Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ a‬ﻭ ‪b‬‬ ‫‪ x‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬ ‫ﻨﺘﺎﺌﺞ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ﺍﻟﺩﺍﻟﺔ ‪e x‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫‪ a > b‬ﺘﻜﺎﻓﺊ ‪ea > eb :‬‬ ‫‪ a = b‬ﺘﻜﺎﻓﺊ ‪ ea = eb :‬؛‬‫‪ x > 0‬ﺘﻜﺎﻓﺊ ‪e x > 1 :‬‬ ‫‪ a < b‬ﺘﻜﺎﻓﺊ ‪ ea < eb :‬؛‬ ‫‪:x‬‬ ‫‪ x < 0‬ﺘﻜﺎﻓﺊ ‪e x < 1 :‬‬ ‫‪ -10‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ )‪e g( x‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ g‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ )‪x e g( x‬‬ ‫ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I‬ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ )‪( ). x g′ x e g( x‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫ﺍﻟﺩﺍﻟﺔ )‪ x e g( x‬ﻫﻲ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﻴﻥ ‪ g‬ﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I‬ﻭ ﺍﻟﺩﺍﻟﺔ ‪x e x‬‬ ‫ﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ )‪ x e g( x‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I‬ﻭ ﺩﺍﻟﺘﻬﺎ‬ ‫ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ )‪( )x g′ x e g( x‬‬ ‫ﻤﺜﺎل ‪:‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ x e x2 −4 x : f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﻟﻠﺩﺍﻟﺔ ‪x x2 − 4 x‬‬ ‫ﺍﻟﺘﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺍﻟﺩﺍﻟﺔ ‪ x e x‬ﺍﻟﺘﻲ‬ ‫ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ‬‫‪f ′( x) = (2x − 4)ex2−4x‬‬ ‫‪ -11‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪: f‬‬‫ﻟﺩﻴﻨﺎ ‪ x g′ x e g( x) :‬ﺤﻴﺙ ‪ g‬ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪( )I‬‬ ‫ﻫﻲ ﺍﻟﺩﺍﻟﺔ ‪ x e g( x) : h‬ﻷﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻤﻥ ‪: I‬‬

‫)‪f ′( x) = g′( x)eg(x) = f ( x‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪: f‬‬ ‫‪x xe x2 −4‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻷﻨﻬﺎ ﻤﺭﻜﺏ ﻭ ﺠﺩﺍﺀ ﺩﻭﺍل ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ‬‫ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل‬ ‫ﺃﺼﻠﻴﺔ ‪. h‬‬ ‫‪1‬‬ ‫‪.2 x.e x2−4‬‬ ‫ﻟﺩﻴﻨﺎ ‪f x = xe x2 −4 :‬‬‫‪( ) ( )h‬‬ ‫‪x‬‬ ‫=‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫ﺤﻴﺙ ‪ c‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪( ).‬‬‫‪f‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫‪.e x2 −4‬‬ ‫‪+‬‬ ‫‪c‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪2‬‬

‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل‬‫ﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ ‪Euler‬‬ ‫ﺍﻟﺘﻁﺒﻴﻕ ‪:‬‬ ‫ﺃﻨﺸﺊ ﺘﻤﺜﻴﻼ ﺘﻘﺭﻴﺒﻴﺎ ﻟﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪ yc y‬ﻭ ‪y(0) = 1‬‬ ‫ﺒﻤﺠﺩﻭل ‪ Excel‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ −2;2‬ﻭﺍﻟﺨﻁﻭﺓ‪[ ]h = 0, 005 .‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫ﻟﺩﻴﻨﺎ‪ 'y | f c( x).'x :‬ﻭﻤﻨﻪ ‪ f ( x  h)  f ( x) | f c( x).h‬ﺃﻭ‬ ‫‪ f ( x  h)  f ( x) |  f c( x).h‬ﻤﻊ ‪h > 0‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ yc y‬ﻓﺈﻥ )‪ f ( x) f c( x‬ﻓﻨﺤﺼل ﻋﻠﻰ‬ ‫)‪ f ( x + h) ≈ f ( x)(1 + h‬ﺃﻭ )‪. f ( x − h) ≈ f ( x)(1 − h‬‬‫ﻨﺘﺤﺼل ﺒﺎﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ )‪ f ( x + h) ≈ f ( x)(1 + h‬ﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻤﻥ ﺃﺠل ‪x > 0‬‬ ‫ﻭﺘﻌﻁﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺜﺎﻨﻴﺔ )‪ f ( x − h) ≈ f ( x)(1 − h‬ﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻤﻥ ﺃﺠل‬‫ﺍﻟﻘﻴﻡ ‪ x < 0‬ﻭﺫﻟﻙ ﺒﺎﻋﺘﺒﺎﺭ ‪ f (0) = 1‬ﻓﻲ ﺍﻻﻨﻁﻼﻗﺔ ﻭﺠﻌل ‪ h‬ﺼﻐﻴﺭﺍ ﺒﺎﻟﻘﺩﺭ ﺍﻟﺫﻱ ﻴﻀﻤﻥ ﺘﻘﺭﻴﺒﺎ‬ ‫ﺠﻴﺩﺍ‪.‬‬ ‫ﻨﺴﺘﺨﺩﻡ ﻤﺠﺩﻭل ‪ Excel‬ﻟﻤﻘﺎﺭﺒﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺤل ‪.‬‬ ‫ﺤﺠﺯ ﺍﻷﻋﺩﺍﺩ‪:‬‬ ‫ﻨﺤﺠﺯ ﺍﻟﺨﻁﻭﺓ ‪ h‬ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ A3‬ﻤﺜﻼ‪.‬‬ ‫ﻋﻠﻰ ﺍﻟﺠﺯﺀ @‪>2;0‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ A4‬ﻗﻴﻤﺔ ﺇﺒﺘﺩﺍﺌﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻭﻫﻲ ‪0‬‬‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ A5‬ﺍﻟﻘﺎﻋﺩﺓ ‪ = x − h‬ﺍﻟﺘﻲ ﺘﻌﻁﻲ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ x‬ﺍﻟﺘﻲ ﻫﻲ ﻗﺒل ‪ 0‬ﺒﻁﺭﺡ‬‫ﺍﻟﺨﻁﻭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺤﺘﻰ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻌﺩﺩ ‪ 2‬ﻓﻨﺤﺠﺯ‪ A4  A$3 :‬ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ‬ ‫ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ ‪ A‬ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ ‪ 2‬ﺃﻭ ﺃﻗﺭﺏ ﻗﻴﻤﺔ ﻟﻬﺎ‪.‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ B4‬ﺍﻟﻌﺩﺩ ‪ 1‬ﻭﻫﻭ ﻗﻴﻤﺔ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺃﺠل ‪ 0‬ﻷﻥ ‪f (0) 1‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ B5‬ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻠﻌﺩﺩ )‪ y = f ( x − h‬ﻭﻟﺩﻴﻨﺎ‬ ‫)‪ f ( x − h) ≈ f ( x).(1 − h‬ﻓﻨﺤﺠﺯ ‪ B 4 * (1 A$3) :‬ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ‬ ‫ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ ‪ B‬ﺤﺘﻰ ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻌﻤﻭﺩ ‪. A‬‬

‫ﻋﻠﻰ ﺍﻟﺠﺯﺀ @‪>0;2‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ C4‬ﻗﻴﻤﺔ ﺍﺒﺘﺩﺍﺌﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻭﻫﻲ ‪0‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ C5‬ﺍﻟﻘﺎﻋﺩﺓ ‪ = x + h‬ﺍﻟﺘﻲ ﺘﻌﻁﻲ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ x‬ﺍﻟﺘﻲ ﻫﻲ ﺒﻌﺩ ‪ 0‬ﺒﺈﻀﺎﻓﺔ‬ ‫ﺍﻟﺨﻁﻭﺓ ﻓﻲ ﻜل ﻤﺭﺓ ﺤﺘﻰ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻌﺩﺩ ‪ 2‬ﻓﻨﺤﺠﺯ‪ C4  A$3 :‬ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ‬ ‫ﺍﻟﺨﺎﻨﺎﺕ ﻤﻥ ﻋﻤﻭﺩ ‪ C‬ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ ‪ 2‬ﺃﻭ ﺃﻗﺭﺏ ﻗﻴﻤﺔ ﻟﻬﺎ‪.‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ D4‬ﺍﻟﻌﺩﺩ ‪ 1‬ﻭﻫﻭ ﻗﻴﻤﺔ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺃﺠل ‪ 0‬ﻷﻥ ‪f (0) 1‬‬ ‫ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﺎﻨﺔ ‪ D5‬ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻠﻌﺩﺩ )‪ y = f ( x + h‬ﻭﻟﺩﻴﻨﺎ‬‫)‪ f ( x + h) ≈ f ( x).(1 + h‬ﻓﻨﺤﺠﺯ ‪ D 4 * (1 A$3) :‬ﺜﻡ ﻨﻌﻤﻡ ﻋﻠﻰ ﺒﺎﻗﻲ ﺍﻟﺨﺎﻨﺎﺕ‬ ‫ﻤﻥ ﻋﻤﻭﺩ ‪ D‬ﺤﺘﻰ ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻌﻤﻭﺩ ‪. B‬‬ ‫ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ‪:‬‬ ‫ﻨﺨﺘﺎﺭ ﺍﻟﻌﻤﻭﺩﻴﻥ ‪ A‬ﻭ‪ B‬ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﻤﺴﺎﻋﺩ ﺍﻟﺒﻴﺎﻨﻲ‬‫ﺜﻡ ﺍﻟﻤﻨﺤﻨﻰ ﻤﻥ ﺍﻟﻨﻭﻉ ‪،‬‬ ‫ﻭﻨﺨﺘﺎﺭ‬‫ﺜﻡ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺴﻠﺴﻠﺔ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰ ﻨﺠﺩ‬ ‫ﻨﻭﺍﺼل ﺍﻟﻌﻤﻠﻴﺔ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰ‬‫ﺍﻟﺴﻠﺴﻠﺔ ﺍﻷﻭﻟﻰ ﺍﻟﺘﻲ ﺘﺨﺹ ﺘﻤﺜﻴل ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻷﻭل ‪ 2;0‬ﻤﺤﺠﻭﺯﺓ@ >‬‫ﻹﻀﺎﻓﺔ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺍﻟﺘﻲ ﺘﻌﻁﻲ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ‬ ‫‪ .‬ﺜﻡ ﻨﻀﻐﻁ ﻋﻠﻰ‬ ‫ﺒﺎﺴﻡ‬‫ﺜﻡ ﻨﺤﺠﺯ ﻗﻴﻡ ﺍﻟﻌﻤﻭﺩ ‪ C‬ﺒﺎﻟﻀﻐﻁ ﺒﺎﻟﻔﺄﺭﺓ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻰ ﻓﻲ‬‫ﺜﻡ ﻨﺤﺠﺯ ﻗﻴﻡ ﺍﻟﻌﻤﻭﺩ ‪ D‬ﺒﺎﻟﻀﻐﻁ ﺒﺎﻟﻔﺄﺭﺓ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻰ ﻓﻲ‬ ‫ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﺜﺎﻨﻲ ‪ 0;2‬ﻜﻤﺎ ﻴﻠﻲ‪> @:‬‬ ‫ﻨﻀﻊ ﻤﺅﺸﺭ ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺨﺎﻨﺔ ﻗﻴﻡ ‪x‬‬ ‫‪C4‬ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻤﻥ ﻨﻔﺱ ﺍﻟﻌﻤﻭﺩ‪.‬‬ ‫ﻨﻀﻊ ﻤﺅﺸﺭ ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺨﺎﻨﺔ ﻗﻴﻡ ‪y‬‬ ‫‪ D4‬ﺇﻟﻰ ﺁﺨﺭ ﻗﻴﻤﺔ ﻤﻥ ﻨﻔﺱ ﺍﻟﻌﻤﻭﺩ‪.‬‬‫ﻓﻴﻅﻬﺭ ﺍﻟﻤﻨﺤﻨﻴﺎﻥ ﻤﻜﻤﻼﻥ ﻟﺒﻌﻀﻬﻤﺎ ﺒﻠﻭﻨﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ‬ ‫ﻨﻀﻐﻁ ﺒﻌﺩﻫﺎ ﻋﻠﻰ ﺍﻟﺘﺎﻟﻲ‬‫‪،‬ﺤﻴﺙ ﻴﺸﻜﻼﻥ ﻤﻨﺤﻨﻲ ﺍﻟﺩﺍﻟﺔ )ﺍﻟﺤل( ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ ، 2;2‬ﺜﻡ ﺍﻹﻨﻬﺎﺀ@ >‬



‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ‬ ‫‪e−3 < 0‬‬ ‫‪(1‬‬ ‫‪e−5 = −e5 (2‬‬ ‫‪ (3‬ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ‪ x e x‬ﻴﻘﻁﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ‪.‬‬ ‫‪e2x = ex‬‬ ‫‪(4‬‬ ‫‪lim‬‬ ‫‪x‬‬ ‫‪=0‬‬ ‫‪(5‬‬ ‫‪ex‬‬ ‫∞‪x→+‬‬ ‫‪ (6‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ x e3 x‬ﻫﻲ ‪x e3 x‬‬ ‫‪lim e x‬‬ ‫=‬ ‫∞‪+‬‬ ‫‪(7‬‬ ‫‪xx> →0‬‬ ‫‪ (8‬ﺇﺫﺍ ﻜﺎﻥ ‪ x ≥ 2‬ﻓﺈﻥ ‪e x ≥ e2‬‬ ‫‪ (9‬ﺇﺫﺍ ﻜﺎﻥ ‪ x ≤ 0‬ﻓﺈﻥ ‪e x ≤ 0‬‬‫‪ (11‬ﺇﺸﺎﺭﺓ ‪:‬‬ ‫‪ (10‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪e x .e− x = 1 : x‬‬ ‫‪(13‬‬ ‫‪ x − 1 e x‬ﻫﻲ ﻨﻔﺱ ﺇﺸﺎﺭﺓ ‪( )x − 1‬‬ ‫‪ (12‬ﻤﻥ ﺃﺠل ‪e x−1 < 0 : x < 1‬‬ ‫‪lim xe x = 0‬‬ ‫∞‪x→+‬‬ ‫‪lim‬‬ ‫‪ex‬‬ ‫=‬ ‫∞‪+‬‬ ‫‪(14‬‬ ‫‪x3‬‬ ‫∞‪x→+‬‬ ‫‪e x − e = e x−1 (15‬‬ ‫‪( )e2x − 2e x + 1 = e x − 1 2 (16‬‬ ‫‪ (17‬ﺍﻟﺩﺍﻟﺔ ‪ x e−1 x + 3 :‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬

‫‪ (18‬ﻟﻴﺱ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ‪ e x2 −4 x < 0‬ﺤل ﻓﻲ‬ ‫‪ (19‬ﺍﻟﺩﺍﻟﺔ ‪ x e x2 −4 :‬ﻫﻲ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ ‪y′ = y :‬‬ ‫‪e‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪<1‬‬ ‫‪(20‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫ﺒﺴﻁ ﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪1) e3 x .e−2 x‬‬ ‫‪2) e x .e2‬‬ ‫)‪( )3‬‬ ‫‪1‬‬ ‫‪e-x 2‬‬‫)‪4‬‬ ‫‪e4 x+1‬‬ ‫)‪( )5‬‬ ‫‪e−4x+5‬‬ ‫‪( )6) ex e−x + e2x‬‬ ‫‪e2 x .e−1‬‬ ‫‪ex-2 2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻓﺈﻥ ‪:‬‬ ‫‪ex − e−x‬‬ ‫=‬ ‫‪e2x − 1‬‬ ‫‪ex + e−x‬‬ ‫‪e2x + 1‬‬ ‫‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬‫= )‪1) f ( x‬‬ ‫ﺒﻴﻥ ﺃﻥ ﺍﻟﺩﻭﺍل ‪ f‬ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ﻫﻲ ﺩﻭﺍل ﻤﻌﺭﻓﺔ ﻋﻠﻰ‬ ‫‪ex + e−x‬‬ ‫)‪2‬‬ ‫)‪f (x‬‬ ‫‪1‬‬ ‫‪= e2x + 1‬‬‫‪3) f ( x) = 1‬‬ ‫)‪4‬‬ ‫)‪f (x‬‬ ‫‪ex‬‬ ‫‪= ex + 3‬‬ ‫‪ex + 4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪( )f x‬‬ ‫‪x‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪f‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ‬ ‫‪= ex +1‬‬ ‫ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﺃﻥ‪ 0 ≤ x ≤ 1 :‬ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺒﺎﺭﺓ ‪( ). f x‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫‪1) e2 x−1 = 1‬‬ ‫ﺤل ﻓﻲ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪( )3) x2 − 4x + 3 e x = 0‬‬ ‫‪2) e x2−1 = e‬‬ ‫‪4) e2x − 2e x + 1 = 0‬‬ ‫‪( )5) x2 − 4 e x = (9x + 10) e x 6) ex − e−x = 0‬‬ ‫)‪7‬‬ ‫‪e3x‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫=‬ ‫‪0‬‬ ‫‪ex‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬ ‫ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫ﺤل ﻓﻲ‬ ‫‪1) xe2x − x2e2x ≤ 0‬‬ ‫‪2) e2x−1 ≤ 1‬‬ ‫‪3) e x2 −4 ≤ e7 x−16‬‬ ‫‪5) e2x − 2e x + 1 ≤ 0‬‬ ‫)‪4‬‬ ‫‪e x2−2‬‬ ‫≤‬ ‫‪1‬‬ ‫‪ex‬‬ ‫‪6) x2e4x + 4e x > 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻭ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻲ ﺘﻘﺒل ﻓﻴﻬﺎ ﺍﻻﺸﺘﻘﺎﻕ ﺜﻡ ﻋﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪f ′‬‬ ‫‪1) f ( x ) =e2x -e− x‬‬ ‫ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪2) f ( x ) =xe x−1‬‬ ‫)‪3‬‬ ‫‪f‬‬ ‫(‬ ‫=)‪x‬‬ ‫‪ex‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫)‪4‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪ex‬‬ ‫‪1‬‬ ‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x2 −‬‬‫‪( )5) f ( x) = x2 − 4x + 5 e x‬‬ ‫‪6) f ( x) = ex − 1‬‬ ‫‪1‬‬ ‫‪8) f ( x ) = sin xecos x‬‬ ‫‪7) f ( x) = e x‬‬‫)‪9‬‬ ‫‪f‬‬ ‫(‬ ‫=)‪x‬‬ ‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪10) f ( x ) = e2x − 2e x + 1‬‬ ‫‪ex‬‬ ‫‪+‬‬ ‫‪1‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬ ‫ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ﻋﻨﺩ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ‪:‬‬ ‫‪1) f ( x) = x + e x‬‬ ‫‪2) f ( x) = e− x+4‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪3) f ( x) = e x2‬‬ ‫‪4) f ( x) = xe x‬‬ ‫)‪5‬‬ ‫= )‪f (x‬‬ ‫‪ex‬‬ ‫)‪6‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪e−x‬‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪ex +‬‬ ‫)‪7‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪e2x −‬‬ ‫‪1‬‬ ‫‪8) f ( x) = ( x - 1)ex‬‬ ‫‪x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬‫‪‬‬ ‫‪( x) = e2x‬‬ ‫‪−‬‬ ‫‪e‬‬ ‫‪x‬‬‫‪‬‬ ‫‪(0) = 0‬‬ ‫‪x‬‬‫‪‬‬ ‫‪f‬‬ ‫‪, x≠0‬‬‫‪‬‬ ‫‪f‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪‬‬ ‫‪ – 1‬ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ‪. 0‬‬ ‫‪ – 2‬ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻤﻥ ﺃﺠل ‪. x ≠ 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪( ) ( )f x = 4 x + 3 e x :‬‬ ‫ﺍﺤﺴﺏ ﻜل ﻤﻥ ﺍﻟﻤﺸﺘﻘﺎﺕ ‪. f (4) , f (3) , f ′′ , f ′ :‬‬ ‫ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻋﺒﺎﺭﺓ ‪( ). f (n) x‬‬ ‫ﻭ ﺒﺭﻫﻥ ﻋﻠﻰ ﺍﻻﺴﺘﻨﺘﺎﺝ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ‪. n ≥ 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬ ‫ﺃﺩﺭﺱ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻜل ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪1) f ( x) = xe x‬‬ ‫‪2) f ( x) = x − ex‬‬

