ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ b xﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻨﺘﺎﺌﺞ : ﻟﺩﻴﻨﺎ ﺍﻟﺩﺍﻟﺔ e x ﻟﺩﻴﻨﺎ : a > bﺘﻜﺎﻓﺊ ea > eb : a = bﺘﻜﺎﻓﺊ ea = eb :؛ x > 0ﺘﻜﺎﻓﺊ e x > 1 : a < bﺘﻜﺎﻓﺊ ea < eb :؛ :x x < 0ﺘﻜﺎﻓﺊ e x < 1 : -10ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ )e g( x ﻤﺒﺭﻫﻨﺔ :ﺇﺫﺍ ﻜﺎﻨﺕ gﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ )x e g( x ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ )( ). x g′ x e g( x ﺍﻟﺒﺭﻫﺎﻥ :ﺍﻟﺩﺍﻟﺔ ) x e g( xﻫﻲ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥ gﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭ ﺍﻟﺩﺍﻟﺔ x e x ﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ) x e g( xﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ )( )x g′ x e g( x ﻤﺜﺎل :ﺍﻟﺩﺍﻟﺔ x e x2 −4 x : fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﻟﻠﺩﺍﻟﺔ x x2 − 4 x ﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺍﻟﺩﺍﻟﺔ x e xﺍﻟﺘﻲ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕf ′( x) = (2x − 4)ex2−4x -11ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : fﻟﺩﻴﻨﺎ x g′ x e g( x) :ﺤﻴﺙ gﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ( )I ﻫﻲ ﺍﻟﺩﺍﻟﺔ x e g( x) : hﻷﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ : I
)f ′( x) = g′( x)eg(x) = f ( x ﻤﺜﺎل : ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : f x xe x2 −4 ﺍﻟﺤل : ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﻭ ﺠﺩﺍﺀ ﺩﻭﺍل ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ . h 1 .2 x.e x2−4 ﻟﺩﻴﻨﺎ f x = xe x2 −4 :( ) ( )h x = 2 ﻭﻤﻨﻪ : ﺤﻴﺙ cﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ( ).f x = 1 .e x2 −4 + c ﻭ ﻋﻠﻴﻪ : 2
ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎلﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ Euler ﺍﻟﺘﻁﺒﻴﻕ : ﺃﻨﺸﺊ ﺘﻤﺜﻴﻼ ﺘﻘﺭﻴﺒﻴﺎ ﻟﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ yc yﻭ y(0) = 1 ﺒﻤﺠﺩﻭل Excelﻓﻲ ﺍﻟﻤﺠﺎل −2;2ﻭﺍﻟﺨﻁﻭﺓ[ ]h = 0, 005 . ﺍﻟﺤل : ﻟﺩﻴﻨﺎ 'y | f c( x).'x :ﻭﻤﻨﻪ f ( x h) f ( x) | f c( x).hﺃﻭ f ( x h) f ( x) | f c( x).hﻤﻊ h > 0 ﻭﺒﻤﺎ ﺃﻥ yc yﻓﺈﻥ ) f ( x) f c( xﻓﻨﺤﺼل ﻋﻠﻰ ) f ( x + h) ≈ f ( x)(1 + hﺃﻭ ). f ( x − h) ≈ f ( x)(1 − hﻨﺘﺤﺼل ﺒﺎﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ ) f ( x + h) ≈ f ( x)(1 + hﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻤﻥ ﺃﺠل x > 0 ﻭﺘﻌﻁﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺜﺎﻨﻴﺔ ) f ( x − h) ≈ f ( x)(1 − hﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻤﻥ ﺃﺠلﺍﻟﻘﻴﻡ x < 0ﻭﺫﻟﻙ ﺒﺎﻋﺘﺒﺎﺭ f (0) = 1ﻓﻲ ﺍﻻﻨﻁﻼﻗﺔ ﻭﺠﻌل hﺼﻐﻴﺭﺍ ﺒﺎﻟﻘﺩﺭ ﺍﻟﺫﻱ ﻴﻀﻤﻥ ﺘﻘﺭﻴﺒﺎ ﺠﻴﺩﺍ. ﻨﺴﺘﺨﺩﻡ ﻤﺠﺩﻭل Excelﻟﻤﻘﺎﺭﺒﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺤل . ﺤﺠﺯ ﺍﻷﻋﺩﺍﺩ: ﻨﺤﺠﺯ ﺍﻟﺨﻁﻭﺓ hﻓﻲ ﺍﻟﺨﺎﻨﺔ A3ﻤﺜﻼ. ﻋﻠﻰ ﺍﻟﺠﺯﺀ @>2;0 ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ A4ﻗﻴﻤﺔ ﺇﺒﺘﺩﺍﺌﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻭﻫﻲ 0ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ A5ﺍﻟﻘﺎﻋﺩﺓ = x − hﺍﻟﺘﻲ ﺘﻌﻁﻲ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ xﺍﻟﺘﻲ ﻫﻲ ﻗﺒل 0ﺒﻁﺭﺡﺍﻟﺨﻁﻭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺤﺘﻰ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻌﺩﺩ 2ﻓﻨﺤﺠﺯ A4 A$3 :ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ Aﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ 2ﺃﻭ ﺃﻗﺭﺏ ﻗﻴﻤﺔ ﻟﻬﺎ. ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ B4ﺍﻟﻌﺩﺩ 1ﻭﻫﻭ ﻗﻴﻤﺔ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺃﺠل 0ﻷﻥ f (0) 1 ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ B5ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻠﻌﺩﺩ ) y = f ( x − hﻭﻟﺩﻴﻨﺎ ) f ( x − h) ≈ f ( x).(1 − hﻓﻨﺤﺠﺯ B 4 * (1 A$3) :ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ Bﺤﺘﻰ ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻌﻤﻭﺩ . A
ﻋﻠﻰ ﺍﻟﺠﺯﺀ @>0;2 ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ C4ﻗﻴﻤﺔ ﺍﺒﺘﺩﺍﺌﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻭﻫﻲ 0 ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ C5ﺍﻟﻘﺎﻋﺩﺓ = x + hﺍﻟﺘﻲ ﺘﻌﻁﻲ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ xﺍﻟﺘﻲ ﻫﻲ ﺒﻌﺩ 0ﺒﺈﻀﺎﻓﺔ ﺍﻟﺨﻁﻭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺤﺘﻰ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻌﺩﺩ 2ﻓﻨﺤﺠﺯ C4 A$3 :ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ Cﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ 2ﺃﻭ ﺃﻗﺭﺏ ﻗﻴﻤﺔ ﻟﻬﺎ. ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ D4ﺍﻟﻌﺩﺩ 1ﻭﻫﻭ ﻗﻴﻤﺔ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺃﺠل 0ﻷﻥ f (0) 1 ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ D5ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻠﻌﺩﺩ ) y = f ( x + hﻭﻟﺩﻴﻨﺎ) f ( x + h) ≈ f ( x).(1 + hﻓﻨﺤﺠﺯ D 4 * (1 A$3) :ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ Dﺤﺘﻰ ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻌﻤﻭﺩ . B ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ: ﻨﺨﺘﺎﺭ ﺍﻟﻌﻤﻭﺩﻴﻥ Aﻭ Bﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﻤﺴﺎﻋﺩ ﺍﻟﺒﻴﺎﻨﻲﺜﻡ ﺍﻟﻤﻨﺤﻨﻰ ﻤﻥ ﺍﻟﻨﻭﻉ ، ﻭﻨﺨﺘﺎﺭﺜﻡ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺴﻠﺴﻠﺔ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰ ﻨﺠﺩ ﻨﻭﺍﺼل ﺍﻟﻌﻤﻠﻴﺔ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰﺍﻟﺴﻠﺴﻠﺔ ﺍﻷﻭﻟﻰ ﺍﻟﺘﻲ ﺘﺨﺹ ﺘﻤﺜﻴل ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻷﻭل 2;0ﻤﺤﺠﻭﺯﺓ@ >ﻹﻀﺎﻓﺔ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺍﻟﺘﻲ ﺘﻌﻁﻲ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ .ﺜﻡ ﻨﻀﻐﻁ ﻋﻠﻰ ﺒﺎﺴﻡﺜﻡ ﻨﺤﺠﺯ ﻗﻴﻡ ﺍﻟﻌﻤﻭﺩ Cﺒﺎﻟﻀﻐﻁ ﺒﺎﻟﻔﺄﺭﺓ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻰ ﻓﻲﺜﻡ ﻨﺤﺠﺯ ﻗﻴﻡ ﺍﻟﻌﻤﻭﺩ Dﺒﺎﻟﻀﻐﻁ ﺒﺎﻟﻔﺄﺭﺓ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻰ ﻓﻲ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﺜﺎﻨﻲ 0;2ﻜﻤﺎ ﻴﻠﻲ> @: ﻨﻀﻊ ﻤﺅﺸﺭ ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺨﺎﻨﺔ ﻗﻴﻡ x C4ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻤﻥ ﻨﻔﺱ ﺍﻟﻌﻤﻭﺩ. ﻨﻀﻊ ﻤﺅﺸﺭ ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺨﺎﻨﺔ ﻗﻴﻡ y D4ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻤﻥ ﻨﻔﺱ ﺍﻟﻌﻤﻭﺩ.ﻓﻴﻅﻬﺭ ﺍﻟﻤﻨﺤﻨﻴﺎﻥ ﻤﻜﻤﻼﻥ ﻟﺒﻌﻀﻬﻤﺎ ﺒﻠﻭﻨﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻨﻀﻐﻁ ﺒﻌﺩﻫﺎ ﻋﻠﻰ ﺍﻟﺘﺎﻟﻲ،ﺤﻴﺙ ﻴﺸﻜﻼﻥ ﻤﻨﺤﻨﻲ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻋﻠﻰ ﺍﻟﻤﺠﺎل ، 2;2ﺜﻡ ﺍﻹﻨﻬﺎﺀ@ >
