1 = 2 + i :ﻭ δ2 = 2 + i ﻫﻤﺎ ﺍﻟﺠﺫﺭﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ 3 + 4i -2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - 6Z + 25 = 0 :) ∆′ = (-3)2 - 25(1ﻭﻤﻨﻪ ∆′ = -16ﺃﻱ ∆′ = 16i2 ﺇﺫﻥ ﺍﻟﺠﺫﺭﻴﻴﻥ ﺍﻟﺘﺭﺒﻴﻌﻴﻴﻥ ﻫﻤﺎ 4i :ﻭ -4i ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ Z1 = 3 - 4i :ﻭ Z2 = 3 + 4i -3ﺍﺴﺘﻨﺘﺎﺝ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ Z4 - 6Z2 + 25 = 0 : ﺒﻭﻀﻊ Z2 = Tﻨﺠﺩ T2 - 6T + 25 = 0 : ﻭﻟﻬﺎ ﺤﻠﻴﻥ T1 = 3 - 4iﻭ T2 = 3 - 4i ﻭﻤﻨﻪ Z2 = 3 - 4i :ﺃﻭ Z2 = 3 + 4i ﺇﺫﻥ Z = 2 – i :ﺃﻭ Z = -2 + iﺃﻭ Z =-2 - i }S = {2 - i , -2 + i , 2 + i , -2 - i ﺍﻟﺘﻤﺭﻴﻥ. 14 -1ﺘﻤﺜﻴل ﺍﻟﻨﻘﻁ :
C D B O A . ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲZ ﻜﺘﺎﺒﺔ-2Z= -1 - i - 2 - i = -3 - 2i × -2 - 3i 4i - 2 - i -2 + 3i -2+3 i 6 + 9i + 4i - 6Z= 4+9 =i arg(Z) = π , Z = 1 ﻭﻤﻨﻪ 2 ( )JJJG JJJG BA ﻭ Z = BC : ﻭﺒﻤﺎ ﺃﻥ arg(Z) = BC , BA ( )JJJG JJJG = π ﻭ BA =1 : ﻓﺈﻥ 2 BC BC , BA ( )JJJG JJJG = π ﻭ BC = BA : ﺇﺫﻥ 2 BC , BA . ﻭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥB ﻗﺎﺌﻡ ﻓﻲABC ﻭﻤﻨﻪ ﺍﻟﻤﺜﻠﺙ . ﻤﺭﺒﻊ ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻥABCD ﻲJﻋJﺎJGﻭﻥ ﺍﻟﺭﺒJﻴﻜJ-JG3 ZJJJG = ZJJJG : ﻭﻤﻨﻪBC = AD BC AD ZC - ZB = ZD - ZA : ﻭﻤﻨﻪ
ZD = 2i - 3 : ﺇﺫﻥ4i - 2 - i = ZD + 1 + i : ﺇﺫﻥ . 15ﺍﻟﺘﻤﺭﻴﻥ Z1 =2. AM ﻨﺒﻴﻥ ﺃﻥ-1 BM 1 - 2Z -2 Z - 1 -2 Z- 1 iZ + 1 2 i 2Z1 = = 1 = i Z-i i Z + Z- 1 2Z1 = 2i Z-i Z- 1 Z- 1 AM 2 2 BMZ1 = 2i . =2. =2. Z-i Z-i : (E) ﺍﺴﺘﻨﺘﺎﺝ AM = BM : ﻭﻤﻨﻪ AM =1 : ﻤﻌﻨﺎﻩZ1 = 2 BM [ ] [ ]AB ﻫﻭ ﻤﺤﻭﺭE ﺇﺫﻥ. AB ﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭM ﻭﻤﻨﻪ Z1 = Z1 : ﺤﻘﻴﻘﻲ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥZ1 ﻴﻜﻭﻥ-2 : ﻭﺒﺎﻟﺘﺎﻟﻲ 1 - 2Z = 1 - 2Z : ﻭﻋﻠﻴﻪ iZ + 1 -iZ + 1(1 - 2Z) (-iZ + 1) = (iZ + 1) (1 - 2Z)-iZ + 1 + 2i ZZ - 2Z = iZ - 2i ZZ + 1 -2 Z-iZ + 2i ZZ - 2Z - iZ + 2i ZZ + 2Z = 0-i (Z + Z) - 2 (Z - Z) + 4i ZZ = 0
-i (2x) - 2 (2iy) + 4i (x2 + y2 ) = 0( )( )2i - x - 2y + 2 x2 + y2 = 0 ﺇﺫﻥ ( )2 x2 + y - x - 2y = 0 : x2 + y2 - 1 x -y=0 ﻭﻋﻠﻴﻪ : 2 x - 1 2 - 1 + y - 1 2 - 1 =0 ﻭﻤﻨﻪ : 4 16 2 4 x - 1 2 + y - 1 2 = 5 ﺇﺫﻥ : 4 2 16 ﻭ ﻟﺩﻴﻨﺎ Z ≠ iﻭﻤﻨﻪ )(x ; y) ≠ (0 ; 15 ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ W 1 ; 1 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Fﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ4 4 2 ﺍﻟﺘﻤﺭﻴﻥ. 16 ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ : (1ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ w1ﺫﻭ ﺍﻟﻼﺤﻘﺔ 1ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ 2 (2ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ w2ﺫﻭ ﺍﻟﻼﺤﻘﺔ iﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ 4 (3ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ﻤﺒﺩﺃﻩ ﺍﻟﻨﻘﻁﺔ Iﺫﺍﺕ ei π ﻭ ﻻﺤﻘﺔ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ﺍﻟﻼﺤﻘﺔ -1 + i 6 ﺍﻟﺘﻤﺭﻴﻥ. 17 )iZ + (2i - 1) Z′ = 4 . . . (1 xﺤل ﺍﻟﺠﻤﻠﺔ )-iZ + 3i Z′ =- i . . . (2 ﺒﺠﻤﻊ ) (1ﻭ ) (2ﻨﺠﺩ (5i - 1) Z′ = 4 - i :
Z′ = (4 - i) (5i + 1) : ﺃﻱ ﺃﻥ Z′ = 4-i ﻭﻤﻨﻪ (5i - 1) (5i + 1) 5i - 1 Z′ = 9 + 19 i : ﻭﻋﻠﻴﻪ 26 26 -iZ + 3i 9 + 19i = -i : ( ﻨﺠﺩ2) ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ 26 -iZ = -i - 27i - 57 = -53i - 57 : ﻭ ﻤﻨﻪ 26 26 53 57 -53i - 57 iZ= 26 - 26 i :ﺃﻱ Z= -26i × i : ﻭ ﻋﻠﻴﻪ S = 59 - 57 i ; 9 + 19 i : ﺇﺫﻥ 26 26 26 26 -2 ×iZ + iZ′ = 3 2iZ - Z′ = 1 + i : ﺤل ﺍﻟﺠﻤﻠﺔx -2i Z - 2i Z′ = -6 2iZ - Z′ = 1 + i : ﻭ ﻤﻨﻪ -(2i + 1) Z′ = -5 + i : ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩZ′ = -5 + i × -2i + 1 = 10i - 5+ 2 + i : ﺇﺫﻥ -2i - 1 -2i + 1 5 -3 11 -3 11Z′= 5 - 5 i : ﺇﺫﻥ Z′ = 5 + 5 i : ﻭ ﻤﻨﻪiZ + iZ′ = 3 iZ + iZ′ = 3-2Z - iZ′ = i - 1 :ﺃﻱ i × 2iZ - Z′ = 1 + i : ﻟﺩﻴﻨﺎ : ( ﻭ ﻤﻨﻪi - 2) Z = i + 2 : ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ
Z= i+2 × i+2 = +3 + 4i = - 3 - 4 i i-2 i+2 -5 5 5 S = - 3 - 4 i ; - 3 - 11 i 5 5 5 5 : ﺇﺫﻥ . 18ﺍﻟﺘﻤﺭﻴﻥ : ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ∆′ = (1 - cosθ)2 - 2 + 2 cosθ∆ = 1 - 2 cosθ + cos2θ - 2 +2 cosθ∆′ = -1 + cos2θ∆′ = -sin2θ = i2 sin2θ -i sinθ ﺃﻭi sinθ ﻭﻤﻨﻪ ﺠﺫﺭﻱ ∆ ﻫﻤﺎ : ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ Z2 = -1 + cosθ + i sinθ ﻭZ1 = -1 + cosθ - i sinθ : ﻜﺘﺎﺒﺔ ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲZ1 = -1 + cosθ - i sinθZ1 = -1 + 1 - 2sin2 θ -i × 2 sin θ cos θ 2 2 2Z1 = -2 sin2 θ - 2i sin θ . cos θ 2 2 2Z1 = 2 sin θ -sin θ - i cos θ 2 2 2 Z1 = 2 sin θ sin θ + π + i cos θ + π 2 2 2 Z1 = 2 sin θ cos θ - π + i sin -θ - π 2 2 2 2