‫)‪3‬‬ ‫= )‪f (x‬‬ ‫‪ex‬‬ ‫)‪4‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪ex‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 13‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪( )f x = e x + e− x :‬‬‫‪ (1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬؛ ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪x‬‬ ‫ﻓﺈﻥ ‪. f ( x ) ≥ 2 :‬‬‫‪( )g‬‬‫‪x‬‬ ‫=‬ ‫‪ex‬‬ ‫‪1‬‬ ‫‪−1‬‬ ‫ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪g‬‬ ‫‪ (2‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ‬ ‫‪+ e−x‬‬ ‫‪ -‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. g‬‬ ‫‪ -‬ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ‪ c‬ﻟﻠﺩﺍﻟﺔ ‪( ). g‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬‫‪ h (I‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎ ﻴﻠﻲ ‪( )h x = 1 − x − e− x :‬‬ ‫‪ (1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. h‬‬ ‫‪ (2‬ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ ‪ h x‬ﻋﻠﻰ ‪( ).‬‬ ‫‪( )f‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪ (II‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪f‬‬ ‫‪= ex −1‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ‪ f ′ x‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺘﻬﺎ ﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪( ). f‬‬ ‫‪ (2‬ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ‪ .‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺠﺩﻭل‬ ‫ﺘﻐﻴﺭﺍﺘﻬﺎ ‪.‬‬‫‪ (3‬ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍل ‪ f‬ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪( )O; i ; j‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪.‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬‫‪( )f‬‬ ‫‪x‬‬ ‫‪2e x‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪:‬‬ ‫‪= ex −1‬‬ ‫‪ (1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. f‬‬‫‪ (2‬ﻟﻴﻜﻥ ‪ C‬ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪ . O; i , j‬ﺒﻴﻥ ﺃﻥ) ( ) (‬ ‫‪ C‬ﻴﻘﺒل ﺜﻼﺜﺔ ﻤﺴﺘﻘﻴﻤﺎﺕ ﻤﻘﺎﺭﺒﺔ ‪( ).‬‬‫‪ (3‬ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁﺔ ‪ w 0;1‬ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ ‪ C‬ﺜﻡ ﺃﻨﺸﺌﻪ ‪( ) ( ).‬‬‫‪( )g‬‬‫‪x‬‬ ‫‪2e x‬‬ ‫‪ (4‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺤﻴﺙ ‪:‬‬ ‫‪= ex −1‬‬ ‫‪ -‬ﺍﻜﺘﺏ ‪ g x‬ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ‪( ).‬‬‫‪ -‬ﺃﻨﺸﺊ ‪ δ‬ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ‪ g‬ﺒﺎﺴﺘﺨﺩﺍﻡ ‪( ) ( ). C‬‬‫‪ -‬ﻨﺎﻗﺵ ﺒﻴﺎﻨﻴﺎ ﺘﺒﻌﺎ ﻟﻘﻴﻡ ﺍﻟﻭﺴﻴﻁ ﺍﻟﺤﻘﻴﻘﻲ ‪ m‬ﻋﺩﺩ ﻭ ﺇﺸﺎﺭﺓ ﺤﻠﻭل‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ﺍﻟﺤﻘﻴﻘﻲ ‪ m‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪( m − 3) e x − 1 = 2e x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬‫‪ f (I‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪( )( ) ( )C ، f x = 2 x2 − 3 x e x :‬‬ ‫ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪( ). O; i , j‬‬ ‫‪ (1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. f‬‬ ‫‪ (2‬ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ‪( ). C‬‬ ‫‪ (3‬ﺒﻴﻥ ﺃﻥ ‪ C‬ﻴﻘﺒل ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﻓﺎﺼﻠﺘﻴﻬﻤﺎ ‪( ).‬‬ ‫‪ (4‬ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻲ ‪ C‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ‪( ) ( ). 0‬‬ ‫‪ (5‬ﺍﺭﺴﻡ ) ∆ ( ﻭ ) ‪. (C‬‬

‫‪ ( II‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺤﻴﺙ ‪( ) ( )g x = 2 x2 + ax + b e x :‬‬‫‪ (1‬ﻋﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﺤﻘﻴﻘﻴﻴﻥ ‪ a‬ﻭ ‪ b‬ﺤﺘﻰ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫‪ (2‬ﺍﻭﺠﺩ ﺍﻟﺸﺭﻁ ﺍﻟﺫﻱ ﻴﺤﻘﻘﻪ ‪ a‬ﻭ ‪ b‬ﺤﺘﻰ ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ ‪ g‬ﻗﻴﻤﺔ ﺤﺩﻴﺔ‬ ‫ﻜﺒﺭﻯ ﻭ ﺃﺨﺭﻯ ﺼﻐﺭﻯ ‪.‬‬

‫ﺍﻟﺤـﻠــــــﻭل‬ 1 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ . √ (4 . × (3 . × (2 . × (1 . √ (8 √ . × (12 √ (7 . × (6 √ (5 . √ (16 . × . √ (20 . × (11 √ (10 . × (91) e3 x .e−2 x = e3 x−2 x = e x (15 √ (14 . × (13 (19 . × (18 √ (17 2 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺍﻟﺘﺒﺴﻴﻁ‬ 2) e x .e2 = e x+2 ( )3) 1 2 = 1 = e2x e− x e−2 x4) e4 x+2 = e4x+1.e−2x .e1 = e4 x−2 x+1 = e2x+2 e2x .e−1( )5)e−4 x+5 e−4 x+5 = e−4 x+5 .e−2 x+4 = e−6 x+9 ex−2 2 = e2x−4( )6) e x e− x + e2 x = e x .e− x + e x .e2 x = e x− x + e x+2 x = 1 + e3n 3 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ ex − e−x = e2x −1 : ‫ﻨﺒﻴﻥ ﺃﻥ‬ ex + e−x e2x +1

‫‪ex − e−x‬‬ ‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪e2x − 1‬‬ ‫‪e2x −‬‬ ‫‪ex‬‬ ‫‪e2x‬‬‫‪ex + e−x‬‬ ‫‪ex‬‬ ‫‪+‬‬ ‫‪ex‬‬ ‫‪ex‬‬ ‫‪e2x +‬‬ ‫‪e2x‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫‪ex‬‬ ‫=‬ ‫‪1‬‬ ‫×‬ ‫=‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪ex‬‬ ‫‪e2x +‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ex‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪4‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪( )f x = e x + e− x :‬‬ ‫ﻭﻤﻨﻪ ‪{ }Df = x ∈ : e x + e− x ≥ 0 :‬‬ ‫ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ ‪ e x > 0‬ﻭ ‪D f = ، e− x > 0‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪e2x +‬‬ ‫‪{ }Df = x ∈ : e2x + 1 ≠ 0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫= ‪. Df‬‬ ‫‪ e2 x + 1 = 0‬ﺘﻜﺎﻓﺊ ‪ e2 x = −1‬ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل ﺇﺫﻥ ‪:‬‬ ‫‪f (x) = 1‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex + 4‬‬ ‫ﻭﻤﻨﻪ ‪{ }Df = x ∈ : e x + 4 > 0 :‬‬ ‫= ‪. Df‬‬ ‫‪ e x + 4 > 0‬ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ ‪ e x > 0‬ﻭﻤﻨﻪ ‪:‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪ex‬‬ ‫‪3‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex +‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪{ }Df = x ∈ : e x + 3 ≠ 0‬‬ ‫= ‪. Df‬‬ ‫‪ e x + 3 = 0‬ﺘﻜﺎﻓﺊ ‪ e x = −3 :‬ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل ﻭﻤﻨﻪ ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪5‬‬ ‫ﺘﻌﻴﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺒﺎﺭﺓ ‪( )f x :‬‬ ‫ﻟﺩﻴﻨﺎ ‪ 0 ≤ x ≤ 1 :‬ﻭﻤﻨﻪ ‪e0 ≤ e x ≤ e1 :‬‬

‫‪1 11‬‬ ‫‪2≤ ex +1≤1+ e‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪1 + e ≤ e x + 1 ≤ 2 :‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫×‪0‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪e‬‬ ‫≤‬ ‫‪x‬‬ ‫×‬ ‫‪ex +‬‬ ‫‪1‬‬ ‫≤‬ ‫‪1(e‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫ﺇﺫﻥ ‪. 0 ≤ f ( x ) ≤ 1 + e :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪6‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ‪:‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ e2 x−1 = 1 :‬ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪e2 x−1 = e0 :‬‬ ‫‪s‬‬ ‫=‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫ﻭﻋﻠﻴﻪ ‪2 x − 1 = 0 :‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪ e2 x−1 = e :‬ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪ x2 − 1 = 1 :‬ﻭﻤﻨﻪ ‪x2 = 2 :‬‬ ‫ﺇﺫﻥ ‪ x = 2 :‬ﺃﻭ ‪ x = − 2‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪{ }s = − 2; 2‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪( )x2 − 4 x + 3 x = 0 :‬‬ ‫ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪∆′ = 4 , x2 − 4 x + 3 = 0 :‬‬ ‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪ x2 = 3 , x1 = 1 :‬ﺇﺫﻥ ‪{ }s = 1;3 :‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪e2 x − 2e x + 1 = 0 :‬‬‫‪( y − 1)2 = 0‬‬ ‫‪ y2 − 2y + 1 = 0‬‬ ‫= ‪ e x‬ﻨﺠﺩ ‪:‬‬ ‫‪y‬‬‫‪‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫ﺒﻭﻀﻊ‬‫‪‬‬ ‫‪y‬‬ ‫=‬ ‫‪e‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪y‬‬ ‫=‬ ‫‪e‬‬ ‫‪x‬‬ ‫= ‪{ }s‬‬ ‫‪0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪x=0‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪y=1‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪y=1‬‬ ‫‪e x = e0‬‬ ‫ﻭ ﻤﻨﻪ ‪e x = 1 :‬‬ ‫‪ (5‬ﻟﺩﻴﻨﺎ ‪( ) ( )x2 − 4 e x = 9 x − 18 e x :‬‬ ‫ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪ x2 − 4 = 9 x − 18 :‬ﻭ ﻤﻨﻪ ‪x2 − 9 x + 14 = 0 :‬‬‫‪ ∆ = 25‬ﻭ ﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪ x1 = 2‬ﻭ ‪ x2 = 7‬ﺇﺫﻥ ‪{ }s = 2;7 :‬‬

‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪=0‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪ex − ex = 0‬‬ ‫‪ (6‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex‬‬‫‪e2x = 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪e2x − 1 = 0‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪e2x − 1‬‬ ‫‪=0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪ex‬‬‫ﺃﻱ ‪ e2 x = e0 :‬ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ 2 x = 0 :‬ﻭﻤﻨﻪ ‪ x = 0 :‬ﺇﺫﻥ ‪{ }s 0 :‬‬‫‪e4x −‬‬ ‫‪1‬‬ ‫=‬ ‫‪0‬‬ ‫ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪e3x‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪=0‬‬ ‫‪ (7‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex‬‬ ‫‪ex‬‬‫ﻭﻤﻨﻪ ‪ e4 x − 1 = 0 :‬ﺇﺫﻥ ‪ e4 x = 1 :‬ﻭﻋﻠﻴﻪ ‪4 x = 0 :‬‬ ‫ﻭ ﻤﻨﻪ ‪ x = 0 :‬ﺇﺫﻥ ‪{ }s 0 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪7‬‬ ‫ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ‪:‬‬‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ xe2 x − x2e2 x ≤ 0 :‬ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪( )e2 x x − x2 ≤ 0 :‬‬‫ﻭﻋﻠﻴﻪ ‪ x − x2 ≤ 0 :‬ﻷﻥ ‪ e2 x > 0 :‬ﺇﺫﻥ ‪( )x − x + 1 ≤ 0 :‬‬‫ﻭﻋﻠﻴﻪ ‪ x ∈ ]−∞;0] ∪ [1;+∞[ :‬ﺇﺫﻥ ‪s ∈ ]−∞;0] ∪ [1;+∞[ :‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪01‬‬ ‫∞‪+‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪-‬‬ ‫‪−x + 1‬‬ ‫‪-‬‬ ‫‪+‬‬ ‫‪-‬‬‫)‪x(− x + 1‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪e2 x−1 ≤ 1 :‬‬ ‫ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪ e2 x−1 ≤ e0 :‬ﻭ ﻤﻨﻪ ‪2 x − 1 ≤ 0 :‬‬