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ e−3 < 0 (1 e−5 = −e5 (2 (3ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ x e xﻴﻘﻁﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . e2x = ex (4 lim x =0 (5 ex ∞x→+ (6ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x e3 xﻫﻲ x e3 x lim e x = ∞+ (7 xx> →0 (8ﺇﺫﺍ ﻜﺎﻥ x ≥ 2ﻓﺈﻥ e x ≥ e2 (9ﺇﺫﺍ ﻜﺎﻥ x ≤ 0ﻓﺈﻥ e x ≤ 0 (11ﺇﺸﺎﺭﺓ : (10ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ e x .e− x = 1 : x (13 x − 1 e xﻫﻲ ﻨﻔﺱ ﺇﺸﺎﺭﺓ ( )x − 1 (12ﻤﻥ ﺃﺠل e x−1 < 0 : x < 1 lim xe x = 0 ∞x→+ lim ex = ∞+ (14 x3 ∞x→+ e x − e = e x−1 (15 ( )e2x − 2e x + 1 = e x − 1 2 (16 (17ﺍﻟﺩﺍﻟﺔ x e−1 x + 3 :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ
(18ﻟﻴﺱ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ e x2 −4 x < 0ﺤل ﻓﻲ (19ﺍﻟﺩﺍﻟﺔ x e x2 −4 :ﻫﻲ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ y′ = y : e − 1 <1 (20 2 ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺒﺴﻁ ﻤﺎ ﻴﻠﻲ :1) e3 x .e−2 x 2) e x .e2 )( )3 1 e-x 2)4 e4 x+1 )( )5 e−4x+5 ( )6) ex e−x + e2x e2 x .e−1 ex-2 2 ﺍﻟﺘﻤﺭﻴﻥ. 3 ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻓﺈﻥ : ex − e−x = e2x − 1 ex + e−x e2x + 1 : ﺍﻟﺘﻤﺭﻴﻥ. 4= )1) f ( x ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﻭﺍل fﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ﻫﻲ ﺩﻭﺍل ﻤﻌﺭﻓﺔ ﻋﻠﻰ ex + e−x )2 )f (x 1 = e2x + 13) f ( x) = 1 )4 )f (x ex = ex + 3 ex + 4 ﺍﻟﺘﻤﺭﻴﻥ. 5 ( )f x x ﺤﻴﺙ : f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ = ex +1 ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﺃﻥ 0 ≤ x ≤ 1 :ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺒﺎﺭﺓ ( ). f x
ﺍﻟﺘﻤﺭﻴﻥ. 6 1) e2 x−1 = 1 ﺤل ﻓﻲ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : ( )3) x2 − 4x + 3 e x = 0 2) e x2−1 = e 4) e2x − 2e x + 1 = 0 ( )5) x2 − 4 e x = (9x + 10) e x 6) ex − e−x = 0 )7 e3x − 1 = 0 ex ﺍﻟﺘﻤﺭﻴﻥ. 7 ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : ﺤل ﻓﻲ 1) xe2x − x2e2x ≤ 0 2) e2x−1 ≤ 1 3) e x2 −4 ≤ e7 x−16 5) e2x − 2e x + 1 ≤ 0 )4 e x2−2 ≤ 1 ex 6) x2e4x + 4e x > 0 ﺍﻟﺘﻤﺭﻴﻥ. 8ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻲ ﺘﻘﺒل ﻓﻴﻬﺎ ﺍﻻﺸﺘﻘﺎﻕ ﺜﻡ ﻋﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ 1) f ( x ) =e2x -e− x ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : 2) f ( x ) =xe x−1 )3 f ( =)x ex + x )4 f ( )x = ex 1 ex − 1 x2 −( )5) f ( x) = x2 − 4x + 5 e x 6) f ( x) = ex − 1 1 8) f ( x ) = sin xecos x 7) f ( x) = e x)9 f ( =)x ex − 1 10) f ( x ) = e2x − 2e x + 1 ex + 1
ﺍﻟﺘﻤﺭﻴﻥ. 9 ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ﻋﻨﺩ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : 1) f ( x) = x + e x 2) f ( x) = e− x+4 1 1 3) f ( x) = e x2 4) f ( x) = xe x )5 = )f (x ex )6 f ( )x = e−x 1 x2 ex + )7 f ( )x = e2x − 1 8) f ( x) = ( x - 1)ex x ﺍﻟﺘﻤﺭﻴﻥ. 10 ( x) = e2x − e x (0) = 0 x f , x≠0 f ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : – 1ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ . 0 – 2ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻤﻥ ﺃﺠل . x ≠ 0 ﺍﻟﺘﻤﺭﻴﻥ. 11 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( ) ( )f x = 4 x + 3 e x : ﺍﺤﺴﺏ ﻜل ﻤﻥ ﺍﻟﻤﺸﺘﻘﺎﺕ . f (4) , f (3) , f ′′ , f ′ : ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻋﺒﺎﺭﺓ ( ). f (n) x ﻭ ﺒﺭﻫﻥ ﻋﻠﻰ ﺍﻻﺴﺘﻨﺘﺎﺝ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل . n ≥ 1 ﺍﻟﺘﻤﺭﻴﻥ. 12 ﺃﺩﺭﺱ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻜل ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : 1) f ( x) = xe x 2) f ( x) = x − ex
)3 = )f (x ex )4 f ( )x = ex + 1 x ex − 1 ﺍﻟﺘﻤﺭﻴﻥ. 13 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( )f x = e x + e− x : (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f؛ ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ x ﻓﺈﻥ . f ( x ) ≥ 2 :( )gx = ex 1 −1 ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : g (2ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ + e−x -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . g -ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ cﻟﻠﺩﺍﻟﺔ ( ). g ﺍﻟﺘﻤﺭﻴﻥ. 14 h (Iﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎ ﻴﻠﻲ ( )h x = 1 − x − e− x : (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . h (2ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ h xﻋﻠﻰ ( ). ( )f x x ﺤﻴﺙ : (IIﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ f = ex −1 (1ﺍﺤﺴﺏ f ′ xﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺘﻬﺎ ﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ( ). f (2ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ .ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ . (3ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍل fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O; i ; j ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ .
ﺍﻟﺘﻤﺭﻴﻥ. 15( )f x 2e x ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : = ex −1 (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f (2ﻟﻴﻜﻥ Cﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O; i , jﺒﻴﻥ ﺃﻥ) ( ) ( Cﻴﻘﺒل ﺜﻼﺜﺔ ﻤﺴﺘﻘﻴﻤﺎﺕ ﻤﻘﺎﺭﺒﺔ ( ). (3ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁﺔ w 0;1ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ Cﺜﻡ ﺃﻨﺸﺌﻪ ( ) ( ).( )gx 2e x (4ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ : = ex −1 -ﺍﻜﺘﺏ g xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ( ). -ﺃﻨﺸﺊ δﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ gﺒﺎﺴﺘﺨﺩﺍﻡ ( ) ( ). C -ﻨﺎﻗﺵ ﺒﻴﺎﻨﻴﺎ ﺘﺒﻌﺎ ﻟﻘﻴﻡ ﺍﻟﻭﺴﻴﻁ ﺍﻟﺤﻘﻴﻘﻲ mﻋﺩﺩ ﻭ ﺇﺸﺎﺭﺓ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ﺍﻟﺤﻘﻴﻘﻲ mﺒﺤﻴﺙ : ( m − 3) e x − 1 = 2e x ﺍﻟﺘﻤﺭﻴﻥ. 16 f (Iﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )( ) ( )C ، f x = 2 x2 − 3 x e x : ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O; i , j (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f (2ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ( ). C (3ﺒﻴﻥ ﺃﻥ Cﻴﻘﺒل ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﻓﺎﺼﻠﺘﻴﻬﻤﺎ ( ). (4ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻲ Cﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ( ) ( ). 0 (5ﺍﺭﺴﻡ ) ∆ ( ﻭ ) . (C
( IIﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ ( ) ( )g x = 2 x2 + ax + b e x : (1ﻋﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﺤﻘﻴﻘﻴﻴﻥ aﻭ bﺤﺘﻰ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ gﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . f (2ﺍﻭﺠﺩ ﺍﻟﺸﺭﻁ ﺍﻟﺫﻱ ﻴﺤﻘﻘﻪ aﻭ bﺤﺘﻰ ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ gﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﻭ ﺃﺨﺭﻯ ﺼﻐﺭﻯ .