sin θ > 0 ﻭﻤﻨﻪ0 ≤ θ ≤ π ﻓﺈﻥ0 ≤ θ ≤ π ﺒﻤﺎ ﺃﻥ 2 2 2 . ﻤﻜﺘﻭﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲZ1 : ﻭﻋﻠﻴﻪZ2 = -1 + cosθ + i sinθZ2 = - 1 + 1 - 2sin2 θ + 2i sin θ cos θ 2 2 2Z2 = -2 sin2 θ + 2i θ + 2i sin θ . cos θ 2 2 2 2Z2 = 2 sin θ -sin θ + i cos θ 2 2 2 Z2 = 2 sin θ sin -θ + i cos -θ 2 2 2 Z2 = 2 sin θ cos π + θ + i sin π + θ 2 2 2 2 2 . Z2 ﻭ ﻫﻭ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ ﻟﻠﻌﺩﺩ . 19ﺍﻟﺘﻤﺭﻴﻥ Z0 = 8 ( ﺘﻘﺒل ﺤل ﺤﻘﻴﻘﻲ1) ( ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ183 - 12(8)2 + 48(8) - 128 = 0512 - 768 + 384 - 128 = 896 - 896 = 0 . ﺤل ﻟﻬﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ8 ﻭﻤﻨﻪ : (1) ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ2 (Z - 8) (aZ2 + bZ + c) = 0 : ( ﺘﻜﺎﻓﺊ1) ﺍﻟﻤﻌﺎﺩﻟﺔ aZ3 + bZ2 + cZ - 8aZ2 - 2bZ - 8c = 0 : ﺃﻱ aZ3 - (-b + 8a) Z2 + (c - 8b) Z - 8c = 0 : ﻭﻋﻠﻴﻪ
a = 1 ﻭﻋﻠﻴﻪ : a = 1 ﺇﺫﻥ :b = -4 -b + 8a = +12c = 16 c - 8b = 48 -8c = -128ﻭﻤﻨﻪ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻜﺎﻓﺊ (Z - 8) (Z2 - 4Z + 16) = 0 :ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ Z - 8 = 0 :ﺃﻭ Z2 - 4Z + 16 = 0 ﺇﺫﻥ Z = 8 :ﺃﻭ Z2 - 4Z + 16 = 0 ﻨﺠﺩ ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - 4Z + 16 = 0 ∆′ = 4 - 16 = -12ﻭﻤﻨﻪ ∆′ = 12i2 : ﺠﺫﺭﻱ ∆′ﻫﻤﺎ i 12ﺃﻭ -i 12ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ Z1 = 2 +i 12 :ﻭ Z2 = 2 - i 12 Z1 = 2 + 2i 3ﻭ Z2 = 2 - 2i 3 -ﻜﺘﺎﺒﺔ Z1ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ : cosθ1 = 1 2 ﻟﺩﻴﻨﺎ Z1 = 4 :ﻭ= sinθ1 3 2 θ1 = π + 2kπ , k∈Z ﻭﻤﻨﻪ : 3 Z1 = 4 cos π + i sin π 3 3 -ﻜﺘﺎﺒﺔ Z2ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﺜﻠﺜﻲ :
cosθ2 = 1 2 ﻭZ2 = 4 : ﻟﺩﻴﻨﺎ sinθ2 - 3 = 2 θ2 = -π + 2kπ , k∈ Z : ﻭﻤﻨﻪ 3 Z2 = 4 cos −π + i sin −π 3 3 ﺍﻟﺘﻤﺜﻴل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ- M1 M0 M2 : Z3 ﺤﺴﺎﺏ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ-4Z3 = Z2 - Z0 = 2-2i 3 - 8 = -6 - 2i 3 Z1 - Z0 2+2i 3 - 8 -6 2i 3
(-6 - 2i 3 ) (-6 - 2 3 )( ) ( )Z3 = -6 + 2i 3 -6 - 2i 3Z3 = 36 + 12i 3 + 12i 3 - 12 36 + 12 Z3 = 24 + 24i 3 = 1 + 1 i 3 : ﻭ ﻤﻨﻪ 48 2 2 Z3 = 1 + 3 =1 : ﺇﺫﻥ 4 4 cosθ = 1 2 arg(Z3 ) = θ : sin θ = 3 2 θ= π + 2kπ , k ∈ Z : ﻭﻤﻨﻪ 3 : M0 M1 M2 ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ M0 M2 = M0 M1 : ﻭﻤﻨﻪ Z = M0 M2 =1 M0 M1 JJJJJJG JJJJJJG M0M1 ; M0M2 π ( )argZ1 = = 3 . ﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉM0 M1 M2 ﻭﻋﻠﻴﻪ ﺍﻟﻤﺜﻠﺙ . 20ﺍﻟﺘﻤﺭﻴﻥ Z = x + iy ﻨﻔﺭﺽ. ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺠﺒﺭﻱZ1 ﻨﻜﺘﺏ
Z1 = i (x + iy) + 1 - i = 1 - y + i (x - 1) x + iy - 2 + i x - 2 + i (y + 1)Z1 = 1 - y + i (x - 1) × x - 2 - (y + 1) x - 2 + i (y + 1) x - 2 - i (y + 1)Z1 = (1- y)(x- 2) - i(y+ 1)(1- y)+ i(x- 1)(x- 2) +(x- 1)(y+ 1) (x - 2)2 + (y + 1)2Z1 = x- 2- xy+2y- i(1- y2 )+ i(x2 - 3x+ 2)+ xy+ x- y-1 (x - 2)2 + (y + 1)2Z1 = 2x + y - 3 + i (-1 + y2 + x2 - 3x + 2) (x - 2)2 + (y + 1)2Z1 = 2x + y - 3 +i x2 + y2 - 3x + 1 (x - 2)2 + (y + 1)2 (x - 2)2 + (y + 1)2 : ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏZ1 ﺒﺤﻴﺙ ﺘﻜﻭﻥM ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ-1 x2 + y2 - 3x + 1 = 0 2x + و : ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻴﻜﺎﻓﺊZ1 y-3<0 و (x ; y) ≠ (2 ; -1) x - 3 2 - 9 + y2 + 1 = 0 :ﺃﻱ x2 + y2 - 3x + = 0 x 2 4 x - 3 2 + y2 = 5 : ﻭﻤﻨﻪ 2 4 ()ﺍﻟﺸﻜل