‫‪s‬‬ ‫‪‬‬ ‫;∞‪−‬‬ ‫‪1‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪x‬‬ ‫≤‬ ‫‪1‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬‫‪ (3‬ﻟﺩﻴﻨﺎ ‪ e x2 −4 ≤ e7 x−16 :‬ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪x2 − 4 ≤ 7 x − 16 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪x2 − 7 x + 12 ≤ 0 :‬‬ ‫ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ‪∆ = 1 ، x2 − 7 x + 12 :‬‬ ‫ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ ‪x2 = 4 ، x1 = 3 :‬‬‫∞‪x −‬‬ ‫‪3‬‬ ‫∞‪4 +‬‬ ‫‪-‬‬ ‫‪-‬‬‫‪x2 − 7 x + 12‬‬ ‫‪+‬‬ ‫ﺇﺫﻥ ‪S = [3 ; 4] :‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪e x2 −2 .e x ≤ 1 :‬‬ ‫‪e x2−2‬‬ ‫≤‬ ‫‪1‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex‬‬ ‫ﻭﻋﻠﻴﻪ ‪ e x2 + x−2 ≤ 1 :‬ﺇﺫﻥ ‪e x2 + x−2 ≤ e1 :‬‬‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ x2 + x − 2 ≤ 1 :‬ﺇﺫﻥ ‪x2 + x − 3 ≤ 0 :‬‬ ‫ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ‪∆ = 13 ، x2 + x − 3 :‬‬‫= ‪x2‬‬ ‫‪−1 +‬‬ ‫‪13‬‬ ‫‪،‬‬ ‫‪x1‬‬ ‫=‬ ‫‪−1‬‬ ‫‪−‬‬ ‫‪13‬‬ ‫ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪x −∞ x1‬‬ ‫∞‪x2 +‬‬‫‪x2 + x − 3‬‬ ‫‪+‬‬ ‫‪-+‬‬ ‫ﺇﺫﻥ ‪S =  x1; x2  :‬‬ ‫‪ (5‬ﻟﺩﻴﻨﺎ ‪e2 x − 2e x + 1 ≤ 0 :‬‬

‫‪ y2 − 2y + 1≤ 0‬‬ ‫ﻨﺠﺩ ‪:‬‬ ‫ﺒﻭﻀﻊ ‪e x = y :‬‬ ‫‪e x = y‬‬ ‫‪y −1= 0‬‬ ‫‪( y − 1)2 ≤ 0‬‬ ‫‪‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫=‬ ‫‪y‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫=‬ ‫‪y‬‬ ‫ﺇﺫﻥ ‪ e x = 1 :‬ﻭﻋﻠﻴﻪ ‪ x = 0 :‬ﺇﺫﻥ ‪{ }S = 0 :‬‬‫‪ (6‬ﻟﺩﻴﻨﺎ ‪ x2e4 x + 4e x > 0 :‬ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪( )e x x2e3 x + 4 > 0‬‬ ‫ﻭﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ ﻷﻥ ‪ e x > 0‬ﻭ ‪ e3 x > 0‬ﻭ ‪x2 > 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪S = :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪8‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪( )f x = e2 x − e− x :‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪.‬‬ ‫ﺤﻴﺙ ‪( ). f ′ x = 2e2x + e− x :‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪( )f x = xe x−1 :‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪.‬‬‫ﺤﻴﺙ ‪ ( )f ′ x = 1.e x−1 + xe x−1 :‬ﻭﻤﻨﻪ ‪f ′( x) = (1 + )x e x−1 :‬‬ ‫‪( )f‬‬ ‫‪x‬‬ ‫=‬ ‫‪ex‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ex‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻋﻠﻰ * ﻭ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ * ‪.‬‬ ‫‪( )( ( ) ) ( )f ′( x) = ex + 1‬‬ ‫‪ex −1 − ex ex + x‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪ex −1 2‬‬ ‫‪-1-xe x‬‬ ‫‪e2 x -1-e2 x −‬‬ ‫‪xe x‬‬ ‫‪= e x -1 2‬‬ ‫‪e x -1 2‬‬‫‪( ) ( )( ) ( )f ′‬‬‫‪x‬‬ ‫‪x‬‬ ‫‪ f ′‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫=‬ ‫ﻭﻤﻨﻪ ‪:‬‬

‫‪( )f‬‬ ‫‪x‬‬ ‫‪ex‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪= x2 − 1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪{ }. −1;1‬‬ ‫‪( )ex‬‬ ‫= )‪( )f ′( x‬‬ ‫‪x2 − 1 − 2 x.e x‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪x2 − 1 2‬‬ ‫= )‪( ( ) )f ′( x‬‬ ‫‪x2 − 2x − 1 ex‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪x2 − 1 2‬‬‫‪ (5‬ﻟﺩﻴﻨﺎ ‪ f x = x2 − 4 x + 5 e x :‬ﺤﻴﺙ ‪( )( )Df = :‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ‪:‬‬ ‫‪( )f ′( x) = ( 2x − 4) e3x + x2 − 4x + 5 e x‬‬ ‫ﻭﻋﻠﻴﻪ ‪( )f ′( x ) = 2x − 4 + x2 − 4x + 5 e x :‬‬ ‫‪( )f ′( x) = x2 − 2x + 1 e x‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬‫‪ (6‬ﻟﺩﻴﻨﺎ ‪ f x = ex − 1 :‬ﺤﻴﺙ ‪{ } ( )Df = x ∈ : ex − 1 ≥ 0 :‬‬‫ﻭﻤﻨﻪ ‪ e x − 1 ≥ 0 :‬ﻭﻋﻠﻴﻪ ‪ e x ≥ 1 :‬ﻭﺒﺎﻟﺘﺎﻟﻲ ‪x ≥ 0 :‬‬ ‫ﺇﺫﻥ ‪Df = [0;+∞[ :‬‬ ‫‪ex‬‬ ‫ﺤﻴﺙ ‪e x − 1 :‬‬‫‪( ) ] [f ′‬‬‫‪x‬‬ ‫=‬ ‫∞‪0;+‬‬ ‫ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫‪f‬‬ ‫ﺍﻟﺩﺍﻟﺔ‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪ (7‬ﻟﺩﻴﻨﺎ ‪( )f x = e x :‬‬‫= )‪f ′(x‬‬ ‫‪−1‬‬ ‫‪e‬‬ ‫‪1‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ *‬ ‫‪x2‬‬ ‫‪x‬‬

( )f x = sin x.ecos x : ‫( ﻟﺩﻴﻨﺎ‬8 : ‫ ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ‬f ‫ﺍﻟﺩﺍﻟﺔ‬ f ′( x ) = cos x.ecos x + sin x ( − sin )x ecos x ( )f ′( x ) = ecos x cos x − sin2 x : ‫ﻭﻤﻨﻪ‬ ( )f ′( x ) = ecos x cos x − 1 − cos2 x  : ‫ﻭﻋﻠﻴﻪ‬ ( )( )f ′ x = cos2 x + cos x − 1 ecos x : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ ( )fx = ex − 1 : ‫( ﻟﺩﻴﻨﺎ‬9 ex + 1 : ‫ ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ‬f ‫ﺍﻟﺩﺍﻟﺔ‬( ( ) ( ) ) ( )( )f ′ex exx = ex +1 − ex −1 = e2x + ex − e2x + ex ex +1 2 ex −1 2 2e x ( )= e x + 1 2 ( )f x = e2x − 2e x + 1 : ‫( ﻟﺩﻴﻨﺎ‬10 { }Df = x ∈ : e2x − 2e x + 1 ≥ 0 : ‫ﺤﻴﺙ‬ y = e x : ‫ ﺒﻭﻀﻊ‬e2 x − 2e x + 1 ≥ 0 ‫ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ‬ ( )y − 1 2 ≥ 0 : ‫ ﻭ ﻋﻠﻴﻪ‬y2 − 2 y + 1 ≥ 0 : ‫ﻨﺠﺩ‬ ( ). D f = : ‫ ﺇﺫﻥ‬. ‫ ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﺩﻭﻤﺎ‬e x − 1 2 ≥ 0 : ‫ﺃﻱ ﺃﻥ‬ : ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ * ﺤﻴﺙ‬f ‫ﺍﻟﺩﺍﻟﺔ‬ f ′( x ) = 2e2x − 2e x = e2x − e x 2 e2 x − 2e x + 1 e2 x − 2e x + 1

9 ‫ﺍﻟﺘﻤﺭﻴﻥ‬] [ ( )D f = −∞;+∞ : ‫ ﺤﻴﺙ‬f x = x + e x : ‫( ﻟﺩﻴﻨﺎ‬1( )( )lim fx→−∞ x = lim x + e x = −∞ : ‫ﻭﻤﻨﻪ‬ x→−∞( )( )lim fx→+∞ x = lim x + e x = +∞ : ‫ﻭﻋﻠﻴﻪ‬ x→+∞] [ ( )D f = −∞;+∞ : ‫ ﺤﻴﺙ‬f x = e− x+4 : ‫( ﻟﺩﻴﻨﺎ‬2( )lim f x = lim e− x+4 = +∞ : ‫ﻭﻤﻨﻪ‬x→−∞ x→−∞( )lim f x = lim e− x+4 = 0 : ‫ﻭﻋﻠﻴﻪ‬x→+∞ x→+∞ 1Df = ]−∞;0[ ∪ ]0;+∞[ : ‫ ﺤﻴﺙ‬f ( x ) = e x2 : ‫( ﻟﺩﻴﻨﺎ‬3 1 lim f ( x ) = lim e x2 = 1 : ‫ﻭﻤﻨﻪ‬ x→−∞ x→−∞ 1 lim f ( x ) = lim e x2 = +∞ : ‫ﻭﻋﻠﻴﻪ‬ << x→0 x→0 1lim f ( x ) = lim e x2 = +∞ : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ >>x→0 x→0 1 lim f ( x ) = lim e x2 = 1 : ‫ﺇﺫﻥ‬ x→+∞ x→+∞ 1Df = ]−∞;0[ ∪ ]0;+∞[ : ‫ ﺤﻴﺙ‬f ( x ) = xe x : ‫( ﻟﺩﻴﻨﺎ‬4 1( )lim f x = lim xe x = −∞ : ‫ﻭﻤﻨﻪ‬x→−∞ x→−∞ 1lim f ( x) = lim xe x = 0 : ‫ﻭﻋﻠﻴﻪ‬ < <x→0 x→0