ﺍﻟﺤـﻠــــــﻭل 1 ﺍﻟﺘﻤﺭﻴﻥ . √ (4 . × (3 . × (2 . × (1 . √ (8 √ . × (12 √ (7 . × (6 √ (5 . √ (16 . × . √ (20 . × (11 √ (10 . × (91) e3 x .e−2 x = e3 x−2 x = e x (15 √ (14 . × (13 (19 . × (18 √ (17 2 ﺍﻟﺘﻤﺭﻴﻥ : ﺍﻟﺘﺒﺴﻴﻁ 2) e x .e2 = e x+2 ( )3) 1 2 = 1 = e2x e− x e−2 x4) e4 x+2 = e4x+1.e−2x .e1 = e4 x−2 x+1 = e2x+2 e2x .e−1( )5)e−4 x+5 e−4 x+5 = e−4 x+5 .e−2 x+4 = e−6 x+9 ex−2 2 = e2x−4( )6) e x e− x + e2 x = e x .e− x + e x .e2 x = e x− x + e x+2 x = 1 + e3n 3 ﺍﻟﺘﻤﺭﻴﻥ ex − e−x = e2x −1 : ﻨﺒﻴﻥ ﺃﻥ ex + e−x e2x +1
ex − e−x ex − 1 e2x − 1 e2x − ex e2xex + e−x ex + ex ex e2x + e2x = 1 = ex = 1 × = − 1 ex e2x + + 1 1 1 ex ﺍﻟﺘﻤﺭﻴﻥ 4 (1ﻟﺩﻴﻨﺎ ( )f x = e x + e− x : ﻭﻤﻨﻪ { }Df = x ∈ : e x + e− x ≥ 0 : ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ e x > 0ﻭ D f = ، e− x > 0 f ( )x = 1 1 (2ﻟﺩﻴﻨﺎ : e2x + { }Df = x ∈ : e2x + 1 ≠ 0 ﻭﻤﻨﻪ : = . Df e2 x + 1 = 0ﺘﻜﺎﻓﺊ e2 x = −1ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل ﺇﺫﻥ : f (x) = 1 (3ﻟﺩﻴﻨﺎ : ex + 4 ﻭﻤﻨﻪ { }Df = x ∈ : e x + 4 > 0 : = . Df e x + 4 > 0ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ e x > 0ﻭﻤﻨﻪ : f ( )x = ex 3 (4ﻟﺩﻴﻨﺎ : ex + ﻭﻤﻨﻪ : { }Df = x ∈ : e x + 3 ≠ 0 = . Df e x + 3 = 0ﺘﻜﺎﻓﺊ e x = −3 :ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل ﻭﻤﻨﻪ : ﺍﻟﺘﻤﺭﻴﻥ 5 ﺘﻌﻴﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺒﺎﺭﺓ ( )f x : ﻟﺩﻴﻨﺎ 0 ≤ x ≤ 1 :ﻭﻤﻨﻪ e0 ≤ e x ≤ e1 :
1 11 2≤ ex +1≤1+ e ﺇﺫﻥ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ 1 + e ≤ e x + 1 ≤ 2 : 1 1 ×0 1 + e ≤ x × ex + 1 ≤ 1(e + )1 ﻭ ﻤﻨﻪ : ﺇﺫﻥ . 0 ≤ f ( x ) ≤ 1 + e : ﺍﻟﺘﻤﺭﻴﻥ 6 ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ : (1ﻟﺩﻴﻨﺎ e2 x−1 = 1 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ e2 x−1 = e0 : s = 1 ﻭﻋﻠﻴﻪ : x = 1 ﻭﻤﻨﻪ : ﻭﻋﻠﻴﻪ 2 x − 1 = 0 : 2 2 (2ﻟﺩﻴﻨﺎ e2 x−1 = e :ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ x2 − 1 = 1 :ﻭﻤﻨﻪ x2 = 2 : ﺇﺫﻥ x = 2 :ﺃﻭ x = − 2ﻭ ﺒﺎﻟﺘﺎﻟﻲ { }s = − 2; 2 (3ﻟﺩﻴﻨﺎ ( )x2 − 4 x + 3 x = 0 : ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ∆′ = 4 , x2 − 4 x + 3 = 0 : ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ x2 = 3 , x1 = 1 :ﺇﺫﻥ { }s = 1;3 : (4ﻟﺩﻴﻨﺎ e2 x − 2e x + 1 = 0 :( y − 1)2 = 0 y2 − 2y + 1 = 0 = e xﻨﺠﺩ : y ﺇﺫﻥ : ﺒﻭﻀﻊ y = e x y = e x = { }s 0 ﺃﻱ : x=0 ﺇﺫﻥ : y=1 ﺃﻱ : y=1 e x = e0 ﻭ ﻤﻨﻪ e x = 1 : (5ﻟﺩﻴﻨﺎ ( ) ( )x2 − 4 e x = 9 x − 18 e x : ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ x2 − 4 = 9 x − 18 :ﻭ ﻤﻨﻪ x2 − 9 x + 14 = 0 : ∆ = 25ﻭ ﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ x1 = 2ﻭ x2 = 7ﺇﺫﻥ { }s = 2;7 :
ex − 1 =0 ﻭﻫﻲ ﺘﻜﺎﻓﺊ : ex − ex = 0 (6ﻟﺩﻴﻨﺎ : exe2x = 1 ﻭﻋﻠﻴﻪ : e2x − 1 = 0 ﺇﺫﻥ : e2x − 1 =0 ﻭﻋﻠﻴﻪ : exﺃﻱ e2 x = e0 :ﻭﺒﺎﻟﺘﺎﻟﻲ 2 x = 0 :ﻭﻤﻨﻪ x = 0 :ﺇﺫﻥ { }s 0 :e4x − 1 = 0 ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ : e3x − 1 =0 (7ﻟﺩﻴﻨﺎ : ex exﻭﻤﻨﻪ e4 x − 1 = 0 :ﺇﺫﻥ e4 x = 1 :ﻭﻋﻠﻴﻪ 4 x = 0 : ﻭ ﻤﻨﻪ x = 0 :ﺇﺫﻥ { }s 0 : ﺍﻟﺘﻤﺭﻴﻥ 7 ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ : (1ﻟﺩﻴﻨﺎ xe2 x − x2e2 x ≤ 0 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ ( )e2 x x − x2 ≤ 0 :ﻭﻋﻠﻴﻪ x − x2 ≤ 0 :ﻷﻥ e2 x > 0 :ﺇﺫﻥ ( )x − x + 1 ≤ 0 :ﻭﻋﻠﻴﻪ x ∈ ]−∞;0] ∪ [1;+∞[ :ﺇﺫﻥ s ∈ ]−∞;0] ∪ [1;+∞[ : x ∞− 01 ∞+ x - + + + + - −x + 1 - + -)x(− x + 1 (2ﻟﺩﻴﻨﺎ e2 x−1 ≤ 1 : ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ e2 x−1 ≤ e0 :ﻭ ﻤﻨﻪ 2 x − 1 ≤ 0 :
s ;∞− 1 ﻭﻋﻠﻴﻪ : x ≤ 1 ﺇﺫﻥ : 2 2 (3ﻟﺩﻴﻨﺎ e x2 −4 ≤ e7 x−16 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ x2 − 4 ≤ 7 x − 16 : ﻭﻋﻠﻴﻪ x2 − 7 x + 12 ≤ 0 : ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ∆ = 1 ، x2 − 7 x + 12 : ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ x2 = 4 ، x1 = 3 :∞x − 3 ∞4 + - -x2 − 7 x + 12 + ﺇﺫﻥ S = [3 ; 4] : ﻭﻫﻲ ﺘﻜﺎﻓﺊ e x2 −2 .e x ≤ 1 : e x2−2 ≤ 1 (4ﻟﺩﻴﻨﺎ : ex ﻭﻋﻠﻴﻪ e x2 + x−2 ≤ 1 :ﺇﺫﻥ e x2 + x−2 ≤ e1 :ﻭﺒﺎﻟﺘﺎﻟﻲ x2 + x − 2 ≤ 1 :ﺇﺫﻥ x2 + x − 3 ≤ 0 : ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ∆ = 13 ، x2 + x − 3 := x2 −1 + 13 ، x1 = −1 − 13 ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ : 2 2x −∞ x1 ∞x2 +x2 + x − 3 + -+ ﺇﺫﻥ S = x1; x2 : (5ﻟﺩﻴﻨﺎ e2 x − 2e x + 1 ≤ 0 :
y2 − 2y + 1≤ 0 ﻨﺠﺩ : ﺒﻭﻀﻊ e x = y : e x = y y −1= 0 ( y − 1)2 ≤ 0 ﻭ ﻋﻠﻴﻪ : ﻭﻤﻨﻪ : e x = y e x = y ﺇﺫﻥ e x = 1 :ﻭﻋﻠﻴﻪ x = 0 :ﺇﺫﻥ { }S = 0 : (6ﻟﺩﻴﻨﺎ x2e4 x + 4e x > 0 :ﻭﻫﻲ ﺘﻜﺎﻓﺊ ( )e x x2e3 x + 4 > 0 ﻭﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ e x > 0ﻭ e3 x > 0ﻭ x2 > 0 ﻭﻋﻠﻴﻪ S = : ﺍﻟﺘﻤﺭﻴﻥ 8 (1ﻟﺩﻴﻨﺎ ( )f x = e2 x − e− x : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ . ﺤﻴﺙ ( ). f ′ x = 2e2x + e− x : (2ﻟﺩﻴﻨﺎ ( )f x = xe x−1 : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ .ﺤﻴﺙ ( )f ′ x = 1.e x−1 + xe x−1 :ﻭﻤﻨﻪ f ′( x) = (1 + )x e x−1 : ( )f x = ex + x (3ﻟﺩﻴﻨﺎ : ex − 1 ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ * ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ * . ( )( ( ) ) ( )f ′( x) = ex + 1 ex −1 − ex ex + x ﺤﻴﺙ : ex −1 2 -1-xe x e2 x -1-e2 x − xe x = e x -1 2 e x -1 2( ) ( )( ) ( )f ′x x f ′ﻭﻋﻠﻴﻪ : = ﻭﻤﻨﻪ :