=R 5 و W 3 ; 0 ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ 2 2 xﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 2x + y - 3 < 0 ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )2x + y - 3 = 0 : x03 y 3 -3 ﻫل ) (0 ; 0ﺤل ﻟﻠﻤﺘﺭﺍﺠﺤﺔ 2(0) + 0 - 3 < 0 :ﺃﻱ -3 < 0 : ﻤﺤﻘﻘﺔ ﻭﻤﻨﻪ ) (0 ; 0ﺤل ﻟﻠﻤﺘﺭﺍﺠﺤﺔ .ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻡ ∆ ﻭ ﻴﺸﻤل . Oﻭﻤﻨﻪ) (ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﻴﻜﻭﻥ Z1ﺤﻘﻴﻘﻲ ﺴﺎﻟﺏ ﻫﻲ ﺍﻟﻘﻭﺱ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﻭﺍﻗﻊ ﺘﺤﺕ ﺍﻟﻤﺴﺘﻘﻴﻡ )∆( . : Z1 ﻋﻤﺩﺓ ﻟـ π (2ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﻴﻜﻭﻥ 2 2x + y - 3 = 0 ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ Re (Z1 ) = 0 :ﻭﻤﻨﻪ : )(x ; y) ≠ (2 ; -1 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺎﺴﺘﺜﻨﺎﺀ) ( ﺍﻟﻨﻘﻁﺔ ). A (2 ; -1 -3ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺒﺤﻴﺙ ﺘﻜﻭﻥ . Z1 = 2Z1 = iZ + 1 - i = )1 - y + i (x - 1 Z-2+i )x - 2 + i (y - 1Z1 = )1 - y + i (x - 1 = (1 - y)2 + (x - 1)2 )x - 2 + i (y - 1 ( x - 2)2 + (y - 1)2
= (1 - y)2 + (x - 1)2 2 ﻭﻋﻠﻴﻪ : ( x - 2)2 + (y - 1)2 (1 − y)2 +(x − 1)2 = 2 ﻭ ﺒﺘﺭﺒﻴﻊ ﺍﻟﻁﺭﻓﻲ ﻨﺠﺩ : (x− 2)2 +(y − 1)2 ﺇﺫﻥ (1 - y)2 + (x - 1)2 = 2 (x - 2)2 + (y - 1)2 : ﻭﻋﻠﻴﻪ :1 - 2y + y2 + x2 - 2x + 1 = 2x2 - 8x + 8 + 2y2 - 4y + 21 - 2y + y2 + x2 - 2x + 1 - 2x2 + 8x - 8 - 2y2 + 4y - 2 = 0- x2 - y2 + 6x + 2y - 8 = 0(x - 3)2 - 9 + (y - 1)2 - 1 + 8 = 0(x - 3)2 + (y - 1)2 = 2 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ) (Cﻤﺭﻜﺯﻫﺎ ) B(3 ; 1ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ 2 . π ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ Z1 -4ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻋﻤﺩﺓ 4 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ). IM (Z) Re (Z 2x + y - 3 = x2 + y2 - 3x + 1 ﻭﻤﻨﻪ : (x - 2)2 + (y + 1)2 (x - 2)2 + (y + 1)2 x2 + y2 - 3x + 1 = 2x + y - 3 )(x ; y) ≠ (2 ; - 1 ﻭﺒﺎﻟﺘﺎﻟﻲ : x - 5 2 - 25 + y2 =-4 : ﻭﻋﻠﻴﻪ x2 + y2 - 5x = -4 : ﻭﻤﻨﻪ 2 4 ≠ )(x ; y )(2 ; - 1
ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ x - 5 2 + y2 = 9 : ﺃﻱ 2 4 . 3 ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ C 5 ; 0 2 2 . 21ﺍﻟﺘﻤﺭﻴﻥ : Z ﺘﻌﻴﻴﻥ ﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓZ = 1 - cosθ + i sinθZ=1- 1 - 2 sin2 θ + 2i sin θ cos θ 2 2 2Z = +2 sin2 θ + 2i sin θ cos θ 2 2 2Z1 = 2 sin θ sin θ + i cos θ 2 2 2 - π < θ ≤ π : ﻓﺈﻥ-π < θ ≤ π : ﺒﻤﺎ ﺃﻥ 2 2 2 sin θ >0 ﻴﻜﻭﻥ 0 ; π ﻭﻤﻨﻪ ﻓﻲ ﺍﻟﻤﺠﺎل 2 2 Z1 = 2 sin θ cos π - θ + i sin π - θ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ 2 2 2 2 2 arg( Z1 ) = π - θ + 2kπ ; k∈Zﻭ Z1 = 2sin θ : ﺇﺫﻥ 2 2 2 -sin θ >0 : ﺃﻱ sin θ <0 : -π ; 0 ﻓﻲ ﺍﻟﻤﺠﺎل 2 2 2 Z1 = -sin θ -sin θ - i cos θ : ﻭﻋﻠﻴﻪ 2 2 2
Z1 = -sin θ -cos π - θ + i sin π - θ 2 2 2 2 2 Z1 = -sin θ cos π + π - θ + i sin π + π - θ 2 2 2 2 2 Z1 = -sin θ cos 3π - θ + i sin 3π - θ 2 2 2 2 2 arg( Z1 ) = 3π - θ +2kπ ; k∈Z ﻭ Z1 = - sin θ : ﻭﻤﻨﻪ 2 2 2 . 22ﺍﻟﺘﻤﺭﻴﻥ ﻭ ﻁﻭﻴﻠﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭA 3 , A 2 , A1 ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ ﻭZ3 , Z2 , Z1 ﻨﻔﺭﺽ : ﻭﻤﻨﻪZ1 . Z2 . Z3 = −27i : ﻋﻤﺩﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻴﻜﻭﻥθ3 , θ2 , θ1 Z1 . Z2 . Z3 = 27 . A1 . A 2 . A 3 = 27 : ﺇﺫﻥZ1 . Z2 . Z3 = 27 : ﺃﻱ A 2 = A1 . A3 : ﻭﻤﻨﻪA 3 وA1 ﻭﺴﻁ ﻫﻨﺩﺴﻲ ﻟﻠﻌﺩﺩﻴﻥA 2 ﻟﻜﻥ 2 A1 . A3 = 9 : ﻭﻋﻠﻴﻪ A 2 = 3 : ﺃﻱ ﺃﻥ A 3 = 27 : ﻭﻤﻨﻪ 2 A 2 = 1 : ﺇﺫﻥ 9A 2 = 9 : ﻭﻤﻨﻪ A 3 = A1 . 9 : ﻟﻜﻥ 1 1 A 3 = 9 : ﻭ ﺒﺎﻟﺘﺎﻟﻲA1 = 1 : ﻭﻤﻨﻪ arg ( Z1 . Z2 . Z3 ) = arg( -27i) : ﻭﻜﺫﻟﻙ arg( Z1 ) + arg( Z2 ) + arg( Z3 ) = 3π 2 3π θ3 وθ1 ﻭﺴﻁ ﺤﺴﺎﺒﻲ ﻟﻠﻌﺩﺩﻴﻥθ2 ﻟﻜﻥ θ1 + θ2 + θ3 = 2 . θ2 = π : ﺇﺫﻥ 3θ2 = 3π :ﻭﻤﻨﻪ 2θ2 = θ1 + θ3 : ﺃﻱ ﺃﻥ 2 2
θ1 = θ2 - π = π - π ﺃﻱ θ2 = θ1 + π : ﻟﻜﻥ 3 2 3 3 5π. θ3 = 6 : ﺃﻱ θ3 = θ2 + π : ﻭﻤﻨﻪ θ1 = π : ﺃﻱ ﺃﻥ 3 6Z1 = 3 + 1 i : ﻭﻋﻠﻴﻪ Z1 = cos π + i sin π : ﻭﺒﺎﻟﺘﺎﻟﻲ 2 2 6 6 Z2 = 3i : ﻭﻋﻠﻴﻪ Z2 =3 cos π + i sin π : ﻭﻤﻨﻪ 2 2 Z3 = -9 3 + 9 i : ﻭﻋﻠﻴﻪ Z3 = 9 cos 5π + i sin 5π 9 2 6 6 . 23ﺍﻟﺘﻤﺭﻴﻥ : (C) ﻨﻘﻁﺔ ﻤﻥB ( ﻨﺒﻴﻥ ﺃﻥ1 (I AB = ZB - ZA = 1 - ei π -1 = ei π =1 3 3 ( )JJJG JJ.JGB ∈ (C) : ﻭﻤﻨﻪ : AF ; AB ( ﺘﻌﻴﻴﻥ ﻗﻴﺴﺎ ﻟﻠﺯﺍﻭﻴﺔ2 JJJG JJJG JJJG G JG JJJG( ) ( ) ( )AF ; AB = AF , u + U , AB + 2kπ ; k ∞ Z ( ) ( )JG JJJG JG JJJG = - U ; AF + U , AB + 2kπ ( ) ( )JG JJJG JG JJJG = U ; AB - U ; AF + 2kπ ( ) ( )= arg ZJJJG - arg ZJJJG AB AF( )arg ZJJJG = π : ﻭﻤﻨﻪ Z JJJG = ZB - ZA = ei π : ﻟﻜﻥ AB 3 AB 3