1 1( )lim fx = lim xe x = lim ex = lim et = +∞ : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ > > > 1 t x→0 x→+∞x→0 x→0 x ( )lim fx 1 : ‫ﺇﺫﻥ‬ .( 1 = t : ‫) ﻨﻀﻊ‬ x x→+∞ = lim xe x = +∞ x→+∞Df = ]−∞ ; 0[ ∪ ]0 ; + ∞[ : ‫ﺤﻴﺙ‬ f (x) = ex : ‫( ﻟﺩﻴﻨﺎ‬5 x2 ( )lim f x = lim ex = 0 x2 x→−∞ x→−∞ ( )lim fx = lim ex = +∞ < < x2 x→0 x→0 ( )lim fx = lim ex = +∞ > > x2 x→0 x→0 ( )lim fx = lim ex = +∞ x2 x→+∞ x→+∞ ] [ ( )Df = −∞;+∞ f x e−x : ‫( ﻟﺩﻴﻨﺎ‬6 : ‫ﺤﻴﺙ‬ = ex +1 ( )lim f x = lim e− x 1 = +∞ ex + x→−∞ x→−∞ ( )lim f x = lim e− x = 0 ex +1 x→+∞ x→+∞Df = ]−∞ ; 0[ ∪ ]0 ; [+ ∞ : ‫ﺤﻴﺙ‬ f ( x) = e2x − 1 : ‫( ﻟﺩﻴﻨﺎ‬7 x ( )lim f x = lim e2x − 1 = 0 x x→−∞ x→−∞

( )lim f x = lim e2 x− 1 = lim 2 × e2x − 1 = 2 < < x < 2 xx→0 x→0 x→0( )lim f x = lim e2 x− 1 = lim 2 × e2x − 1 = 2 > > x > 2 xx→0 x→0 x→0 e 2 x− 1 e2x 1 x x x( )lim f x = lim = lim −x→+∞ x→+∞ x→+∞ lim 2 e2x − 1 = +∞ x→+∞ 2 x xDf = ]−∞;+∞[ : ‫ ﺤﻴﺙ‬f ( x ) = ( x − 1) e x : ‫( ﻟﺩﻴﻨﺎ‬8lim f ( x) = lim ( x − 1)e x = lim xe x − e x = 0x→−∞ x→−∞ x→−∞ lim f ( x) = lim ( x − 1)ex = +∞x→+∞ x→+∞ 10 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ Df = : 0 ‫ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬-1( ) ( )lim fx −f 0 e2x − ex e2x − x < x−0 x2 = lim x = lim ex→0 < x < x→0 x→0 = lim ex × ex − 1 = −∞ < x x x→0 . ‫ ﻤﻥ ﺍﻟﻴﺴﺎﺭ‬0 ‫ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﻭ ﻤﻨﻪ‬x −f( ) ( )lim f0 e 2 x− e x lim e x ex −1 x−0> x2 x> x = lim = × = +∞x→0 > x→0 x→0. 0 ‫ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬0 ‫ ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ‬f ‫ﻭ ﻤﻨﻪ‬ : x ≠ 0 ‫ ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻥ ﺃﺠل‬-2

( ) ( )f ′( x) = 2e2 x − e x x − 1 e2x − ex x2f ′( x) = 2 xe2 x − xe x − e2x + ex x2 ( 2 x − 1) e 2x − ( x − 1) e x x2f ′ ( x ) = 11 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ f ( x) = (4x + 3)exf ′( x) = 4.e x + (4x + 3) e x = (4 + 4x + 3) e x f ′( x) = (4x + 7)exf ′′( x) = 4.e x + (4x + 7) e x = (4 + 4x + 7) e x f ′′( x) = (4x + 11)e xf (3) ( x ) = 4.e x + (4x + 11) e x = (4 + 4x + 11) e x f (3) ( x) = (4x + 15) e xf (4) ( x ) = 4.e x + (4x + 15) e x = (4 + 4x + 15) e x f (4) ( x) = (4x + 19) e x : f (n) ‫ﺍﺴﺘﻨﺘﺎﺝ ﻋﺒﺎﺭﺓ‬ f (n) ( x) = (4x + 3 + 4n)ex ( ) ( )f (n) x = 4 x + 3 + 4n e x : p(n) ‫ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ‬ ( ) ( ). ‫ ﻤﺤﻘﻘﺔ‬p(1) ‫ ﻭ ﻤﻨﻪ‬f (n) x = 4 x + 7 e x : n = 1 ‫ﻤﻥ ﺃﺠل‬

( ) ( )p k + 1 ‫ ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ‬p k ‫ﻨﻔﺭﺽ ﺼﺤﺔ‬ p(k ) : f (k) ( x) = (4x + 3 + 4k )ex p( k + 1) : f (k+1) ( x) = 4x + 3 + 4( k + 1) e x( )f (k+1) ( x) = f k ′ ( x) = 4.e x + (4x + 3 + 4k ) e x : ‫ﻟﺩﻴﻨﺎ‬ = (4x + 3 + 4k + 4) e x = 4x + 3 + 4( k + 1) e x ( ) ( )‫ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬p n ‫ ﺼﺤﻴﺤﺔ ﻭ ﻋﻠﻴﻪ‬p k + 1 ‫ﻭﻤﻨﻪ‬ . n ≥ 1 ‫ ﺤﻴﺙ‬n ‫ﻁﺒﻴﻌﻲ‬ 12 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ : f ‫ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ‬ ] [ ( )Df = −∞;+∞ : ‫ ﺤﻴﺙ‬f x = xe x : ‫( ﻟﺩﻴﻨﺎ‬1lim f ( x) = lim xe x = 0x→−∞ x→−∞lim f ( x) = lim xe x = +∞x→+∞ x→+∞ f ′( x) = e x + xe x = e x ( x + 1) ( ): ‫ ﻭ ﻟﺩﻴﻨﺎ‬x + 1 ‫ ﻟﻪ ﻨﻔﺱ ﺇﺸﺎﺭﺓ‬f ′ x ‫ﻭ ﻋﻠﻴﻪ‬ x −∞ −1 +∞ x+1 - +

‫ﺇﺫﻥ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞‪ −1;+‬ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ[ [‬ ‫ﻋﻠﻰ ‪ −∞;−1‬؛ ﻭ ﻋﻠﻴﻪ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻜﻤﺎ ﻴﻠﻲ ‪] ]:‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪−1‬‬ ‫∞‪+‬‬ ‫‪+‬‬‫)‪f ′( x‬‬ ‫‪-‬‬ ‫‪−1‬‬ ‫‪0‬‬ ‫‪e‬‬ ‫∞‪+‬‬‫)‪f (x‬‬‫‪ (2‬ﻟﺩﻴﻨﺎ ‪ f x = x − e x :‬ﺤﻴﺙ ‪] ] ( )Df = −∞ ; + ∞ :‬‬‫∞‪lim f ( x) = lim x − e x = −‬‬‫∞‪x→−‬‬ ‫∞‪x→−‬‬‫‪( )lim f‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪ex‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪ex‬‬ ‫‪‬‬ ‫=‬ ‫∞‪−‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪‬‬‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪f ′(x) = 1− ex‬‬‫‪ f ′ x = 0‬ﺘﻜﺎﻓﺊ ‪ 1 − e x = 0 :‬ﻭﻤﻨﻪ ‪ e x = 1 :‬ﻭﻋﻠﻴﻪ ‪( )x = 0 :‬‬‫‪ f ′ x > 0‬ﺘﻜﺎﻓﺊ ‪ 1 − e x > 0 :‬ﻭﻤﻨﻪ ‪ e x < 1 :‬ﺇﺫﻥ ‪( )x < 0 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪] ]. −∞;0‬‬‫‪ f ′ x < 0‬ﺘﻜﺎﻓﺊ ‪ x > 0‬ﻭﻤﻨﻪ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪] ] ( ). −∞;0‬‬

x −∞ 0 +∞ + -f ′( x)f ( x) −1 −∞ −∞Df = ]−∞;0[ ∪ ]0;+∞[ : ‫ﺤﻴﺙ‬ f ( x) = ex : ‫( ﻟﺩﻴﻨﺎ‬3 x ( )lim f x = lim ex =0 x x→−∞ x→−∞ ( )lim f x = lim ex = −∞ < < x x→0 x→0 ( )lim f x = lim ex = +∞ > > x x→0 x→0 ( )lim f x = lim ex = +∞ x x→+∞ x→+∞ f ′( x) = ex.x − ex = ex ( x − 1) x2 x2( ) ( )x = 1 : ‫ ﺘﻜﺎﻓﺊ‬f ′ x = 0 : ‫ ﺇﺫﻥ‬x − 1 ‫ ﻟﻪ ﻨﻔﺱ ﺇﺸﺎﺭﺓ‬f ′ x[ [ ( )1;+∞ ‫ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬f : ‫ ﺇﺫﻥ‬x > 1 ‫ ﺘﻜﺎﻓﺊ‬f ′ x > 0 ] [ [ [. 0 ; 1 ‫ ﻭﻋﻠﻰ‬−∞;0 ‫ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬f ‫ﻭ ﻜﺫﻟﻙ‬

x −∞ 0 1 +∞ - - +f ′( x)f (x) 0 +∞ −∞ −∞ e{ } ( )Df = x ∈ ex + 1 :ex −1≠ 0 : ‫ﺤﻴﺙ‬ f x = ex − 1 : ‫( ﻟﺩﻴﻨﺎ‬4 . x = 0 : ‫ ﻭ ﻋﻠﻴﻪ‬e x = 1 ‫ ﺘﻜﺎﻓﺊ‬e x − 1 = 0 Df = ]−∞ ; 0[ ∪ ]0 ; + ∞[ :‫ﺇﺫﻥ‬( )• ex + 1lim f x = lim ex − 1 = −1x→−∞ x→−∞( )• ex + 1lim f x = lim ex − 1 = −∞ < <x→0 x→0 e x + 1 → 2  : ‫ﻷﻥ‬  e x − 1 <→( )• x lim ex + 1lim f = > ex − 1 = +∞ > x→0x→0 e x + 1 → 2  : ‫ﻷﻥ‬  ex − 1 >→

ex + 1 ex  1 + 1  ex − 1 ex  − ex ( )• 1 lim f x = lim = lim  ex  x →+∞ x →+∞ x→+∞ 1 = lim 1 + 1 =1 1 − ex x→+∞ 1 ex( ( ) )( )• ex ex −1 − ex ex +1 ex −1 2f ′(x) = ( )ex ( ) ( )= ex −1− ex −1 = −2e x ex −1 2 ex −1 2 f ′( x ) < 0 : ‫ﻭ ﻤﻨﻪ‬ ] [ ] [: 0;+∞ ‫ ﻭ‬−∞;0 ‫ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬f ‫ﺍﻟﺩﺍﻟﺔ‬ x −∞ 0 +∞ - -f ′( x) −1 +∞ 1f (x) −∞ • Df = ]−∞ ; + ∞[ 13 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ : f ‫ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ‬-1