( )f x ex (4ﻟﺩﻴﻨﺎ : = x2 − 1 ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ { }. −1;1 ( )ex = )( )f ′( x x2 − 1 − 2 x.e x ﺤﻴﺙ : x2 − 1 2 = )( ( ) )f ′( x x2 − 2x − 1 ex ﻭﻤﻨﻪ : x2 − 1 2 (5ﻟﺩﻴﻨﺎ f x = x2 − 4 x + 5 e x :ﺤﻴﺙ ( )( )Df = : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ : ( )f ′( x) = ( 2x − 4) e3x + x2 − 4x + 5 e x ﻭﻋﻠﻴﻪ ( )f ′( x ) = 2x − 4 + x2 − 4x + 5 e x : ( )f ′( x) = x2 − 2x + 1 e x ﻭﻤﻨﻪ : (6ﻟﺩﻴﻨﺎ f x = ex − 1 :ﺤﻴﺙ { } ( )Df = x ∈ : ex − 1 ≥ 0 :ﻭﻤﻨﻪ e x − 1 ≥ 0 :ﻭﻋﻠﻴﻪ e x ≥ 1 :ﻭﺒﺎﻟﺘﺎﻟﻲ x ≥ 0 : ﺇﺫﻥ Df = [0;+∞[ : ex ﺤﻴﺙ e x − 1 :( ) ] [f ′x = ∞0;+ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ f ﺍﻟﺩﺍﻟﺔ 2 1 (7ﻟﺩﻴﻨﺎ ( )f x = e x := )f ′(x −1 e 1 ﺤﻴﺙ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ * x2 x
( )f x = sin x.ecos x : ( ﻟﺩﻴﻨﺎ8 : ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙf ﺍﻟﺩﺍﻟﺔ f ′( x ) = cos x.ecos x + sin x ( − sin )x ecos x ( )f ′( x ) = ecos x cos x − sin2 x : ﻭﻤﻨﻪ ( )f ′( x ) = ecos x cos x − 1 − cos2 x : ﻭﻋﻠﻴﻪ ( )( )f ′ x = cos2 x + cos x − 1 ecos x : ﻭﺒﺎﻟﺘﺎﻟﻲ ( )fx = ex − 1 : ( ﻟﺩﻴﻨﺎ9 ex + 1 : ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙf ﺍﻟﺩﺍﻟﺔ( ( ) ( ) ) ( )( )f ′ex exx = ex +1 − ex −1 = e2x + ex − e2x + ex ex +1 2 ex −1 2 2e x ( )= e x + 1 2 ( )f x = e2x − 2e x + 1 : ( ﻟﺩﻴﻨﺎ10 { }Df = x ∈ : e2x − 2e x + 1 ≥ 0 : ﺤﻴﺙ y = e x : ﺒﻭﻀﻊe2 x − 2e x + 1 ≥ 0 ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ( )y − 1 2 ≥ 0 : ﻭ ﻋﻠﻴﻪy2 − 2 y + 1 ≥ 0 : ﻨﺠﺩ ( ). D f = : ﺇﺫﻥ. ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎe x − 1 2 ≥ 0 : ﺃﻱ ﺃﻥ : ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ * ﺤﻴﺙf ﺍﻟﺩﺍﻟﺔ f ′( x ) = 2e2x − 2e x = e2x − e x 2 e2 x − 2e x + 1 e2 x − 2e x + 1
9 ﺍﻟﺘﻤﺭﻴﻥ] [ ( )D f = −∞;+∞ : ﺤﻴﺙf x = x + e x : ( ﻟﺩﻴﻨﺎ1( )( )lim fx→−∞ x = lim x + e x = −∞ : ﻭﻤﻨﻪ x→−∞( )( )lim fx→+∞ x = lim x + e x = +∞ : ﻭﻋﻠﻴﻪ x→+∞] [ ( )D f = −∞;+∞ : ﺤﻴﺙf x = e− x+4 : ( ﻟﺩﻴﻨﺎ2( )lim f x = lim e− x+4 = +∞ : ﻭﻤﻨﻪx→−∞ x→−∞( )lim f x = lim e− x+4 = 0 : ﻭﻋﻠﻴﻪx→+∞ x→+∞ 1Df = ]−∞;0[ ∪ ]0;+∞[ : ﺤﻴﺙf ( x ) = e x2 : ( ﻟﺩﻴﻨﺎ3 1 lim f ( x ) = lim e x2 = 1 : ﻭﻤﻨﻪ x→−∞ x→−∞ 1 lim f ( x ) = lim e x2 = +∞ : ﻭﻋﻠﻴﻪ << x→0 x→0 1lim f ( x ) = lim e x2 = +∞ : ﻭﺒﺎﻟﺘﺎﻟﻲ >>x→0 x→0 1 lim f ( x ) = lim e x2 = 1 : ﺇﺫﻥ x→+∞ x→+∞ 1Df = ]−∞;0[ ∪ ]0;+∞[ : ﺤﻴﺙf ( x ) = xe x : ( ﻟﺩﻴﻨﺎ4 1( )lim f x = lim xe x = −∞ : ﻭﻤﻨﻪx→−∞ x→−∞ 1lim f ( x) = lim xe x = 0 : ﻭﻋﻠﻴﻪ < <x→0 x→0
1 1( )lim fx = lim xe x = lim ex = lim et = +∞ : ﻭﺒﺎﻟﺘﺎﻟﻲ > > > 1 t x→0 x→+∞x→0 x→0 x ( )lim fx 1 : ﺇﺫﻥ .( 1 = t : ) ﻨﻀﻊ x x→+∞ = lim xe x = +∞ x→+∞Df = ]−∞ ; 0[ ∪ ]0 ; + ∞[ : ﺤﻴﺙ f (x) = ex : ( ﻟﺩﻴﻨﺎ5 x2 ( )lim f x = lim ex = 0 x2 x→−∞ x→−∞ ( )lim fx = lim ex = +∞ < < x2 x→0 x→0 ( )lim fx = lim ex = +∞ > > x2 x→0 x→0 ( )lim fx = lim ex = +∞ x2 x→+∞ x→+∞ ] [ ( )Df = −∞;+∞ f x e−x : ( ﻟﺩﻴﻨﺎ6 : ﺤﻴﺙ = ex +1 ( )lim f x = lim e− x 1 = +∞ ex + x→−∞ x→−∞ ( )lim f x = lim e− x = 0 ex +1 x→+∞ x→+∞Df = ]−∞ ; 0[ ∪ ]0 ; [+ ∞ : ﺤﻴﺙ f ( x) = e2x − 1 : ( ﻟﺩﻴﻨﺎ7 x ( )lim f x = lim e2x − 1 = 0 x x→−∞ x→−∞
( )lim f x = lim e2 x− 1 = lim 2 × e2x − 1 = 2 < < x < 2 xx→0 x→0 x→0( )lim f x = lim e2 x− 1 = lim 2 × e2x − 1 = 2 > > x > 2 xx→0 x→0 x→0 e 2 x− 1 e2x 1 x x x( )lim f x = lim = lim −x→+∞ x→+∞ x→+∞ lim 2 e2x − 1 = +∞ x→+∞ 2 x xDf = ]−∞;+∞[ : ﺤﻴﺙf ( x ) = ( x − 1) e x : ( ﻟﺩﻴﻨﺎ8lim f ( x) = lim ( x − 1)e x = lim xe x − e x = 0x→−∞ x→−∞ x→−∞ lim f ( x) = lim ( x − 1)ex = +∞x→+∞ x→+∞ 10 ﺍﻟﺘﻤﺭﻴﻥ Df = : 0 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ-1( ) ( )lim fx −f 0 e2x − ex e2x − x < x−0 x2 = lim x = lim ex→0 < x < x→0 x→0 = lim ex × ex − 1 = −∞ < x x x→0 . ﻤﻥ ﺍﻟﻴﺴﺎﺭ0 ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻭ ﻤﻨﻪx −f( ) ( )lim f0 e 2 x− e x lim e x ex −1 x−0> x2 x> x = lim = × = +∞x→0 > x→0 x→0. 0 ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻭ ﺒﺎﻟﺘﺎﻟﻲ0 ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩf ﻭ ﻤﻨﻪ : x ≠ 0 ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻥ ﺃﺠل-2
( ) ( )f ′( x) = 2e2 x − e x x − 1 e2x − ex x2f ′( x) = 2 xe2 x − xe x − e2x + ex x2 ( 2 x − 1) e 2x − ( x − 1) e x x2f ′ ( x ) = 11 ﺍﻟﺘﻤﺭﻴﻥ f ( x) = (4x + 3)exf ′( x) = 4.e x + (4x + 3) e x = (4 + 4x + 3) e x f ′( x) = (4x + 7)exf ′′( x) = 4.e x + (4x + 7) e x = (4 + 4x + 7) e x f ′′( x) = (4x + 11)e xf (3) ( x ) = 4.e x + (4x + 11) e x = (4 + 4x + 11) e x f (3) ( x) = (4x + 15) e xf (4) ( x ) = 4.e x + (4x + 15) e x = (4 + 4x + 15) e x f (4) ( x) = (4x + 19) e x : f (n) ﺍﺴﺘﻨﺘﺎﺝ ﻋﺒﺎﺭﺓ f (n) ( x) = (4x + 3 + 4n)ex ( ) ( )f (n) x = 4 x + 3 + 4n e x : p(n) ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ( ) ( ). ﻤﺤﻘﻘﺔp(1) ﻭ ﻤﻨﻪf (n) x = 4 x + 7 e x : n = 1 ﻤﻥ ﺃﺠل