( )arg ZJJJG =0 : ﻭﻤﻨﻪ Z JJJG = ZF - ZA = 2 - 1 = 1 = ei×0 AF AF JJJG JJJG π AF ; AB 3 ( ). = + 2kπ ; k ∈ Z : ﻭﻤﻨﻪ : ﺘﻌﻴﻴﻥ ﺍﻟﺸﻜل ﺍﻷﺴﻲ-3 ZB - ZA : ﻟﻠﻌﺩﺩxZB - ZA = 1 + ei π - 1 = ei π 3 3ZE - ZA = 1 + ZB2 - 1 = Z 2 = 1 + ei π 2 B 3 = 1 + cos π + i sin π 2 = 1 + 1 +i 6 3 2 3 3 2 2 = 3 +i 3 2 = 3 ei π 2 = 3 ei π 2 2 6 3 JJJG : ﺴﺒﻕJﺎJﻤJﻤG ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓE , B , A ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻟﻨﻘﻁ-4 AE = 3 AB : ﻭﻤﻨﻪZE - ZA =JJ3JG ( ZJBJ-JGZA ) . ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓE , B , A ﻭﻋﻠﻴﻪ ﺍﻟﻨﻘﻁAB // AE : ﺇﺫﻥ Z′ - 1 JJJJG JJJJG Z - 1 AM , AM′ ( )arg = : ( ﻟﺩﻴﻨﺎ1 -II
( )JJJJG JJJJG Z′ - 1 ﻭﻤﻨﻪ ﻋﻤﺩﺓ Z - 1ﻫﻲ ﺍﻟﺯﺍﻭﻴﺔ AM , AM′ (2ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁ Aﻭ Mﻭ M′ﻋﻠﻰ ﺍﺴﺘGﻘﺎJﻤJﺔJﻭJﺍﺤﺩﺓ ﺇJGﺫﺍJJﻭﻓJﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ( ): AM , AM′ = kπ , k ∈ ZZ′ - 1 ∈ \ ﻭﻋﻠﻴﻪ : arg Z′ - 1 = kπ ﺃﻱ :Z-1 Z - 1 Z2 \∈ ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 1 + Z2 - 1 ∈ \ ﻭﻤﻨﻪ :Z-1 Z-1 ﺍﻟﺘﻤﺭﻴﻥ. 24 -1ﺤﺴﺎﺏ f Zﺒﺩﻻﻟﺔ ( ): Z f ( Z) = Z2 - (2 + 3i) Z2 + 9Z - 18 - 27i -2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ( ): f Z = 0 ﻟﺩﻴﻨﺎ f Z1 = 0 :ﻭ ( ) ( ). f Z1 = 0 ﺤﻴﺙ f Z1 = 0 :ﺘﻜﺎﻓﺊ ( ) ( )f Z1 = 0 :ﻭﻤﻨﻪ Z13 - (2 + 3i) Z12 + 9Z1 - 18 - 27i = 0 . . . (1) : f Z1 = 0ﺘﻜﺎﻓﺊ ( ): )Z13 - (2 - 3i) Z12 + 9Z1 - 18 + 27i = 0 . . . (2 ﺒﻁﺭﺡ ) (2ﻤﻥ ) (1ﻨﺠﺩ (-2 - 3i + 2 - 3i) Z12 - 54i = 0 : ﻭﻤﻨﻪ -6iZ12 - 54i = 0 :ﺇﺫﻥ Z12 = -9 :ﺃﻱ Z12 = 9i2 : ﻭﻤﻨﻪ Z1 = 3i :ﺃﻭ Z1 = -3i ﻭﻋﻠﻴﻪ f (Z) = (Z - 3i) (Z + 3i) (aZ + b) :
)f (Z) = (Z2 + 9) (aZ + bf (Z) = aZ3 + bZ2 + 9aZ + 9b a = 1 ﻭﻤﻨﻪ b = -2 + 3i : ﻭﻋﻠﻴﻪ f (Z) = (Z - 3i) (Z + 3i) (Z - 2 + 3i) :ﻭﻫﻲ ﺘﻜﺎﻓﺊ Z - 3i = 0 :ﺃﻭ Z + 3i = 0ﺃﻭ Z - 2 + 3i = 0 ﻭﻤﻨﻪ Z = 3i :ﺃﻭ Z = -3iﺃﻭ Z = 2 – 3i ﺇﺫﻥ S = {3i , -3i , 2 - 3i} : = Z′ 3i + 3i = 3i (3ﺤﺴﺎﺏ : Z′ 2 - 3i + 3i= )arg(Z′ π + 2kπ , Z′ =3 ; k∈Z ﻭﻤﻨﻪ : 2 ﻁﺒﻴﻌﺔ ﺍﻟﻤﺜﻠﺙ ABCﻗﺎﺌﻡ ﻓﻲ Bﻭ ﻏﻴﺭ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ. (1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ AM2 + 2MB2 - 2MC2 = 25 : ﻨﻔﺭﺽ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ Mﻫﻲ . Z ﻓﻴﻜﻭﻥ :Z - 3i 2 + 2 Z + 3i 2 - 2 Z - 2 + 3i 2 = 25x2 +(y - 3)2 + 2 x2 +(y+ 3)2 -2 (x- 2)2 +(y+ 3)2 = 25x2 +2x2 - 2(x- 2)2 +(y - 3)2 +2(y + 3)2 -2(y + 3)2 = 25x2 + 2x2 - 2x2 + 8x - 8 + y2 - 6y + 9 + 2y2 + 12y+ 18 - 2y2 - 12y - 18 = 25 ﻭﻤﻨﻪ x2 + 8x + y2 - 6y = 24 :ﺃﻱ( x + 4)2 - 16 + (y - 3)2 - 9 = 24 : ﺃﻱ(x + 4)2 + (y - 3)2 = 49 :
ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ) w(-4 ; 3ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ . 7 ﺍﻟﺘﻤﺭﻴﻥ. 25 (1ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ Z2 - (1 + i) Z - 4i = 0 : ) ∆ = (1 + i)2 - 4 (-4iﻭﻤﻨﻪ ∆ = 18iﺇﺫﻥ ∆ = 9 . 2i :ﻭ ﻤﻨﻪ ∆ = 9(1 + i)2 = [3(1 + i)]2 :ﻭﻤﻨﻪ ﺠﺫﺭﻱ ∆ ﻫﻤﺎ - (3 + 3i) , 3 + 3iﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ Z2 , Z1 :ﺤﻴﺙ := Z2 1 + i + 3 + 3i ﻭ = Z1 1 + i - 3 - 3i 2 2 Z1 = -1 - iو Z2 = 2 + 2i (2ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺒل ﺤﻠﻴﻥ ﺘﺨﻴﻠﻴﻴﻥ ﻤﺘﻌﺎﻜﺴﻴﻥ : Z4 , Z3ﺃﻱ Z3 = yi :ﻭ Z4 = - yi ﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ :(Z - yi) (Z + yi) (aZ2 + bZ + c) = 0(Z2 + y2 ) (aZ2 + bZ + c) = 0aZ4 + bZ3 + cZ2 + ay2 Z2 + by2 Z + cy2 = 0ﺇﺫﻥ aZ4 + bZ3 + (c + ay2 ) Z2 + by2Z + cy2 = 0 :a = 1 a = 1b = -1 - i b = -1 - ic + y2 = 9 - 4i ﻭﻋﻠﻴﻪ c + ay2 = -9 - n :ﺃﻱ ﺃﻥ :(-1 - i) y2 = -9 - 9i by2 = −9 − 9iﻭﻋﻠﻴﻪ y2 = 9 : y2 = )-9 (1 + i =9 ﺇﺫﻥ : )- (1 + iﻭﻤﻨﻪ y = 3 :ﺃﻭ y = -3ﺇﺫﻥ C + 9 = 9 - 4i : ﻭﻤﻨﻪ C = - 4i :
ﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ ( )(Z - 3i) (Z + 3i) Z2 - (1 + i) Z - 4i = 0 : ﻭﻫﻲ ﺘﻜﺎﻓﺊ Z – 3i = 0 :ﺃﻭ Z + 3i = 0ﺃﻭ Z2- (1 + i) Z - 4i = 0 ﻭﻋﻠﻴﻪ Z = 3i :ﺃﻭ Z = -3iﺃﻭ Z = -1 - iﺃﻭ ) Z = 2 + 2iﻤﻤﺎ ﺴﺒﻕ( .ﺇﺫﻥ : }. S = {3i ; -3i ; -1 - i ; 2 + 2i -3ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ :Z - Z3 - Z4 Z - 3i + 3i = ZZ - Z1 - Z2 Z + 1 + i - 2 -2i Z-1-i Z ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺭﻜﺏ - π ﻤﺴﺎﻭﻴﺔ ﺇﻟﻰ Z ﺘﻜﻭﻥ ﻋﻤﺩﺓZ-1-i 2 Z-1-i ﻭﻤﻨﻪ : Z = Z Z - i ﻭ Z ≠ 1-i ﺘﺨﻴﻠﻲ ﺼﺭﻑ ﺃﻱ : Z-1-i -1 )Z(Z - 1 + i) = Z (Z - 1 - i ﻭﻋﻠﻴﻪ : Z = Z Z-1-i Z-1+i ﻭﻤﻨﻪ ZZ - Z + iZ = ZZ - Z - iZ : ﻭﻤﻨﻪ -Z + Z + iZ + iZ = 0 : -(Z - Z) + i (Z + Z) = 0 ﻭﺒﺎﻟﺘﺎﻟﻲ -2iy + 2ix = 0 :ﺤﻴﺙ Z = x + iy : ﻭﻋﻠﻴﻪ 2i (x - y) = 0 :ﺇﺫﻥ . x – y = 0 :ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ x – y = 0ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ )A(1 ; 1 ﺍﻟﺘﻤﺭﻴﻥ. 26 ﻨﺭﻤﺯ ﺒـ ) R(w ; θﻟﻠﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ wﻭ ﺯﺍﻭﻴﺘﻪ . θD A ﻭ ﺒﺎﻟﺭﻤﺯ ZMﻟﻼﺤﻘﺔ . M ﻟﺩﻴﻨﺎ E :ﺼﻭﺭﺓ C I E R A ; π ﺒﺎﻟﺩﻭﺭﺍﻥ 3 J BC