‫∞‪• lim f ( x) = +‬‬ ‫∞‪• lim f ( x) = +‬‬ ‫∞‪x→−‬‬ ‫∞‪x→+‬‬‫‪• f ′( x) = ex − e−x‬‬‫‪ f ′ x = 0‬ﺘﻜﺎﻓﺊ ‪ e x − e− x = 0 :‬ﻭﻤﻨﻪ ‪( )e x = e− x :‬‬ ‫ﻭ ﻋﻠﻴﻪ‪ x = − x :‬ﻭ ﻤﻨﻪ‪ 2 x = 0 :‬ﺃﻱ‪. x = 0 :‬‬ ‫‪ f ′ x > 0‬ﺘﻜﺎﻓﺊ ‪ e x − e− x > 0 :‬ﻭﻤﻨﻪ ‪( )e x > e− x :‬‬ ‫ﺇﺫﻥ ‪ x > − x :‬ﻭﻤﻨﻪ ‪ 2 x > 0 :‬ﻭﻋﻠﻴﻪ ‪x > 0 :‬‬ ‫ﺇﺫﻥ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ ‪ 0 ; +‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ[ [‬ ‫ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪] ]. −∞;0‬‬‫∞‪x −∞ 0 +‬‬‫)‪f ′( x‬‬ ‫‪-‬‬ ‫‪+‬‬‫∞‪f ( x) +∞ 2 +‬‬‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬ ‫ﺍﻻﺴﺘﻨﺘﺎﺝ ‪:‬‬ ‫ﻤﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﻘﻴﻤﺔ ‪ 2‬ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ‬ ‫ﺤﻘﻴﻘﻲ ‪ x‬ﻓﺈﻥ ‪( )f x ≥ 2 :‬‬ ‫‪ -2‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪: g‬‬‫‪{ }• Dg = x ∈ : e x + e x − 1 ≠ 0‬‬ ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‪ e x + e− x − 1 = 0 :‬ﺃﻱ‪e x + e− x = 1 :‬‬ ‫ﺃﻱ‪ f x = 1 :‬ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل ﻷﻥ ‪( ) ( )f x ≥ 2 :‬‬ ‫ﺇﺫﻥ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻭ ﻋﻠﻴﻪ ‪] [. D f = −∞;+∞ :‬‬‫‪• lim g ( x) = 0‬‬ ‫‪• lim g ( x) = 0‬‬ ‫∞‪x→−‬‬ ‫∞‪x→+‬‬

‫= )‪g′( x‬‬ ‫‪−ex + e−x‬‬ ‫‪ex + e−x − 1 2‬‬‫•) (‬‫‪ g′( x ) = 0‬ﺘﻜﺎﻓﺊ ‪ −e x + e− x = 0 :‬ﺃﻱ‪e− x = e x :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ − x = x :‬ﻭ ﻤﻨﻪ ‪ 2 x = 0 :‬ﺃﻱ ‪x = 0 :‬‬ ‫‪ g′ x = 0‬ﺘﻜﺎﻓﺊ ‪ −e x + e− x > 0 :‬ﺃﻱ‪( )e− x > e x :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ − x > x :‬ﻭﻤﻨﻪ ‪ 2 x > 0 :‬ﺃﻱ ‪x > 0 :‬‬ ‫ﺇﺫﻥ ‪ g‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ −∞;0‬ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻡ] ]‬ ‫ﻋﻠﻰ ]∞‪. [0;+‬‬ ‫∞‪x −‬‬ ‫‪0‬‬ ‫∞‪+‬‬‫)‪g′( x‬‬ ‫‪+‬‬ ‫‪-‬‬‫‪g(x) 0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪g(0) = 1‬‬ ‫ﺇﻨﺸﺎﺀ ‪( ): c‬‬ ‫‪y‬‬ ‫‪1,5‬‬ ‫‪1‬‬ ‫‪0,5‬‬‫‪-2,5 -2 -1,5 -1 -0,5 0‬‬ ‫‪0,5 1 1,5 2 2,5 x‬‬ ‫‪-0,5‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ ‪14‬‬ ‫‪ -1 (I‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪] [Dh = −∞;+∞ : h‬‬‫(‪lim h‬‬ ‫)‪x‬‬ ‫=‬ ‫‪lim 1−‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪e− x‬‬ ‫=‬ ‫)‪lim (−x‬‬ ‫‪ −1‬‬ ‫‪+‬‬ ‫‪1−‬‬ ‫‪e− x‬‬ ‫‪‬‬ ‫=‬ ‫∞‪−‬‬ ‫‪‬‬ ‫‪−x‬‬ ‫‪‬‬‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪‬‬ ‫∞‪lim h( x) = lim 1 − x − e− x = −‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪h′( x ) = −1 + e− x‬‬ ‫‪ h′ x = 0‬ﺘﻜﺎﻓﺊ ‪ −1 + e− x = 0 :‬ﻭﻤﻨﻪ ‪( )e− x = 1 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ e− x = e0 :‬ﺃﻱ ‪x = 0 :‬‬ ‫‪ h′ x > 0‬ﺘﻜﺎﻓﺊ ‪ −1 + e− x > 0 :‬ﻭﻋﻠﻴﻪ ‪( )e− x > 1 :‬‬ ‫ﺃﻱ ﺃﻥ ‪ − x > 0 :‬ﻭ ﻤﻨﻪ ‪x < 0 :‬‬ ‫ﺇﺫﻥ ‪ h‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ −∞;0‬ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺘﻨﺎﻗﺼﺔ] ]‬ ‫ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞‪[ [. 0;+‬‬ ‫∞‪x −∞ 0 +‬‬ ‫)‪h′( x‬‬ ‫‪+‬‬ ‫‪-‬‬ ‫‪h( x) 0‬‬ ‫∞‪−∞ −‬‬ ‫‪h( x) < 0‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪h(0) = 0‬‬ ‫‪ -2‬ﺍﺴﺘﻨﺘﺎﺝ ﺇﺸﺎﺭﺓ ‪( )h x‬‬ ‫ﻟﺩﻴﻨﺎ ‪ h x = 0 :‬ﺘﻜﺎﻓﺊ ‪( )x = 0 :‬‬ ‫ﻤﻥ ﺃﺠل ‪. x ∈ * :‬‬

( )D f = * : f ′ x ‫ ﺤﺴﺎﺏ‬-1 (II ( ( ) ) ( )f ′( x) = 1 ex −1 − exx = e x − 1 − xe x ex −1 2 ex −1 2 ( ) ( )ex ex( ) ( )f ′( x) = = 1− e−x − x 1− x − e−x ex −1 2 ex −1 2 e x .h( x) ex −1 2 ( )f ′( x) = x = 0 : ( )‫ ﻭﻤﻨﻪ‬h x = 0 ‫ ﺘﻜﺎﻓﺊ‬f ′( x ) = 0 ‫ﻭ ﻋﻠﻴﻪ‬ h( x ) < 0 ‫ ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ ﻷﻥ‬h( x ) < 0 ‫ ﺘﻜﺎﻓﺊ‬f ( x ) < 0 . ‫ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬f ‫ ﺇﺫﻥ‬x ∈ * : ‫ﻤﻥ ﺃﺠل‬( )lim f x = lim x 1 = lim 1 = 0 ex − ex −1x→+∞ x→+∞ x→+∞ x : ‫ ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ‬-2( )lim f x = lim e x 1 = +∞ x−x→−∞ x→−∞( )lim f x = lim x 1 = lim 1 1 = 1 < < ex − < ex −x→0 x→0 x→0 x( )lim fx = lim x = lim 1 = 1 > > ex −1 > ex −1x→0 x→0 x→0 x

‫ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬‫∞‪x −‬‬ ‫‪0‬‬ ‫∞‪+‬‬ ‫‪-‬‬‫)‪f ′( x‬‬ ‫‪-‬‬‫∞‪f (x) +‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪( ) ( )lim‬‬‫‪f‬‬‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫=‬ ‫‪−1‬‬ ‫‪:‬‬ ‫‪cf‬‬ ‫‪ -3‬ﺇﻨﺸﺎﺀ‬ ‫‪x‬‬ ‫>‬ ‫‪x−‬‬ ‫∞‪x→−‬‬ ‫‪e‬‬ ‫‪1‬‬ ‫‪x→0‬‬‫‪( )lim f‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x‬‬ ‫‪+ xe x −‬‬ ‫‪x‬‬ ‫>‬ ‫‪ex −‬‬ ‫‪ex −1‬‬‫∞‪x→−‬‬ ‫‪1‬‬ ‫∞‪x→−‬‬ ‫‪x→0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪xe x‬‬ ‫‪ex −1‬‬‫ﺇﺫﻥ ﻴﻭﺠﺩ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻤﻌﺎﺩﻟﺘﻪ ‪ y = − x‬ﻋﻨﺩ ∞‪ −‬ﻭ ﻟﺩﻴﻨﺎ ‪ y = 0‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ‬ ‫ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞‪. +‬‬ ‫‪y‬‬ ‫‪3‬‬ ‫‪2,5‬‬ ‫‪2‬‬ ‫‪1,5‬‬ ‫‪1‬‬ ‫‪0,5‬‬‫‪-3 -2,5 -2 -1,5 -1 -0,5 0‬‬ ‫‪0,5 1 1,5 2 2,5 x‬‬ ‫‪-0,5‬‬ ‫‪-1‬‬

15 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ { }D f = x ∈ : e x − 1 ≠ 0 : f ‫ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ‬-1 Df = * ، Df = ]−∞;0[ ∪ ]0;+∞] ( )lim f x = lim 2e x = 0 ex −1 x→−∞ x→−∞ ( )lim fx = lim 2e x 1 = −∞ < < ex − x→0 x→0 x −∞ 0 +∞ ex −1 - +( )2e x → 2 x lim 2e xe x < : ‫ ﻷﻥ‬lim f = > ex − 1 = +∞ : ‫ﻭﻤﻨﻪ‬ > − 1→0 x→0 x→0 2e x → 2 lim f ( x) = 2  > : ‫ﻷﻥ‬ : ‫ﻭﻋﻠﻴﻪ‬ e x − x→+∞ 1→0 ( ) ( )2ex( ) ( )f ′( x) = e x − 1 − e x .2e x 2e x ex −1− ex = ex −1 2 ex −1 2 −2e x ex −1 2 ( )f ′( x) = :‫ﺇﺫﻥ‬ ( )‫ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ‬f ‫ ﻭ ﻤﻨﻪ‬f ′ x < 0 ‫ﻭ ﻤﻨﻪ‬

‫ﺍﻟﻤﺠﺎﻟﻴﻥ ‪]0;+∞[ , ]−∞;0[ :‬‬‫∞‪x −∞ 0 +‬‬‫)‪f ′( x‬‬ ‫‪-‬‬ ‫‪-‬‬‫‪f (x) 0‬‬ ‫∞‪+‬‬ ‫‪2‬‬ ‫∞‪−‬‬ ‫ﻓﺈﻥ ‪ y = 0‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) (‬‫‪x‬‬ ‫‪lim f‬‬ ‫‪ -2‬ﺒﻤﺎ ﺃﻥ ‪= 0‬‬ ‫∞‪x→−‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ lim f x = 2‬ﻓﺈﻥ ‪ y = 2‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) (‬ ‫∞‪x→+‬‬‫ﻭ ﺒﻤﺎ ﺃﻥ ∞‪ lim f x = +‬ﻓﺈﻥ ‪ x = 0‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ) (‬ ‫‪x→0‬‬ ‫‪ -3‬ﻨﺒﻴﻥ ﺃﻥ ‪ w 0;1‬ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ‪( ):‬‬ ‫ﻤﻥ ﺃﺠل ‪: x ∈ D f‬‬‫ﻟﺩﻴﻨﺎ ‪ 2α − x ∈ Df :‬ﻭ ‪f ( 2α − x ) + f ( x ) = 2β‬‬ ‫ﺃﻱ ‪f ( 2 × 0 − x) + f ( x) = 2 × 1 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪f ( − x) + f ( x) = 2 :‬‬ ‫ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ‪ x‬ﻤﻥ ‪− x ∈ D f : D f‬‬