( ) ( )p k + 1 ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔp k ﻨﻔﺭﺽ ﺼﺤﺔ p(k ) : f (k) ( x) = (4x + 3 + 4k )ex p( k + 1) : f (k+1) ( x) = 4x + 3 + 4( k + 1) e x( )f (k+1) ( x) = f k ′ ( x) = 4.e x + (4x + 3 + 4k ) e x : ﻟﺩﻴﻨﺎ = (4x + 3 + 4k + 4) e x = 4x + 3 + 4( k + 1) e x ( ) ( ) ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩp n ﺼﺤﻴﺤﺔ ﻭ ﻋﻠﻴﻪp k + 1 ﻭﻤﻨﻪ . n ≥ 1 ﺤﻴﺙn ﻁﺒﻴﻌﻲ 12 ﺍﻟﺘﻤﺭﻴﻥ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ] [ ( )Df = −∞;+∞ : ﺤﻴﺙf x = xe x : ( ﻟﺩﻴﻨﺎ1lim f ( x) = lim xe x = 0x→−∞ x→−∞lim f ( x) = lim xe x = +∞x→+∞ x→+∞ f ′( x) = e x + xe x = e x ( x + 1) ( ): ﻭ ﻟﺩﻴﻨﺎx + 1 ﻟﻪ ﻨﻔﺱ ﺇﺸﺎﺭﺓf ′ x ﻭ ﻋﻠﻴﻪ x −∞ −1 +∞ x+1 - +
ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ −1;+ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ[ [ ﻋﻠﻰ −∞;−1؛ ﻭ ﻋﻠﻴﻪ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻜﻤﺎ ﻴﻠﻲ ] ]: x ∞− −1 ∞+ +)f ′( x - −1 0 e ∞+)f (x (2ﻟﺩﻴﻨﺎ f x = x − e x :ﺤﻴﺙ ] ] ( )Df = −∞ ; + ∞ :∞lim f ( x) = lim x − e x = −∞x→− ∞x→−( )lim f x = lim x − ex = lim x 1 − ex = ∞− x ∞x→+ ∞x→+ ∞x→+ f ′(x) = 1− ex f ′ x = 0ﺘﻜﺎﻓﺊ 1 − e x = 0 :ﻭﻤﻨﻪ e x = 1 :ﻭﻋﻠﻴﻪ ( )x = 0 : f ′ x > 0ﺘﻜﺎﻓﺊ 1 − e x > 0 :ﻭﻤﻨﻪ e x < 1 :ﺇﺫﻥ ( )x < 0 : ﻭ ﻋﻠﻴﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] ]. −∞;0 f ′ x < 0ﺘﻜﺎﻓﺊ x > 0ﻭﻤﻨﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] ] ( ). −∞;0
x −∞ 0 +∞ + -f ′( x)f ( x) −1 −∞ −∞Df = ]−∞;0[ ∪ ]0;+∞[ : ﺤﻴﺙ f ( x) = ex : ( ﻟﺩﻴﻨﺎ3 x ( )lim f x = lim ex =0 x x→−∞ x→−∞ ( )lim f x = lim ex = −∞ < < x x→0 x→0 ( )lim f x = lim ex = +∞ > > x x→0 x→0 ( )lim f x = lim ex = +∞ x x→+∞ x→+∞ f ′( x) = ex.x − ex = ex ( x − 1) x2 x2( ) ( )x = 1 : ﺘﻜﺎﻓﺊf ′ x = 0 : ﺇﺫﻥx − 1 ﻟﻪ ﻨﻔﺱ ﺇﺸﺎﺭﺓf ′ x[ [ ( )1;+∞ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰf : ﺇﺫﻥx > 1 ﺘﻜﺎﻓﺊf ′ x > 0 ] [ [ [. 0 ; 1 ﻭﻋﻠﻰ−∞;0 ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰf ﻭ ﻜﺫﻟﻙ
x −∞ 0 1 +∞ - - +f ′( x)f (x) 0 +∞ −∞ −∞ e{ } ( )Df = x ∈ ex + 1 :ex −1≠ 0 : ﺤﻴﺙ f x = ex − 1 : ( ﻟﺩﻴﻨﺎ4 . x = 0 : ﻭ ﻋﻠﻴﻪe x = 1 ﺘﻜﺎﻓﺊe x − 1 = 0 Df = ]−∞ ; 0[ ∪ ]0 ; + ∞[ :ﺇﺫﻥ( )• ex + 1lim f x = lim ex − 1 = −1x→−∞ x→−∞( )• ex + 1lim f x = lim ex − 1 = −∞ < <x→0 x→0 e x + 1 → 2 : ﻷﻥ e x − 1 <→( )• x lim ex + 1lim f = > ex − 1 = +∞ > x→0x→0 e x + 1 → 2 : ﻷﻥ ex − 1 >→
ex + 1 ex 1 + 1 ex − 1 ex − ex ( )• 1 lim f x = lim = lim ex x →+∞ x →+∞ x→+∞ 1 = lim 1 + 1 =1 1 − ex x→+∞ 1 ex( ( ) )( )• ex ex −1 − ex ex +1 ex −1 2f ′(x) = ( )ex ( ) ( )= ex −1− ex −1 = −2e x ex −1 2 ex −1 2 f ′( x ) < 0 : ﻭ ﻤﻨﻪ ] [ ] [: 0;+∞ ﻭ−∞;0 ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥf ﺍﻟﺩﺍﻟﺔ x −∞ 0 +∞ - -f ′( x) −1 +∞ 1f (x) −∞ • Df = ]−∞ ; + ∞[ 13 ﺍﻟﺘﻤﺭﻴﻥ : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1
∞• lim f ( x) = + ∞• lim f ( x) = + ∞x→− ∞x→+• f ′( x) = ex − e−x f ′ x = 0ﺘﻜﺎﻓﺊ e x − e− x = 0 :ﻭﻤﻨﻪ ( )e x = e− x : ﻭ ﻋﻠﻴﻪ x = − x :ﻭ ﻤﻨﻪ 2 x = 0 :ﺃﻱ. x = 0 : f ′ x > 0ﺘﻜﺎﻓﺊ e x − e− x > 0 :ﻭﻤﻨﻪ ( )e x > e− x : ﺇﺫﻥ x > − x :ﻭﻤﻨﻪ 2 x > 0 :ﻭﻋﻠﻴﻪ x > 0 : ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 0 ; +ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ[ [ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] ]. −∞;0∞x −∞ 0 +)f ′( x - +∞f ( x) +∞ 2 +ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺍﻻﺴﺘﻨﺘﺎﺝ : ﻤﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﻘﻴﻤﺔ 2ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺤﻘﻴﻘﻲ xﻓﺈﻥ ( )f x ≥ 2 : -2ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : g{ }• Dg = x ∈ : e x + e x − 1 ≠ 0 ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ e x + e− x − 1 = 0 :ﺃﻱe x + e− x = 1 : ﺃﻱ f x = 1 :ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل ﻷﻥ ( ) ( )f x ≥ 2 : ﺇﺫﻥ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻭ ﻋﻠﻴﻪ ] [. D f = −∞;+∞ :• lim g ( x) = 0 • lim g ( x) = 0 ∞x→− ∞x→+
= )g′( x −ex + e−x ex + e−x − 1 2•) ( g′( x ) = 0ﺘﻜﺎﻓﺊ −e x + e− x = 0 :ﺃﻱe− x = e x : ﻭ ﻋﻠﻴﻪ − x = x :ﻭ ﻤﻨﻪ 2 x = 0 :ﺃﻱ x = 0 : g′ x = 0ﺘﻜﺎﻓﺊ −e x + e− x > 0 :ﺃﻱ( )e− x > e x : ﻭ ﻋﻠﻴﻪ − x > x :ﻭﻤﻨﻪ 2 x > 0 :ﺃﻱ x > 0 : ﺇﺫﻥ gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ −∞;0ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻡ] ] ﻋﻠﻰ ]∞. [0;+ ∞x − 0 ∞+)g′( x + -g(x) 0 1 0 g(0) = 1 ﺇﻨﺸﺎﺀ ( ): c y 1,5 1 0,5-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 x -0,5
ﺍﻟﺘﻤﺭﻴﻥ 14 -1 (Iﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ] [Dh = −∞;+∞ : h(lim h )x = lim 1− x − e− x = )lim (−x −1 + 1− e− x = ∞− −x ∞x→− ∞x→− ∞x→− x ∞lim h( x) = lim 1 − x − e− x = − ∞x→+ ∞x→+ h′( x ) = −1 + e− x h′ x = 0ﺘﻜﺎﻓﺊ −1 + e− x = 0 :ﻭﻤﻨﻪ ( )e− x = 1 : ﻭ ﻋﻠﻴﻪ e− x = e0 :ﺃﻱ x = 0 : h′ x > 0ﺘﻜﺎﻓﺊ −1 + e− x > 0 :ﻭﻋﻠﻴﻪ ( )e− x > 1 : ﺃﻱ ﺃﻥ − x > 0 :ﻭ ﻤﻨﻪ x < 0 : ﺇﺫﻥ hﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ −∞;0ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ] ] ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞[ [. 0;+ ∞x −∞ 0 + )h′( x + - h( x) 0 ∞−∞ − h( x) < 0 ﻭ ﻟﺩﻴﻨﺎ : h(0) = 0 -2ﺍﺴﺘﻨﺘﺎﺝ ﺇﺸﺎﺭﺓ ( )h x ﻟﺩﻴﻨﺎ h x = 0 :ﺘﻜﺎﻓﺊ ( )x = 0 : ﻤﻥ ﺃﺠل . x ∈ * :