: ﻭﻋﻠﻴﻪ ( )(1) ei π ... ZE - ZA = 3 ZC- ZA A ﻫﻲ ﺼﻭﺭﺓD ﻭ ﻜﺫﻟﻙ R B ; π ﺒﺎﻟﺩﻭﺭﺍﻥ 3 ( )(2) - ZB = ei π . . . ZD 3 ZA - ZB : ﻭﻋﻠﻴﻪ R C ; π ﺒﺎﻟﺩﻭﺭﺍﻥB ﻫﻲ ﺼﻭﺭﺓF ﻭ ﻟﺩﻴﻨﺎ 3 ( )(3) . . . ZF - ZC ei π = 3 ZB - ZC : ﻭﻋﻠﻴﻪ : ( ﻁﺭﻓﺎ ﻟﻁﺭﻑ3) ( ﻭ2) ( ﻭ1) ﺒﺠﻤﻊ( )ZEZA+ ZD ZF = ei π- - ZB + - ZC 3 ZC-ZA +ZA -ZB +ZB -ZC ( )ZE + ZD + ZF - ZA + ZB + ZC = 0 : ﻭﻤﻨﻪ (4) . . . ZE + ZD + ZF = ZA + ZB + ZC : ﻭﻤﻨﻪ: ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ ﻤﻨﻪBCF ﻭACE ﻭABD ﻤﺭﺍﻜﺯ ﺜﻘل ﻜل ﻤﻥ ﺍﻟﻤﺜﻠﺜﺎﺕK , J , I ﻭﻟﺩﻴﻨﺎ ZI = ZA + ZB + ZD ; ZJ = ZA + ZC + ZE 3 3 : ﻭﻤﻨﻪ ZK = ZB + ZC + ZF 3( )ZI+ ZJ + ZK = 2ZA + 2ZB + 2ZC + ZD + ZE + ZF 3 : ﻭﻋﻠﻴﻪ( )ZI 2ZA+ ZJ + ZK = + 2ZB + 2ZC + ZA + ZB + ZC 3
= 3ZA + 3ZB + 3ZC 3 = ZA + ZB + ZCﻭﻤﻨﻪ ZI + ZJ + ZK = ZA + ZB + ZC = ZD + ZE + ZF :ZI + ZJ + ZK = ZA + ZB + ZC = ZD + ZE + ZF ﺇﺫﻥ : 3 3 3 ﻭ ﻋﻠﻴﻪ ﺍﻟﻤﺜﻠﺜﺎﺕ IJKﻭ ABCﻭ FEDﻟﻬﺎ ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل. ﺍﻟﺘﻤﺭﻴﻥ. 27 ﺘﻌﻴﻴﻥ ﺍﻟﻁﻭﻴﻠﺔ ﻭ ﻋﻤﺩﺓ ﻟﻠﻌﺩﺩ 1 + cosx + i sin x : ﻟﺩﻴﻨﺎ ( )G G 1 + cosx + i sin x = 1 + eix : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﺎﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﺍﻟﻤﺘﺠﺎﻨﺱ . O ; i , j H M ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁ M′ , M , I’I I ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎ -1 , eix , 1 O ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ. ﻟﺩﻴﻨﺎ : ]( )arg eix + 1 =JJ2xJG [2π ﺤﻴﺙ eix + 1 = I′M : ﻭ ﻟﺘﻜﻥ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Oﻋﻠﻰ [ ]. I′Mﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺜﻠﺙ OMI′ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﺈﻥ Hﻤﻨﺘﺼﻑ I′Mﻭﻤﻨﻪ [ ]: . I′M = 2I′H cos x = I′H ﻟﺩﻴﻨﺎ : ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ OMI′ 2 I′O x xI′M = 2cos 2 ﻭﻤﻨﻪ : I′O = 1 ﻷﻥ : I′H = cos 2 ﻭﻤﻨﻪ :
( ) [ ]arg eix + 1 = x 2π : ﻭ ﺒﺎﻟﺘﺎﻟﻲ eix +1 = 2 cos x : ﻭﻋﻠﻴﻪ 2 2 . 28ﺍﻟﺘﻤﺭﻴﻥ ( ) ( ) ( )JJJG JJJG : ﺠﻬﺔJﻭJﻟﻤJGﺯﻭﺍﻴﺎ ﺍJﺍﻟJﻥGﺎﺱ ﻟﻜل ﻤJﻗﻴJﺃJGγ , βJJJ,Gα ﻨﻌﻠﻡ ﺃﻥ CE ; CF ; BC ; BF ; HB ; HF ( )JJJG JJJG B ; BC ; BA ﻨﺯﻭﺩ ﺍﻟﻤﺴﺘﻭﻯ ﺒﺎﻟﻤﻌﻠﻡ 2 + i , 2 , 1 , 0 , -1 : ﻓﺘﻜﻭﻥ ﻟﺩﻴﻨﺎ . ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﻌﻠﻡF , E , C , B , H ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ JJJG JJJG ZF - ZH HB ; HP ( )arg ZB - ZH = α : ﻋﻠﻴﻪ ﻭ =α : ﻟﺩﻴﻨﺎ ZF - ZB JJJG JJG ZC - ZB BC ; BF = α : ﻭﻜﺫﻟﻙ ( )arg = β : ﻭﻋﻠﻴﻪ ZF - ZC JJJG JJJG ZE - ZC CE ; CF = γ : ﻭﺃﻴﻀﺎ ( )arg = γ : ﻭﻋﻠﻴﻪ α = arg 2 + i + 1 = arg (3 + i) : ﺇﺫﻥ 0 + 1 β = arg 2+i- 0 = arg (2 + i) 1-0 γ = arg 2 +i - 1 = arg (1 + i) = π 2 - 1 4 γ = π : ﻭﻋﻠﻴﻪ 4 : ﻟﻜﻥ α + β = arg(3 + i) + arg(2 + i)
)= arg [(3 + i) (2 + i)] = arg(6 + 3i + 2i - 1 ])= arg(5 + 5i) = arg[5 (1 + i = arg5 + arg(1 + i) = 0 + π 4 ﻭﻤﻨﻪ α + β = γ : α +β = π ﺇﺫﻥ : 4 ﺍﻟﺘﻤﺭﻴﻥ. 29 Z-3+i =2 (1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Nﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺒﺤﻴﺙ : JJJG ﺃﻱ Z - (3 - i) = 2 :ﻭﻤﻨﻪ AN = 2 : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Nﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ Aﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ . 2ﺃﻱ : arg Z- 2 - i = π (2ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ 2ﺒﺤﻴﺙ : Z+ 4 - 2i 2 arg Z - (2 + i) = π 2 Z - )(-4+2i ( )JJJG JJJG = π ﻭ ﻋﻠﻴﻪ ﻫﺫﺍ ﻴﻜﺎﻓﺊ : 2 MB ; MCﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﺼﻑ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ABﺍﻟﻤﺤﺘﻭﺍﺓ ﻓﻲ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﺫﻱ] [ ﺤﺩﻩ ) (ABﻭ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ . O ﺍﻟﺘﻤﺭﻴﻥ. 30 ﻨﺒﺭﻫﻥ ﺃﻥ ( AL) ⊥ ( )BCﻭ AL = BC π ﻨﻌﺘﺒﺭ ﺍﻟﺩﻭﺭﺍﻥ Rﺫﻭ ﺍﻟﻤﺭﻜﺯ Aﻭ ﺍﻟﺯﺍﻭﻴﺔ . 2 ﻭﻟﺘﻜﻥ ZE , ZG , ZL , ZC , ZB , ZA ﻻﺤﻘﺎﺕ ﺍﻟﻨﻘﻁ F , G , L , C , B , Aﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ .
( )(1) . . . ZB - ZA = i ZG - ZA : ﻭﻋﻠﻴﻪR (G) = B : ﻟﺩﻴﻨﺎ R(C) = E : ﻭ ﻟﺩﻴﻨﺎ( )(2) . . . ZE - ZJAJJ=G i JZJJCG - ZA : ﻭﻋﻠﻴﻪ AE + AG = AL : ﻭﻟﺩﻴﻨﺎ(3) . . . ZE - ZA + ZG - ZA = ZL - ZA : ﻭﻋﻠﻴﻪ( )ZG- ZA = i ZB- ZA : ﻭﻤﻨﻪ ZG - ZA = ZB - ZA : (1) ﻤﻥ i( ﺒﻘﻴﻤﺘﻴﻬﻤﺎ3) ﻓﻲZE - ZA ﻭZG - ZA ﻨﻌﻭﺽ ﻜل ﻤﻥ( ) ( )i ZC - ZA - i ZB - ZA = ZL - ZA : ﻓﻨﺠﺩ( ) ( )ZA - ZL = i ZB - ZC : ﺃﻱZL - ZA = ZC - ZB : ﺇﺫﻥZA - ZL = 1 : ﺤﻴﺙ ZA - ZL = i : ﻭﻋﻠﻴﻪZB - ZC ZB - ZC arg ZA - ZL = π ﻭ ZB - ZC 2 ( )JJJG JJJG = π ﻭ LA =1 : ﺇﺫﻥ BC , AL 2 BC( BC) ⊥ ( AL) ﻭLA = CB : ﻭﻤﻨﻪ
LG AEF DBC
-7ﺍﻟﺘﺸﺎﺒﻬﺎﺕ ﺍﻟﻤﺴﺘﻭﻴﺔ ﺍﻟﻤﺒﺎﺸﺭﺓ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ. - 2ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﺎﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ . -3ﺘﺭﻜﻴﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭ . -4ﺘﻌﻴﻴﻥ ﺍﻟﺘﺤﻠﻴل ﺍﻟﻘﺎﻨﻭﻨﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ. -5ﺘﻭﻅﻴﻑ ﺍﻟﺘﺤﻠﻴل ﺍﻟﻘﺎﻨﻭﻨﻲ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ. -6ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﺘﺸﺎﺒﻬﺎﺕ ﺍﻟﻤﺒﺎﺸﺭﺓ ﻟﺤل ﻤﺴﺎﺌل ﻫﻨﺩﺴﻴﺔ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺃﻨﺸﻁﺔ -2ﺤﺎﻻﺕ ﺨﺎﺼﺔ -1ﺘﻌﺭﻴﻑ -3ﺘﻌﺭﻴﻑ 2 -4ﺍﻟﺸﻜل ﺍﻟﻤﻤﻴﺯ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ -5ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻨﻘﻁ ﺍﻟﺼﺎﻤﺩﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ -7ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭﺩﻭﺭﺍﻥ -6ﺍﻟﺸﻜل ﺍﻟﻤﺨﺘﺼﺭ ﻟﺘﺸﺎﺒﻪ -9ﻤﺭﻜﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭﻴﻥ -8ﻨﻅﺭﻴﺔ ﻭ ﺘﻌﺭﻴﻑ -10ﺍﻟﺨﺎﺼﺔ ﺍﻟﻤﻤﻴﺯﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ -11ﺼﻭﺭ ﺒﻌﺽ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔﺍﻟﺤـﻠــــــﻭل ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ
ﺃﻨﺸﻁﺔ( )G G ﺍﻟﻨﺸﺎﻁ :ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻭﺠﻪ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻤﺒﺎﺸﺭ O; i , j ωﻨﻘﻁﺔ ﻻﺤﻘﺘﻬﺎ Z0 = 1 + i . π ωﻭﺯﺍﻭﻴﺘﻪ ﺍﻟﺩﻭﺭﺍﻥ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ R 2 Hﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ωﻭﻨﺴﺒﺘﻪ . 2 -1ﺃﻜﺘﺏ ﻋﺒﺎﺭﺘﻲ Rﻭ Hﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ . -2ﻋﻴﻥ HORﻭ . ROH -3ﻟﺘﻜﻥ Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻴﻬﻤﺎ 3i ،1 − iﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ .ﻋﻴﻥ ﻻﺤﻘﺘﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ A′ﻭ B′ﺼﻭﺭﺘﻲ Aﻭ Bﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺒﺎﻟﺘﺤﻭﻴل . HOR -4ﻗﺎﺭﻥ ﺒﻴﻥ ABﻭ . A′B′ ﺍﻟﺤل : -1ﺘﻌﻴﻴﻥ ﻋﺒﺎﺭﺓ : Rﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻬﺎ Zﻭﻟﺘﻜﻥ M ′ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z ′ﻭﺼﻭﺭﺓ Mﺒﻭﺍﺴﻁﺔ . R ﻟﺩﻴﻨﺎ Z′ = aZ + bﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﻤﺭﻜﺒﺎﻥ ﻤﻊ a = 1ﻭﻋﻠﻴﻪ Z′ = iZ + b : a =i ﻭﻤﻨﻪ : = )arg(a π [ ]2π ﻭ 2ﻭﻟﺩﻴﻨﺎ R(ω) = ω :ﻭﻤﻨﻪ Z0 = iZ0 + b :ﺇﺫﻥ b = (1 − i)Z0 :ﺃﻱ b = (1 − i)(1 + i) = 2 :ﺇﺫﻥ Z ′ = iZ + 2 :ﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺩﻭﺭﺍﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ . -ﺘﻌﻴﻴﻥ ﻋﺒﺎﺭﺓ : H
ﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻻﺤﻘﺘﻬﺎ Zﻭﺼﻭﺭﺘﻬﺎ ﺒﻭﺍﺴﻁﺔ Hﺍﻟﻨﻘﻁﺔ M ′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . Z ′ ﻟﺩﻴﻨﺎ Z′ = aZ + bﺤﻴﺙ a = 2ﻭ bﻋﺩﺩ ﻤﺭﻜﺏ ﺃﻱ Z′ = 2Z + b ﻟﻜﻥ H (ω) = ωﻭﻤﻨﻪ Z0 = 2Z0 + b :ﻭﻋﻠﻴﻪ b = − Z0 :ﺃﻱ ﺃﻥ b = − 1 − iﺇﺫﻥ Z′ = 2Z − 1 − iﻭﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺘﺤﺎﻜﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ . -2ﺘﻌﻴﻴﻥ : HOR ﻟﺘﻜﻥ )M ( Z ) R→ M1 ( Z1 ) H→ M′( Z′ Z′ = 2Z1 − 1 − i؛ Z1 = iZ + 2 ﻭﻋﻠﻴﻪ Z′ = 2( iZ + 2) − 1 − iﺇﺫﻥ Z′ = 2iZ + 4 − 1 − i ﻭﺒﺎﻟﺘﺎﻟﻲ Z′ = 2iZ + 3 − iﻭﻫﻲ ﻋﺒﺎﺭﺓ HORﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ . -ﺘﻌﻴﻴﻥ : ROH )M ( Z ) H→ M1 ( Z1 ) R→ M′( Z′ Z′ = iZ1 + 2؛ Z1 = 2Z − 1 − i ﻭﻋﻠﻴﻪ Z′ = i ( 2Z − 1 − i ) + 2 :ﺇﺫﻥ Z′ = 2iZ − i + 1 + 2 : ﻭﺒﺎﻟﺘﺎﻟﻲ Z′ = 2iZ + 3 − iﻨﻼﺤﻅ ﺃﻥ . HOR = ROH -3ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ A′ﻭﻟﺘﻜﻥ : Z1 ﻟﺩﻴﻨﺎ ( HOR)( A) = A' :ﻭﻤﻨﻪ Z1 = 2i (1 − i ) + 3 − i : ﻭﻋﻠﻴﻪ Z1 = 2i + 2 + 3 − i :ﺇﺫﻥ Z1 = 5 + i : -ﺘﻌﻴﻴﻥ ﻻﺤﻘﺔ B′ﻭﻟﺘﻜﻥ : Z2 ﻟﺩﻴﻨﺎ ( HOR)( B) = B′ :ﻭﻤﻨﻪ Z2 = 2i ( 3i ) + 3 − i : ﻭﻋﻠﻴﻪ Z2 = − 6 + 3 − i :ﺇﺫﻥ Z2 = − 3 − i : -4ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ABﻭ : A′B′ AB = ZB − ZA = 3i − 1 + i = −1 + 4i = 17
A′B′ = ZB′ − ZA′ = Z2 − Z1 = −3 − i − 5 − i = −8 − 2i = 64 + 4 = 68 = 22.17 = 2 17 ﻭﻋﻠﻴﻪ . A′B′ = 2.AB -1ﺘﻌﺭﻴﻑ : ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻭﺠﻪ ﻤﺭﻓﻕ ﺒﻭﺤﺩﺓ ﺃﻗﻴﺎﺱ .ﻨﻘﻭل ﻋﻥ ﺘﺤﻭﻴل ﻨﻘﻁﻲ Sﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺃﻨﻪ ﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻯ ﻤﺒﺎﺸﺭ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ : ﻤﻬﻤﺎ ﺘﻜﻥ ﺍﻟﻨﻘﻁ N ، M ، B ، Aﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ﺤﻴﺙ A≠ Bﻭ M ≠ N ﻭﺍﻟﺘﻲ ﺼﻭﺭﻫﺎ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ N′ ، M ′ ، B′ ، A′ﺒﺎﻟﺘﺤﻭﻴل Sﻓﺈﻥ : A′ ≠ B′ ; M′ ≠ N ′ AB )=JJMJAJG′′BN′′JJJ.J.JG. (1 JJJJGMN = MN ]A′B′ ; M′N ′ [2π( ) ( )JJJG; ). . . (2 AB ﻤﻥ ) (1ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ﻴﺤﺎﻓﻅ ﻋﻠﻰ ﻨﺴﺏ ﺍﻟﻤﺴﺎﻓﺎﺕ . ﻤﻥ ) (2ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ﻴﺤﺎﻓﻅ ﻋﻠﻰ ﺍﻟﺯﻭﺍﻴﺎ ﺍﻟﻤﻭﺠﻬﺔ .