2e− x 2e x 2 2e x e−x − 1 ex −1 ex −1f (−x)+ f ( x) = + = ex + : ‫ﺇﺫﻥ‬ 1 ex −1 2 2e x 2e x e x -1 e x -1 = ex + = 2 + 1 1-e x ex -1 = −2 1 + 2e x ex − ex −1 ( )= −2 + 2e x = 2 ex −1 =2 ex −1 ex −1 ( ). c ‫ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ‬w ‫ﻭ ﻤﻨﻪ‬ ( ): ‫ ﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ‬g x ‫( ﻜﺘﺎﺒﺔ‬4( )g ( x) = − 2e x , e x -1<0 ‫ أي‬x < 0 ex −1 e x − 1 > 0 ‫ أي‬x > 0 2e x g( x) = ex −1 ,  g ( x) = − f ( x) , x ∈ ]−∞;0]  : ‫ﺇﺫﻥ‬  g ( x ) = f ( x) , x ∈ ]0; + ∞[] ] ] [( ) ( ) ( )‫ ﻨﻅﻴﺭ‬δ : −∞;0 ‫ ﻭ ﻓﻲ ﺍﻟﻤﺠﺎل‬c ‫ ﻴﻨﻁﺒﻕ ﻋﻠﻰ‬δ : 0;+∞ ‫ﻓﻲ ﺍﻟﻤﺠﺎل‬ ( ). ‫ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل‬c

‫‪ -‬ﺇﻨﺸﺎﺀ )‪ (c‬ﻭ ) ‪: (δ‬‬ ‫‪y‬‬ ‫‪4‬‬ ‫‪3,5‬‬ ‫‪3‬‬ ‫‪2,5‬‬ ‫‪2‬‬ ‫‪1,5‬‬ ‫‪1‬‬ ‫‪0,5‬‬‫‪-3,5 -3 -2,5 -2 -1,5 -1 -0,5 0‬‬ ‫‪0,5 1 1,5 2 2,5 3 3,5 4‬‬ ‫‪x‬‬ ‫‪-0,5‬‬ ‫‪-1‬‬ ‫‪-1,5‬‬ ‫‪-2‬‬ ‫‪ -‬ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪( )m − 3 e x − 1 = 2e x :‬‬ ‫)‪m − 3= g(x‬‬ ‫ﺃﻱ ‪:‬‬ ‫=‪m−3‬‬ ‫‪2e x‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪ex −1‬‬ ‫ﻭ ﻤﻨﻪ ﺒﻭﻀﻊ ‪ m − 3 = α‬ﻨﺠﺩ ‪( )g x = α :‬‬ ‫ﻟﻤﺎ ‪ α ≤ 2‬ﺃﻱ ‪ m − 3 ≤ 2 :‬ﺃﻱ ‪m ≤ 5 :‬‬ ‫‪ -‬ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ‪.‬‬ ‫‪ -‬ﻟﻤﺎ ‪ α > 2‬ﺃﻱ ‪ : m > 5‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻓﻲ ﺍﻹﺸﺎﺭﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪16‬‬ ‫‪ -1 (I‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪: f‬‬ ‫[∞‪Df = ]−∞;+‬‬‫‪( )lim f ( x ) = lim 2x2 − 3x e x = lim 2xe2x − 3xe x = 0‬‬‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬

‫∞‪( )lim f ( x) = lim 2x2 − 3x ex = lim x(2x − 3)ex = +‬‬‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪( )f ′( x) = (4x − 3) e x + 2x2 − 3x e x‬‬ ‫ﺇﺫﻥ ‪( )f ′( x) = 4x − 3 + 2x2 − 3x e x :‬‬ ‫ﻭ ﻤﻨﻪ ‪( )f ′( x ) = 2x2 + x − 3 e x :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ f ′ x :‬ﻟﻪ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ‪( )2 x2 + x − 3‬‬ ‫)‪ ∆ = (1)2 − 4( −3)( 2‬ﺃﻱ ‪ ∆ = 25 :‬ﻴﻭﺠﺩ ﺠﺫﺭﺍﻥ ‪:‬‬ ‫‪x2‬‬ ‫=‬ ‫‪−1 +‬‬ ‫‪5‬‬ ‫=‬ ‫‪1‬‬ ‫‪,‬‬ ‫= ‪x1‬‬ ‫‪−1 −‬‬ ‫‪5‬‬ ‫=‬ ‫‪−3‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪−3‬‬ ‫∞‪1 +‬‬ ‫‪2‬‬ ‫)‪f ′( x‬‬ ‫‪+‬‬ ‫‪-‬‬ ‫‪+‬‬‫ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ[ [‬ ‫‪‬‬ ‫‪−∞;−‬‬ ‫‪3‬‬ ‫‪‬‬ ‫∞‪1;+‬‬ ‫ﻭ‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ‬ ‫‪f‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪−‬‬ ‫‪3‬‬ ‫‪;1‬‬ ‫ﻋﻠﻰ‬ ‫‪‬‬ ‫‪2‬‬

‫‪x‬‬ ‫∞‪−‬‬ ‫‪−3‬‬ ‫‪1‬‬ ‫∞‪+‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪−e‬‬ ‫‪+‬‬ ‫)‪f ′( x‬‬ ‫‪0‬‬ ‫‪-‬‬ ‫∞‪+‬‬ ‫)‪f (x‬‬ ‫‪−3‬‬ ‫‪9e 2‬‬‫‪f‬‬ ‫‪‬‬ ‫‪−‬‬ ‫‪3‬‬ ‫‪‬‬ ‫=‬ ‫‪2‬‬ ‫‪−3‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪3‬‬ ‫‪−3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪−3‬‬ ‫=‬ ‫‪‬‬ ‫‪9‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪−3‬‬ ‫=‬ ‫‪−3‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪9e 2‬‬ ‫‪( )f (1) = 2(1)2 − 3(1) e1 = −e‬‬ ‫‪ -2‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ y = 0‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞‪−‬‬‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪‬‬ ‫‪2x2 −‬‬ ‫‪3x‬‬ ‫‪‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim (2x‬‬ ‫‪−‬‬ ‫‪3)ex‬‬ ‫=‬ ‫∞‪+‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪‬‬‫∞‪x→+‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫‪‬‬ ‫‪‬‬ ‫∞‪x→+‬‬ ‫ﺇﺫﻥ ‪ c‬ﻴﻘﺒل ﻓﺭﻉ ﻗﻁﻊ ﻤﻜﺎﻓﺊ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞‪( )+‬‬ ‫‪ -3‬ﻨﺒﻴﻥ ﺃﻥ ‪ c‬ﻴﻘﺒل ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ‪( ):‬‬ ‫‪( )f ′′( x) = (4x + 1)e x + 2x2 + x − 3 e x‬‬ ‫‪( )f ′′( x) = 4x + 1 + 2x2 + x − 3 e x‬‬ ‫‪( )f ′′( x) = 2x2 + 5x − 2 e x‬‬ ‫‪ f ′′( x ) = 0‬ﻴﻜﺎﻓﺊ ‪∆ = 41 , 2x2 + 5x − 2 = 0‬‬ ‫‪x2‬‬ ‫=‬ ‫‪−5 41‬‬ ‫‪,‬‬ ‫= ‪x1‬‬ ‫‪−5 −‬‬ ‫‪41‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬

‫∞‪x −∞ x1 x2 +‬‬ ‫‪f ′′( x) + - +‬‬ ‫ﺇﺫﻥ ‪ f ′′ x‬ﻴﻨﻌﺩﻡ ﻋﻨﺩ ‪ x1‬ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻭ ﻴﻨﻌﺩﻡ ﻜﺫﻟﻙ ﻋﻨﺩ ‪ x2‬ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻭ ﻋﻠﻴﻪ) (‬‫ﺍﻟﻨﻘﻁﺘﺎﻥ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺘﻴﻥ ‪ x1‬ﻭ ‪ x2‬ﻫﻤﺎ ﻨﻘﻁﺘﻲ ﺍﻨﻌﻁﺎﻑ ‪x1 0, 35 , x2 −2, 85‬‬ ‫‪ -4‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ‪( ):‬‬ ‫ﻟﺩﻴﻨﺎ ‪y = f ′(0) × ( x − 0) + f (0) + f (0) :‬‬ ‫ﺤﻴﺙ ‪f ′(0) = −3 , f (0) = 0 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ y = −3 x :‬ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆) (‬ ‫‪ -5‬ﺭﺴﻡ ) ∆ ( ﻭ )‪: (c‬‬ ‫‪y‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬‫‪-6 -5 -4 -3 -2 -1 0‬‬ ‫‪1 2x‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫‪ -1 (II‬ﺘﻌﻴﻴﻥ ‪ a‬ﻭ ‪: b‬‬ ‫‪( )g ( x) = (4x + a)e x + 2x2 + ax + b e x‬‬ ‫‪( )g ( x) = 4x + a + 2x2 + ax + b e x‬‬ ‫‪g( x) = (2x2 + (a + 4) x + a + b)ex‬‬ ‫ﺘﻜﻭﻥ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬ ‫ﺤﻘﻴﻘﻲ ‪. x‬‬ ‫‪a = −7‬‬ ‫‪a + 4 = −3‬‬ ‫)‪g′( x) = f ( x‬‬‫ﻭ ﻴﻜﻭﻥ ‪:‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪b‬‬ ‫=‬ ‫‪7‬‬ ‫‪‬‬ ‫‪a‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫=‬ ‫‪0‬‬ ‫‪( )g ( x) = 2x2 − 7 x + 7 e x‬‬ ‫‪ -2‬ﺘﻌﻴﻴﻥ ‪ a‬ﻭ ‪ b‬ﺤﻴﺙ ﺘﻘﺒل ‪ g‬ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﻭ ﺼﻐﺭﻯ ﻭ ﻫﻲ ﺃﻥ‬ ‫ﻴﻨﻌﺩﻡ ﺍﻟﻤﺸﺘﻕ ﻤﺭﺘﻴﻥ ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﻤﺭﺘﻴﻥ ‪.‬‬ ‫‪ g′( x ) = 0‬ﻴﻜﺎﻓﺊ ‪2x2 + (a + 4) x + a + b = 0 :‬‬ ‫)‪ ∆ = (a + 4)2 − 4(a + b‬ﻭ ﻤﻨﻪ ‪∆ = a2 + 8a + 16 − 4a − 4b :‬‬ ‫ﺇﺫﻥ ‪∆ = a2 + 4a − 4b + 16 :‬‬‫ﻭ ﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ ‪ ∆ > 0‬ﻓﺈﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻭ ﺘﻜﻭﻥ ﺇﺸﺎﺭﺓ ‪ g′ x‬ﻤﺘﻐﻴﺭﺓ ﻤﺭﺘﻴﻥ ﺃﻱ) (‬ ‫ﻤﻥ ﺃﺠل ‪a2 + 4a − 4b + 16 > 0 :‬‬ ‫ﻴﻜﻭﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ ﻗﻴﻤﺘﻴﻥ ﺤﺩﻴﺘﻴﻥ ﻭﺍﺤﺩﺓ ﻜﺒﺭﻯ ﻭ ﺍﻷﺨﺭﻯ ﺼﻐﺭﻯ ‪.‬‬