( )D f = * : f ′ x ﺤﺴﺎﺏ-1 (II ( ( ) ) ( )f ′( x) = 1 ex −1 − exx = e x − 1 − xe x ex −1 2 ex −1 2 ( ) ( )ex ex( ) ( )f ′( x) = = 1− e−x − x 1− x − e−x ex −1 2 ex −1 2 e x .h( x) ex −1 2 ( )f ′( x) = x = 0 : ( ) ﻭﻤﻨﻪh x = 0 ﺘﻜﺎﻓﺊf ′( x ) = 0 ﻭ ﻋﻠﻴﻪ h( x ) < 0 ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﻷﻥh( x ) < 0 ﺘﻜﺎﻓﺊf ( x ) < 0 . ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰf ﺇﺫﻥx ∈ * : ﻤﻥ ﺃﺠل( )lim f x = lim x 1 = lim 1 = 0 ex − ex −1x→+∞ x→+∞ x→+∞ x : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ-2( )lim f x = lim e x 1 = +∞ x−x→−∞ x→−∞( )lim f x = lim x 1 = lim 1 1 = 1 < < ex − < ex −x→0 x→0 x→0 x( )lim fx = lim x = lim 1 = 1 > > ex −1 > ex −1x→0 x→0 x→0 x
ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ :∞x − 0 ∞+ -)f ′( x -∞f (x) + 1 0 1 ( ) ( )limfx = lim 1 = −1 : cf -3ﺇﻨﺸﺎﺀ x > x− ∞x→− e 1 x→0( )lim f x + x = lim x + x = lim x + xe x − x > ex − ex −1∞x→− 1 ∞x→− x→0 = lim xe x ex −1ﺇﺫﻥ ﻴﻭﺠﺩ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻤﻌﺎﺩﻟﺘﻪ y = − xﻋﻨﺩ ∞ −ﻭ ﻟﺩﻴﻨﺎ y = 0ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞. + y 3 2,5 2 1,5 1 0,5-3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 x -0,5 -1
15 ﺍﻟﺘﻤﺭﻴﻥ { }D f = x ∈ : e x − 1 ≠ 0 : f ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ-1 Df = * ، Df = ]−∞;0[ ∪ ]0;+∞] ( )lim f x = lim 2e x = 0 ex −1 x→−∞ x→−∞ ( )lim fx = lim 2e x 1 = −∞ < < ex − x→0 x→0 x −∞ 0 +∞ ex −1 - +( )2e x → 2 x lim 2e xe x < : ﻷﻥlim f = > ex − 1 = +∞ : ﻭﻤﻨﻪ > − 1→0 x→0 x→0 2e x → 2 lim f ( x) = 2 > : ﻷﻥ : ﻭﻋﻠﻴﻪ e x − x→+∞ 1→0 ( ) ( )2ex( ) ( )f ′( x) = e x − 1 − e x .2e x 2e x ex −1− ex = ex −1 2 ex −1 2 −2e x ex −1 2 ( )f ′( x) = :ﺇﺫﻥ ( ) ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥf ﻭ ﻤﻨﻪf ′ x < 0 ﻭ ﻤﻨﻪ
ﺍﻟﻤﺠﺎﻟﻴﻥ ]0;+∞[ , ]−∞;0[ :∞x −∞ 0 +)f ′( x - -f (x) 0 ∞+ 2 ∞− ﻓﺈﻥ y = 0ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) (x lim f -2ﺒﻤﺎ ﺃﻥ = 0 ∞x→− ﻭ ﺒﻤﺎ ﺃﻥ lim f x = 2ﻓﺈﻥ y = 2ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) ( ∞x→+ﻭ ﺒﻤﺎ ﺃﻥ ∞ lim f x = +ﻓﺈﻥ x = 0ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) ( x→0 -3ﻨﺒﻴﻥ ﺃﻥ w 0;1ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ( ): ﻤﻥ ﺃﺠل : x ∈ D fﻟﺩﻴﻨﺎ 2α − x ∈ Df :ﻭ f ( 2α − x ) + f ( x ) = 2β ﺃﻱ f ( 2 × 0 − x) + f ( x) = 2 × 1 : ﻭ ﻋﻠﻴﻪ f ( − x) + f ( x) = 2 : ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ − x ∈ D f : D f
2e− x 2e x 2 2e x e−x − 1 ex −1 ex −1f (−x)+ f ( x) = + = ex + : ﺇﺫﻥ 1 ex −1 2 2e x 2e x e x -1 e x -1 = ex + = 2 + 1 1-e x ex -1 = −2 1 + 2e x ex − ex −1 ( )= −2 + 2e x = 2 ex −1 =2 ex −1 ex −1 ( ). c ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭw ﻭ ﻤﻨﻪ ( ): ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔg x ( ﻜﺘﺎﺒﺔ4( )g ( x) = − 2e x , e x -1<0 أيx < 0 ex −1 e x − 1 > 0 أيx > 0 2e x g( x) = ex −1 , g ( x) = − f ( x) , x ∈ ]−∞;0] : ﺇﺫﻥ g ( x ) = f ( x) , x ∈ ]0; + ∞[] ] ] [( ) ( ) ( ) ﻨﻅﻴﺭδ : −∞;0 ﻭ ﻓﻲ ﺍﻟﻤﺠﺎلc ﻴﻨﻁﺒﻕ ﻋﻠﻰδ : 0;+∞ ﻓﻲ ﺍﻟﻤﺠﺎل ( ). ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼلc
-ﺇﻨﺸﺎﺀ ) (cﻭ ) : (δ y 4 3,5 3 2,5 2 1,5 1 0,5-3,5 -3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 x -0,5 -1 -1,5 -2 -ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ( )m − 3 e x − 1 = 2e x : )m − 3= g(x ﺃﻱ : =m−3 2e x ﺃﻱ : ex −1 ﻭ ﻤﻨﻪ ﺒﻭﻀﻊ m − 3 = αﻨﺠﺩ ( )g x = α : ﻟﻤﺎ α ≤ 2ﺃﻱ m − 3 ≤ 2 :ﺃﻱ m ≤ 5 : -ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل . -ﻟﻤﺎ α > 2ﺃﻱ : m > 5ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻓﻲ ﺍﻹﺸﺎﺭﺓ . ﺍﻟﺘﻤﺭﻴﻥ 16 -1 (Iﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : f [∞Df = ]−∞;+( )lim f ( x ) = lim 2x2 − 3x e x = lim 2xe2x − 3xe x = 0∞x→− ∞x→− ∞x→−
∞( )lim f ( x) = lim 2x2 − 3x ex = lim x(2x − 3)ex = +∞x→+ ∞x→+ ∞x→+ ( )f ′( x) = (4x − 3) e x + 2x2 − 3x e x ﺇﺫﻥ ( )f ′( x) = 4x − 3 + 2x2 − 3x e x : ﻭ ﻤﻨﻪ ( )f ′( x ) = 2x2 + x − 3 e x : ﻭ ﻋﻠﻴﻪ f ′ x :ﻟﻪ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ( )2 x2 + x − 3 ) ∆ = (1)2 − 4( −3)( 2ﺃﻱ ∆ = 25 :ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ : x2 = −1 + 5 = 1 , = x1 −1 − 5 = −3 4 4 2 x ∞− −3 ∞1 + 2 )f ′( x + - +ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ[ [ −∞;− 3 ∞1;+ ﻭ 2 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ f . − 3 ;1 ﻋﻠﻰ 2