: ﺤﺎﻻﺕ ﺨﺎﺼﺔ-2 : ( ﺘﻜﺎﻓﺌﺎﻥ2) ( ﻭ1) ﺍﻟﻤﺴﺎﻭﺍﺘﻴﻥ M′N ′ J=JJAJGA′BBJ′ JJJJG JJJJGMN( ) ( ) JJJG AB ; A′B′ = MN ; M′N ′ [2π]( )JJJJG JJJJJG = 0[2πJ]JﻭJGMM'NN ' = 1 ﺃ( ﺇﺫﺍ ﻜﺎﻥ MN ; M′N ′ . AA′ ﺍﻨﺴﺤﺎﺏ ﺸﻌﺎﻋﻪS ﻓﺈﻥ ( )JJJJG JJJJJG MN ; M ′N ′ [ ]= 0 π ﺏ( ﺇﺫﺍ ﻜﺎﻥ . ﺘﺤﺎﻜﻲS ﻓﺈﻥ( )JJJJG JJJJJG ≠ 0[π] ﻭ M′N ′ =1 ﺝ( ﺇﺫﺍ ﻜﺎﻥ MN ; M′N ′ MN . ﺩﻭﺭﺍﻥS ﻓﺈﻥ
-3ﺘﻌﺭﻴﻑ : 2 ﻟﻴﻜﻥ Sﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ . N ، Mﻨﻘﻁﺘﺎﻥ ﻤﺘﻤﺎﻴﺯﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ N ′ ، M ′ﺼﻭﺭﺘﻴﻬﻤﺎ ﺒﺎﻟﺘﺸﺎﺒﻪ . Sﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭﻴﺴﻤﻰ ﻨﺴﺒﺔ ﺍﻟﺘﺸﺎﺒﻪ . S M′N′ -ﺍﻟﻨﺴﺒﺔ JJJJG JJJJJG MN -ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻤﻭﺠﻬﺔ MN ; M ′N ′ﻫﻲ ﺯﺍﻭﻴﺔ ﺜﺎﺒﺘﺔ ﻭ ﺘﺴﻤﻰ ﺯﺍﻭﻴﺔ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ ( )S ﻭﻨﻁﺎﺒﻘﻬﺎ ﻜﻤﺎ ﺠﺭﺕ ﺍﻟﻌﺎﺩﺓ ﻤﻊ ﺃﺤﺩ ﺃﻗﻴﺎﺴﻬﺎ . θ -4ﺍﻟﺸﻜل ﺍﻟﻤﻤﻴﺯ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺭﻜﺏ : Sﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ kﻭﺯﺍﻭﻴﺘﻪ . θﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﻤﺒﺎﺸﺭ ﻟﺘﻜﻥ O′ﺼﻭﺭﺓ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﺒﺎﻟﺘﺸﺎﺒﻪ Sﺤﻴﺙ bﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ . O′ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺤﻴﺙ . M ≠ Oﻓﺈﻥ ﺍﻟﻨﻘﻁﺔ M ′ﺼﻭﺭﺓ Mﺒﺎﻟﺘﺸﺎﺒﻪ JGSﺘﻌJﺭJJﻑJﻜﻤﺎ ﻴﻠJGﻲ( ) [ ]JJ:J) OM ; O′M′ = θ 2π . . . (1) O′M′ = k.OM . . . (2 ﻓﺈﺫﺍ ﻜﺎﻨﺕ Z ′ﻻﺤﻘﺔ M ′ﻓﺈﻥ : arg Z′ − b = ]θ[2π ﻤﻥ ): (1 Z −0 Z′ − b = k Z ﻤﻥ ): (2]arg ( Z′ − b) − arg ( Z ) = θ[2π ﻭﻋﻠﻴﻪ : Z′ − b = k Z
]arg ( Z′ − b) = arg ( Z ) + θ[2π ﻭﺘﻜﺎﻓﺊ : Z′ − b = k Zﻭﺘﻜﺎﻓﺊ Z′ − b = a.z :ﺤﻴﺙ a = kﻭ ]arg (a ) = θ[2πﺃﻱ ﺃﻥ a = keiθ :ﻭﻋﻠﻴﻪ Z′ − b = k.eiθ Z : ﻭﺒﺎﻟﺘﺎﻟﻲ Z′ = keiθ Z + b : ﻭﻋﻠﻴﻪ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ Sﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . Zﺍﻟﻨﻘﻁﺔ M ′ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z′ﺒﺤﻴﺙ Z′ = k.eiθ .Z + b : -5ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻨﻘﻁ ﺍﻟﺼﺎﻤﺩﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ : Sﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ kﻭﺯﺍﻭﻴﺘﻪ . θ ﻟﺘﻜﻥ ωﻨﻘﻁﺔ ﺼﺎﻤﺩﺓ ﺒﺎﻟﺘﺤﻭﻴل Sﺃﻱ ( )S ω = ω ﻓﺈﺫﺍ ﻜﺎﻨﺕ Z0ﻻﺤﻘﺔ ωﻓﺈﻥ Z0 = keiθ .Z0 + b ﻭﻤﻨﻪ )( )1 − keiθ Z0 = b . . . (1 * ﺇﺫﺍ ﻜﺎﻥ k = 1ﻭ : θ = 0ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺤﻠﻭل ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﻨﻘﻁ ﺼﺎﻤﺩﺓ ﻷﻥ ﺍﻟﺘﺤﻭﻴل S ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻨﺴﺤﺎﺏ . * ﺇﺫﺍ ﻜﺎﻥ k ≠ 1ﻭ : θ ≠ 0 Z0 = b ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻜﺎﻓﺊ : 1 − keiθ ﻭﻫﻭ ﺤل ﻭﺤﻴﺩ ﻭﻋﻠﻴﻪ Sﻴﻘﺒل ﻨﻘﻁﺔ ﺼﺎﻤﺩﺓ ﻭﺤﻴﺩﺓ . ﺍﻟﻨﻘﻁﺔ ωﺘﺩﻋﻰ ﻤﺭﻜﺯ ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺒﺎﺸﺭ . S
-6ﺍﻟﺸﻜل ﺍﻟﻤﺨﺘﺼﺭ ﻟﺘﺸﺎﺒﻪ : ﻟﻴﻜﻥ Sﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻤﺭﻜﺯﻩ ωﻨﺴﺒﺘﻪ kﻭﺯﺍﻭﻴﺘﻪ . θ ﻟﺘﻜﻥ Z0ﻻﺤﻘﺔ ﺍﻟﻤﺭﻜﺯ . ﻟﻜﻥ ﺍﻟﻨﻘﻁﺔ Mﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Zﺼﻭﺭﺘﻬﺎ ﺒﻭﺍﺴﻁﺔ Sﻫﻲ ﺍﻟﻨﻘﻁﺔ M ′ ﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z′ﺤﻴﺙ Z′ = keiθ Z + bﻟﻜﻥ Z0 = keiθ Z0 + b : ﻭﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ( )Z′ − Z0 = k.eiθ Z − Z0 :ﻭﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺨﺘﺼﺭﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ Sﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ωﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ Z0ﻭﻨﺴﺒﺘﻪ k ﻭﺯﺍﻭﻴﺘﻪ . θ -7ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭﺩﻭﺭﺍﻥ : Hﺘﺤﺎﻜﻲ ﻨﺴﺒﺘﻪ kﻭﻤﺭﻜﺯﻩ ﺍﻟﻨﻘﻁﺔ ωﺫﺍﺕ ﺍﻟﻼﺤﻘﺔ . Z0 Rﺩﻭﺭﺍﻥ ﻤﺭﻜﺯﻩ ωﻭﺯﺍﻭﻴﺘﻪ . θ ﻨﻔﺭﺽ ( )( ) ( )M Z H(ω;k)→ M1 Z1 R(ω;θ)→ M ′ Z′ : Z1 − Z0 = k ( Z − Z0 ) ، ( )Z′ − Z0 = eiθ Z1 − Z0 ﻭﻋﻠﻴﻪ ( )Z′ − Z0 = keiθ Z − Z0 : ﺇﺫﻥ R(ω,θ)OH (ω,k ) = S (ω,k,θ) : ﻭﻋﻠﻴﻪ ﻤﺭﻜﺏ ﺘﺤﺎﻜﻲ ﻭ ﺩﻭﺭﺍﻥ ﻫﻭ ﺘﺸﺎﺒﻪ . ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ H (ω, k )OR(ω,θ) = S (ω, k,θ) :
-8ﻨﻅﺭﻴﺔ ﻭ ﺘﻌﺭﻴﻑ :ﺍﻟﺘﺸﺎﺒﻪ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺒﺎﺸﺭ Sﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ωﻭﻨﺴﺒﺘﻪ kﻭﺯﺍﻭﻴﺘﻪ θﻫﻭ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ ﺍﻟﺫﻱ ﻴﺭﻓﻕ ﺍﻟﻨﻘﻁﺔ ωﺒﻨGﻔJﺴJﻬJﺎJﻭ ﻴﺭﻓJGﻕJﺒJﻜل Jﻨﻘﻁﺔ Mﺘﺨﺘﻠﻑ ﻋﻥ ωﺍﻟﻨﻘﻁﺔ M ′ﺤﻴﺙ : ( ) [ ] OM ; OM′ = θ 2π OM′ = k.OM ﻓﺈﺫﺍ ﻜﺎﻨﺕ Z0ﻭ Zﻭ Z ′ﻟﻭﺍﺤﻕ ﺍﻟﻨﻘﻁ M ′ ، M ، ωﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ : ) Z′ − Z0 = keiθ ( Z − Z0 -9ﻤﺭﻜﺏ ﺘﺸﺎﺒﻬﻴﻥ ﻤﺒﺎﺸﺭﻴﻥ : ﻟﻴﻜﻥ ﺍﻟﺘﺸﺎﺒﻬﻴﻥ ﺍﻟﻤﺒﺎﺸﺭﻴﻥ ( ) ( )S2 ω2 , k2 ,θ2 ، S1 ω1, k1, θ1 ﺤﻴﺙ Z0′ ، Z0ﻻﺤﻘﺘﻲ ω2 ، ω1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻨﻔﺭﺽ M ( Z ) S1→ M1 ( Z1 ) S2→ M ′( Z′) : ( ) ( )Z1 − Z0 = k1eiθ1 Z − Z0 ، Z′ − Z0′ = k2eiθ2 Z1 − Z0 ﺇﺫﻥ ( )Z1 = k1eiθ1 Z − Z0 + Z0 : ( )Z′ = k2eiθ2 Z1 − Z0′ + Z0′ ﻭﻤﻨﻪ ( )Z′ = k2eiθ2 k1eiθ1 Z − Z0 + Z0 − Z0′ + Z0′ : ( ) ( )Z′ = k1k2ei(θ1+θ2) Z − Z0 + k2eiθ2 Z0 − Z0′ + Z0′ ﻭﻫﻭ ﻤﻥ ﺍﻟﺸﻜل Z ′ = k1k2ei(θ1+θ2 ) Z + b : ﻭﻋﻠﻴﻪ : * ﺇﺫﺍ ﻜﺎﻥ k1 .k2 = 1ﻭ θ1 + θ2 = 0ﻓﺈﻥ S2oS1ﻫﻭ ﺍﻨﺴﺤﺎﺏ .
* ﺇﺫﺍ ﻜﺎﻥ k.k2 = 1ﻭ θ1 + θ2 ≠ 0ﻓﺈﻥ S2oS1ﻫﻭ ﺩﻭﺭﺍﻥ .* ﺇﺫﺍ ﻜﺎﻥ k1 .k2 ≠ 1ﻭ θ1 + θ2 = 0ﻓﺈﻥ S2oS1ﻫﻭ ﺘﺤﺎﻜﻲ . -10ﺍﻟﺨﺎﺼﺔ ﺍﻟﻤﻤﻴﺯﺓ ﻟﺘﺸﺎﺒﻪ ﻤﺒﺎﺸﺭ : ﻤﺒﺭﻫﻨﺔ : kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ θ ،ﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﻴﻜﻭﻥ ﺍﻟﺘﺤﻭﻴل ﺍﻟﻨﻘﻁﻲ Sﺘﺸﺎﺒﻬﺎ ﻤﺒﺎﺸﺭﺍ ﻨﺴﺒﺘﻪ kﻭﺯﺍﻭﻴﺘﻪ θﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜلﻨﻘﻁﺘﻴﻥ Aﻭ Bﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺼﻭﺭﺘﻴﻬﻤﺎ A′ﻭ B′ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺒﻭﺍﺴﻁﺔ Sﻓﺈﻥ : A′B′ = k.ABJJJG JJJJG]AB ; A′B′ = θ[2π( ) ﺤﺎﻻﺕ ﺨﺎﺼﺔ :* ﺇﺫﺍ ﻜﺎﻥ : k = 1ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ ﺇﺯﺍﺤﺔ ﺃﻱ ﺇﻤﺎ ﺩﻭﺭﺍﻥ ﺃﻭ ﺍﻨﺴﺤﺎﺏ ﻭﻫﻭ ﺘﻘﺎﻴﺱ .* ﺇﺫﺍ ﻜﺎﻥ : θ = 0ﺍﻟﺘﺸﺎﺒﻪ ﻫﻭ ﺘﺤﺎﻜﻲ . -11ﺼﻭﺭ ﺒﻌﺽ ﺍﻷﺸﻜﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ : Sﺘﺸﺎﺒﻪ ﻤﺴﺘﻭﻱ ﻤﺒﺎﺸﺭ ﻨﺴﺒﺘﻪ kﻭﻤﺭﻜﺯﻩ ωﻭﺯﺍﻭﻴﺘﻪ . θ* ﺼﻭﺭﺓ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ABﺒﻭﺍﺴﻁﺔ Sﻫﻲ ﺍﻟﻘﻁﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ A′B′ﺤﻴﺙ [ ] [ ]: ) A′ = S ( Aﻭ ) B′ = S ( Bﻭ A′B′ = k.AB * ﺼﻭﺭﺓ ﻤﺴﺘﻘﻴﻡ ∆ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ∆′ﺒﻭﺍﺴﻁﺔ Sﺤﻴﺙ [ ]( ) ( ) ( )∆;∆′ = θ π * ﺼﻭﺭﺓ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ ﻫﻲ ﺯﺍﻭﻴﺔ ﻤﻭﺠﻬﺔ . * ﺼﻭﺭﺓ ﺩﺍﺌﺭﺓ ) C ( F , Rﻫﻲ ﺩﺍﺌﺭﺓ )C′( F ′, R′
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427