x ∞− −3 1 ∞+ + 2 −e + )f ′( x 0 - ∞+ )f (x −3 9e 2f − 3 = 2 −3 2 − 3 −3 e −3 = 9 + 9 e −3 = −3 2 2 2 2 2 2 2 2 9e 2 ( )f (1) = 2(1)2 − 3(1) e1 = −e -2ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ : ﻟﺩﻴﻨﺎ y = 0ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞−lim f )(x = lim 2x2 − 3x e x = lim (2x − 3)ex = ∞+ x ∞x→+ x ∞x→+ ∞x→+ ﺇﺫﻥ cﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞( )+ -3ﻨﺒﻴﻥ ﺃﻥ cﻴﻘﺒل ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ( ): ( )f ′′( x) = (4x + 1)e x + 2x2 + x − 3 e x ( )f ′′( x) = 4x + 1 + 2x2 + x − 3 e x ( )f ′′( x) = 2x2 + 5x − 2 e x f ′′( x ) = 0ﻴﻜﺎﻓﺊ ∆ = 41 , 2x2 + 5x − 2 = 0 x2 = −5 41 , = x1 −5 − 41 4 4 ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ :
∞x −∞ x1 x2 + f ′′( x) + - + ﺇﺫﻥ f ′′ xﻴﻨﻌﺩﻡ ﻋﻨﺩ x1ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻭ ﻴﻨﻌﺩﻡ ﻜﺫﻟﻙ ﻋﻨﺩ x2ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻭ ﻋﻠﻴﻪ) (ﺍﻟﻨﻘﻁﺘﺎﻥ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺘﻴﻥ x1ﻭ x2ﻫﻤﺎ ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ x1 0, 35 , x2 −2, 85 -4ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ( ): ﻟﺩﻴﻨﺎ y = f ′(0) × ( x − 0) + f (0) + f (0) : ﺤﻴﺙ f ′(0) = −3 , f (0) = 0 : ﻭ ﻋﻠﻴﻪ y = −3 x :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆) ( -5ﺭﺴﻡ ) ∆ ( ﻭ ): (c y 6 5 4 3 2 1-6 -5 -4 -3 -2 -1 0 1 2x -1 -2 -3
-1 (IIﺘﻌﻴﻴﻥ aﻭ : b ( )g ( x) = (4x + a)e x + 2x2 + ax + b e x ( )g ( x) = 4x + a + 2x2 + ax + b e x g( x) = (2x2 + (a + 4) x + a + b)ex ﺘﻜﻭﻥ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ . x a = −7 a + 4 = −3 )g′( x) = f ( xﻭ ﻴﻜﻭﻥ : ﻭﻤﻨﻪ : ﻭ ﻋﻠﻴﻪ : b = 7 a + b = 0 ( )g ( x) = 2x2 − 7 x + 7 e x -2ﺘﻌﻴﻴﻥ aﻭ bﺤﻴﺙ ﺘﻘﺒل gﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﻭ ﺼﻐﺭﻯ ﻭ ﻫﻲ ﺃﻥ ﻴﻨﻌﺩﻡ ﺍﻟﻤﺸﺘﻕ ﻤﺭﺘﻴﻥ ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻤﺭﺘﻴﻥ . g′( x ) = 0ﻴﻜﺎﻓﺊ 2x2 + (a + 4) x + a + b = 0 : ) ∆ = (a + 4)2 − 4(a + bﻭ ﻤﻨﻪ ∆ = a2 + 8a + 16 − 4a − 4b : ﺇﺫﻥ ∆ = a2 + 4a − 4b + 16 :ﻭ ﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ ∆ > 0ﻓﺈﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻭ ﺘﻜﻭﻥ ﺇﺸﺎﺭﺓ g′ xﻤﺘﻐﻴﺭﺓ ﻤﺭﺘﻴﻥ ﺃﻱ) ( ﻤﻥ ﺃﺠل a2 + 4a − 4b + 16 > 0 : ﻴﻜﻭﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ ﻗﻴﻤﺘﻴﻥ ﺤﺩﻴﺘﻴﻥ ﻭﺍﺤﺩﺓ ﻜﺒﺭﻯ ﻭ ﺍﻷﺨﺭﻯ ﺼﻐﺭﻯ .
- 5ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ. - 2ﻤﻌﺭﻓﺔ ﻭﺘﻔﺴﻴﺭ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﻴﺭﻴﺔ. -3ﺇﻨﺸﺎﺀ ﺒﻴﺎﻨﺎﺕ ﺩﻭﺍل ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ . ﺗﺼﻤﻴﻢ اﻟﺪرس ﺃﻨﺸﻁﺔ - Iﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ –IIﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻌﺸﺭﻴﺔ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ :ﻟﻠﺩﺍﻟﺔ ( ): fc ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﺘﻤﺜﻴل ;O → , → ﻤﺘﺠﺎﻨﺱ ﺃﻨﺸﺊ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ -1 i j x ex -2ﺃﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = x -3ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ Γﺼﻭﺭﺓ cﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﺒﺎﻟﻨﺴﺒﺔ) ( ) ( ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( . -4ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ( ). Γ -ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ - . gﻤﺎ ﻫﻲ ﺼﻭﺭﺓ 1ﺒﺎﻟﺩﺍﻟﺔ . g -ﺍﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ gﺒﻴﺎﻨﻴﺎ . )lim g ( x ), lim g ( x , lim g (x ) -ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل : ∞x → + x→0 ∞x→+ x x>0 -ﻤﺎ ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ eﺒﺎﻟﺩﺍﻟﺔ g y ﺍﻟﺤل : 2 -1ﺇﻨﺸﺎﺀ ) (c -2ﺇﻨﺸﺎﺀ ∆ ( )1,5 -3ﺇﻨﺸﺎﺀ ) 1 ( r -4ﻤﺠﻤﻭﻉ ﺍﻟﺩﺍﻟﺔ 0,5 g-1,5 -1 -0,5 0 0,5 1 1,5 2 x ﻫﻲ ]0;+∞[ : -0,5 -1 -ﺘﻌﻴﻴﻥ ﺼﻭﺭﺓ : 1
ﻟﺩﻴﻨﺎ ، f (0) = 1ﻨﻅﻴﺭﺓ ﺍﻟﻨﻘﻁﺔ ) B (0;1ﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﻫﻲ ﺍﻟﻨﻘﻁﺔ ) A(1;0ﻭ ﻤﻨﻪ g (1) = 0 -ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ gﺒﻴﺎﻨﻴﺎ :∞x 0 1 +g(x) - + -ﺍﻟﻤﺨﻤﻨﺎﺕ :∞lim g ( x) =- , ∞lim g ( x) =+ , lim g (x ) =0 -x→0 ∞x → + ∞x→+ xx>0 -ﺘﻌﻴﻴﻥ ﺼﻭﺭﺓ eﺒﺎﻟﺩﺍﻟﺔ : gﻟﺩﻴﻨﺎ e1 = e :ﻭ ﻋﻠﻴﻪ f (1) = e ﻨﻅﻴﺭﺓ ﺍﻟﻨﻘﻁﺔ ) c (1;eﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﻫﻭ )D (e;1 ﻭ ﻋﻠﻴﻪ . g (e) = 1 :
- Iﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ ﻭ ﺘﺄﺨﺫ -1ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﺭﻱ ﻟﻌﺩﺩ : ﺍﻟﺩﺍﻟﺔ x e xﻤﻌﺭﻓﺔ ﻭ ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻗﻴﻤﻬﺎ ﻓﻲ . +ﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻓﺈﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ e x = aﺤل ﻭﺤﻴﺩ ﻫﺫﺍ ﺍﻟﺤل ﻴﺴﻤﻰ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﺭﻱ ﻟﻠﻌﺩﺩ aﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ . lna y a = eαy = ex j o i lna = α x eln2 = 2 ﺃﻤﺜﻠﺔ : eln10 = 10 -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ e x = 2ﻫﻭ ln2ﺃﻱ ﺃﻥ : -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ e x = 10ﻫﻭ ln10ﺃﻱ ﺃﻥ : ﻟﺩﻴﻨﺎ e0 = 1ﻭ ﻋﻠﻴﻪ ln1 = 0 : ﻨﺘﺎﺌﺞ : ﻟﺩﻴﻨﺎ e1 = eﻭ ﻋﻠﻴﻪ lne = 1 : ﺃ( ﺏ(
ﺝ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ e x = aﻫﻭ x = lnaﻤﻥ ﺃﺠل a > 0 ﻭ ﻋﻠﻴﻪ . elna = a : ﺩ( ﻟﺩﻴﻨﺎ lnea = aﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ a ﻤﺒﺭﻫﻨﺔ : aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ . ﻟﺩﻴﻨﺎ ln (a.b) = lna + lnb : ﺍﻟﺒﺭﻫﺎﻥ :ﻟﺩﻴﻨﺎ ) elna+lnb = elna .elnb :ﻭ ﺫﻟﻙ ﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ( ﻟﻜﻥ elna = aﻭ elnbﻭ ﻋﻠﻴﻪ elna+lnb = a.b : ﻭ ﻟﺩﻴﻨﺎ ﺃﻴﻀﺎ eln(a.b) = a.b :ﻭ ﻋﻠﻴﻪ eln(a.b) = elna+lnb : ﻭ ﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻥ. ln (a.b) = lna + lnb : ﻨﺘﺎﺌﺞ : ﺘﻤﺎﻤﺎ . ﻤﻭﺠﺏ ﻋﺩﺩ ﺤﻘﻴﻘﻲ a ﺤﻴﺙ ln 1 = −lna ﺃ( a ﺍﻟﺒﺭﻫﺎﻥ :ln (a.c) = ln1 ﻭ ﻤﻨﻪ : a.c = 1 ﻨﺠﺩ : 1 =c ﺒﻭﻀﻊ a ﻭ ﻋﻠﻴﻪ lna + lnc = 0 :ﺇﺫﻥ lnc = −lna : ln 1 = −lna ﻭ ﺒﺎﻟﺘﺎﻟﻲ : a ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ . ﻭb a lnﺤﻴﺙ a = lna − lnb ﺏ( b ﺍﻟﺒﺭﻫﺎﻥ :ln a = ln a. 1 = lna + ln 1 = lna − lnb b b bﺝ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ aﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻨﺎﻁﻕ n ﻟﺩﻴﻨﺎ lnan = nlna : ﺍﻟﺒﺭﻫﺎﻥ :
ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ aﻭ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻨﺎﻁﻕ : nﻟﺩﻴﻨﺎ elnan = an :ﻭ ﻟﺩﻴﻨﺎ ( )enlna = elna n = an : ﻭ ﻤﻨﻪ elnan = enlna :ﻭ ﻋﻠﻴﻪ lnan = nlna : -2ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﻴﺭﻴﺔ : ﺃ( ﺘﻌﺭﻴﻑ :ﻨﺴﻤﻲ ﺩﺍﻟﺔ ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﻨﻴﺒﻴﺭﻴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ، lnﻭﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ xﻤﻥ ﺍﻟﻤﺠﺎل [∞ ]0;+ﺍﻟﻌﺩﺩ lnx ﺃﻱ x lnx : ﺏ( ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ : ﻤﺒﺭﻫﻨﺔ : xﻋﻠﻰ ] [1 ﺍﻟﺩﺍﻟﺔ lnﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ x ∞0; + [∞]0; + xﺃﻱ ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ elnx = xﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ x ﻟﻨﺤﺴﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x elnx ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x elnxﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ 0; +ﻫﻲ ﺍﻟﺩﺍﻟﺔ ] [ln′x .elnx xﻭ ﻋﻠﻴﻪ xln′ ( x ) = 1 :ﻭ ﻤﻨﻪ : xﻫﻲ ﺍﻟﺩﺍﻟﺔ 1 x ln′( x) : ﻭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ x xﻋﻠﻰ ﺍﻟﻤﺠﺎل 1 ﻫﻲ ﺍﻟﺩﺍﻟﺔ x lnx ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ﻭ ﻤﻨﻪ = )ln′ ( x 1 x x [∞]0; + xﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ 1 ﻭ ﻋﻠﻴﻪ ﺒﻤﺎ ﺃﻥ ln1 = 0 :ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ lnx : xﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞. ]0;+ 1 ﻟﻠﺩﺍﻟﺔ x
ﺝ( ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ) h : x ln g ( x ﺤﻴﺙ gﺩﺍﻟﺔ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل . Iﺍﻟﺩﺍﻟﺔ x ln g xﻫﻲ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﺎﻥ gﻭ lnﺤﻴﺙ gﻤﻭﺠﺒﺔ ﻭﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ) ( ﻋﻠﻰ Iﻭ ﺍﻟﺩﺍﻟﺔ lnﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ +ﻭ ﻋﻠﻴﻪ hﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔx )g′( x h′ : x g′ ( )x × g 1 ﺃﻱ g ( x) : )(x ﺩ( ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ : • ∞lim lnx = + ∞x→+ ﺍﻟﺒﺭﻫﺎﻥ : ﻨﻌﺘﺒﺭ ﺍﻟﻤﺠﺎل ∞ A;+ﺤﻴﺙ [ [10n ≤ A < 10n+1 : ﺤﺴﺏ ﺘﻌﺭﻴﻑ eﻟﺩﻴﻨﺎ 2 < e < 3 :ﻭ ﻋﻠﻴﻪ e2 < 10 :ﻭ ﻤﻨﻪ e2 5 < 105 :ﺇﺫﻥ e10 < 105 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ ( )lne10 < ln105 :ﺃﻱ 10 < ln105 :ﺇﺫﺍ ﻜﺎﻥ x ≥ 105 10n :ﻓﺈﻥ ( )lnx ≥ ln (10)5 : ﻭ ﻋﻠﻴﻪ lnx ≥ 10n.ln105 :ﻟﻜﻥ ln105 > 10 : ﻭ ﻤﻨﻪ lnx ≥ 10n+1 > A :ﺇﺫﻥ lnx > A :[∞( )lnx ∈[ A;+: ﻓﺈﻥ x ∈ 105 10 ; ∞+ ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ∞lim lnx = + ﺇﺫﻥ : ∞x→+ ∞lim lnx = − • x→0 x>0 ﺍﻟﺒﺭﻫﺎﻥ :∞t → + ﻓﺈﻥ : x →0 ﻟﻤﺎ =t 1 ﻨﺠﺩ : x = 1 ﺒﻭﻀﻊ : x t x>0( )limlnx 1 lim tx→0 ∞t →+ = lim ln = −lnt ﻭ ﻋﻠﻴﻪ = −∞ :x>0 ∞t →+
lim lnx = 0 • x ∞x → + ﺍﻟﺒﺭﻫﺎﻥ : ﺭﺃﻴﻨﺎ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ e x ≥ x : xﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل lne x ≥ lnx : x > 0ﺃﻱ ﺃﻥ x ≥ lnx : ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ x ≥ ln x : ﻭ ﻋﻠﻴﻪ 2 x ≥ lnx :ﻭ ﺒﺎﻟﺘﺎﻟﻲ : x ≥ 1 lnx : ﺇﺫﻥ 2lim 2 =0 2 lnx 2 x lnx x : ﻭ ﺒﻤﺎ ﺃﻥ ≥ ﻭ ﻋﻠﻴﻪ : x ≥xx→0 x x x>0 lim lnx = 0 ﻓﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺩﻨﻰ ﻓﺈﻥ : x ∞x→+ • lim xlnx = 0 x→0 x>0 ﺍﻟﺒﺭﻫﺎﻥ :∞t → + ﻓﺈﻥ : x →0 ﻟﻤﺎ ﻓﺈﻨﻪ : =t 1 ﺃﻱ : x = 1 ﺒﻭﻀﻊ : x t x>0 lim xlnx = lim 1 ln 1 = lim −lnt = 0 tt→+∞ t t x→0 ∞t → + x>0 lim ln (1 + )x = 1 • x→0 x ﺍﻟﺒﺭﻫﺎﻥ : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ t → lnt : f؛ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ∞ 0;+ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ] [. 1 f ′ (1) = lim f (1+ h) − f )(1 ﻤﻥ ﺠﻬﺔ ﻟﺩﻴﻨﺎ : h→0 hﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ : (1) ... f ′ )(1 = lim ln (1 + )h ﺃﻱ ﺃﻥ : h→0 h
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427