‫‪ - 5‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ‬ ‫ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫‪ -1‬ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ‪.‬‬ ‫‪ - 2‬ﻤﻌﺭﻓﺔ ﻭﺘﻔﺴﻴﺭ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﻴﺭﻴﺔ‪.‬‬ ‫‪ -3‬ﺇﻨﺸﺎﺀ ﺒﻴﺎﻨﺎﺕ ﺩﻭﺍل ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ ‪.‬‬ ‫ﺗﺼﻤﻴﻢ اﻟﺪرس‬ ‫ﺃﻨﺸﻁﺔ‬ ‫‪ - I‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ‬ ‫‪ –II‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻌﺸﺭﻴﺔ‬ ‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل‬ ‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺤـﻠــــــﻭل‬

‫ﺃﻨﺸﻁﺔ‬ ‫ﺍﻟﻨﺸﺎﻁ ‪:‬‬‫ﻟﻠﺩﺍﻟﺔ ‪( ): f‬‬‫‪c‬‬ ‫ﺍﻟﺒﻴﺎﻨﻲ‬ ‫ﺍﻟﺘﻤﺜﻴل‬ ‫‪‬‬ ‫;‪O‬‬ ‫→‬ ‫‪,‬‬ ‫→‬ ‫‪‬‬ ‫ﻤﺘﺠﺎﻨﺱ‬ ‫ﺃﻨﺸﺊ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ‬ ‫‪-1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪i‬‬ ‫‪j‬‬ ‫‪x ex‬‬ ‫‪ -2‬ﺃﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪y = x‬‬ ‫‪ -3‬ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ‪ Γ‬ﺼﻭﺭﺓ ‪ c‬ﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﺒﺎﻟﻨﺴﺒﺔ) ( ) (‬ ‫ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( ‪.‬‬ ‫‪ -4‬ﻟﺘﻜﻥ ‪ g‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ‪( ). Γ‬‬ ‫‪ -‬ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ‪ - . g‬ﻤﺎ ﻫﻲ ﺼﻭﺭﺓ ‪ 1‬ﺒﺎﻟﺩﺍﻟﺔ ‪. g‬‬ ‫‪ -‬ﺍﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺒﻴﺎﻨﻴﺎ ‪.‬‬ ‫)‪lim g ( x‬‬ ‫)‪, lim g ( x‬‬ ‫‪,‬‬ ‫‪lim‬‬ ‫‪g‬‬ ‫‪(x‬‬ ‫)‬ ‫‪ -‬ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل ‪:‬‬ ‫∞‪x → +‬‬ ‫‪x→0‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫‪x>0‬‬ ‫‪ -‬ﻤﺎ ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ‪ e‬ﺒﺎﻟﺩﺍﻟﺔ ‪g‬‬ ‫‪y‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪2‬‬ ‫‪ -1‬ﺇﻨﺸﺎﺀ ) ‪(c‬‬ ‫‪ -2‬ﺇﻨﺸﺎﺀ ∆ ‪( )1,5‬‬ ‫‪ -3‬ﺇﻨﺸﺎﺀ ) ‪1 ( r‬‬ ‫‪ -4‬ﻤﺠﻤﻭﻉ ﺍﻟﺩﺍﻟﺔ ‪0,5 g‬‬‫‪-1,5‬‬ ‫‪-1 -0,5 0 0,5 1 1,5 2 x‬‬ ‫ﻫﻲ ‪]0;+∞[ :‬‬ ‫‪-0,5‬‬ ‫‪-1‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﺼﻭﺭﺓ ‪: 1‬‬

‫ﻟﺩﻴﻨﺎ ‪ ، f (0) = 1‬ﻨﻅﻴﺭﺓ ﺍﻟﻨﻘﻁﺔ )‪ B (0;1‬ﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﻫﻲ ﺍﻟﻨﻘﻁﺔ )‪ A(1;0‬ﻭ ﻤﻨﻪ‬ ‫‪g (1) = 0‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ‪ g‬ﺒﻴﺎﻨﻴﺎ ‪:‬‬‫∞‪x 0 1 +‬‬‫‪g(x) -‬‬ ‫‪+‬‬ ‫‪ -‬ﺍﻟﻤﺨﻤﻨﺎﺕ ‪:‬‬‫∞‪lim g ( x) =-‬‬ ‫‪,‬‬ ‫∞‪lim g ( x) =+‬‬ ‫‪,‬‬ ‫‪lim‬‬ ‫‪g‬‬ ‫‪(x‬‬ ‫)‬ ‫‪=0‬‬ ‫‪-‬‬‫‪x→0‬‬ ‫∞‪x → +‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬‫‪x>0‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﺼﻭﺭﺓ ‪ e‬ﺒﺎﻟﺩﺍﻟﺔ ‪ : g‬ﻟﺩﻴﻨﺎ ‪ e1 = e :‬ﻭ ﻋﻠﻴﻪ ‪f (1) = e‬‬ ‫ﻨﻅﻴﺭﺓ ﺍﻟﻨﻘﻁﺔ ) ‪ c (1;e‬ﺒﺎﻟﺘﻨﺎﻅﺭ ﺍﻟﻤﺤﻭﺭﻱ ﻫﻭ )‪D (e;1‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪. g (e) = 1 :‬‬

‫‪ - I‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ‬ ‫ﻭ ﺘﺄﺨﺫ‬ ‫‪ -1‬ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﺭﻱ ﻟﻌﺩﺩ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ x e x‬ﻤﻌﺭﻓﺔ ﻭ ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬ ‫ﻗﻴﻤﻬﺎ ﻓﻲ ‪ . +‬ﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬ ‫ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻓﺈﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ e x = a‬ﺤل ﻭﺤﻴﺩ ﻫﺫﺍ ﺍﻟﺤل ﻴﺴﻤﻰ‬ ‫ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﺭﻱ ﻟﻠﻌﺩﺩ ‪ a‬ﻭ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪. lna‬‬ ‫‪y‬‬ ‫‪a = eα‬‬‫‪y = ex‬‬ ‫‪j‬‬ ‫‪o i lna = α x‬‬ ‫‪eln2 = 2‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫‪eln10 = 10‬‬ ‫‪ -‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ e x = 2‬ﻫﻭ ‪ ln2‬ﺃﻱ ﺃﻥ ‪:‬‬ ‫‪ -‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ e x = 10‬ﻫﻭ ‪ ln10‬ﺃﻱ ﺃﻥ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ e0 = 1‬ﻭ ﻋﻠﻴﻪ ‪ln1 = 0 :‬‬ ‫ﻨﺘﺎﺌﺞ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ e1 = e‬ﻭ ﻋﻠﻴﻪ ‪lne = 1 :‬‬ ‫ﺃ(‬ ‫ﺏ(‬

‫ﺝ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ e x = a‬ﻫﻭ ‪ x = lna‬ﻤﻥ ﺃﺠل ‪a > 0‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪. elna = a :‬‬ ‫ﺩ( ﻟﺩﻴﻨﺎ ‪ lnea = a‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪a‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬ ‫‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ ‪.‬‬ ‫ﻟﺩﻴﻨﺎ ‪ln (a.b) = lna + lnb :‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫ﻟﺩﻴﻨﺎ ‪ ) elna+lnb = elna .elnb :‬ﻭ ﺫﻟﻙ ﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ( ﻟﻜﻥ ‪ elna = a‬ﻭ‬ ‫‪ elnb‬ﻭ ﻋﻠﻴﻪ ‪elna+lnb = a.b :‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ﺃﻴﻀﺎ ‪ eln(a.b) = a.b :‬ﻭ ﻋﻠﻴﻪ ‪eln(a.b) = elna+lnb :‬‬ ‫ﻭ ﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻥ‪. ln (a.b) = lna + lnb :‬‬ ‫ﻨﺘﺎﺌﺞ ‪:‬‬ ‫ﺘﻤﺎﻤﺎ ‪.‬‬ ‫ﻤﻭﺠﺏ‬ ‫ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬ ‫‪a‬‬ ‫ﺤﻴﺙ‬ ‫‪ln‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫=‬ ‫‪−lna‬‬ ‫ﺃ(‬ ‫‪‬‬ ‫‪a‬‬ ‫‪‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫‪ln (a.c) = ln1‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪a.c = 1‬‬ ‫ﻨﺠﺩ ‪:‬‬ ‫‪1‬‬ ‫‪=c‬‬ ‫ﺒﻭﻀﻊ‬ ‫‪a‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ lna + lnc = 0 :‬ﺇﺫﻥ ‪lnc = −lna :‬‬ ‫‪ln‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫=‬ ‫‪−lna‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪‬‬ ‫‪a‬‬ ‫‪‬‬‫ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ ‪.‬‬ ‫ﻭ‪b‬‬ ‫‪a‬‬ ‫‪ ln‬ﺤﻴﺙ‬ ‫‪‬‬ ‫‪a‬‬ ‫‪‬‬ ‫=‬ ‫‪lna‬‬ ‫‪−‬‬ ‫‪lnb‬‬ ‫ﺏ(‬ ‫‪‬‬ ‫‪b‬‬ ‫‪‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫‪ln‬‬ ‫‪‬‬ ‫‪a‬‬ ‫‪‬‬ ‫=‬ ‫‪ln‬‬ ‫‪‬‬ ‫‪a.‬‬ ‫‪1‬‬ ‫‪‬‬ ‫=‬ ‫‪lna‬‬ ‫‪+‬‬ ‫‪ln‬‬ ‫‪1‬‬ ‫=‬ ‫‪lna‬‬ ‫‪−‬‬ ‫‪lnb‬‬ ‫‪‬‬ ‫‪b‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪b‬‬ ‫‪‬‬ ‫‪b‬‬‫ﺝ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪ a‬ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻨﺎﻁﻕ ‪n‬‬ ‫ﻟﺩﻴﻨﺎ ‪lnan = nlna :‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬

‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪ a‬ﻭ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻨﺎﻁﻕ ‪ : n‬ﻟﺩﻴﻨﺎ ‪ elnan = an :‬ﻭ‬ ‫ﻟﺩﻴﻨﺎ ‪( )enlna = elna n = an :‬‬ ‫ﻭ ﻤﻨﻪ ‪ elnan = enlna :‬ﻭ ﻋﻠﻴﻪ ‪lnan = nlna :‬‬ ‫‪ -2‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﻴﺭﻴﺔ ‪:‬‬ ‫ﺃ( ﺘﻌﺭﻴﻑ ‪:‬‬‫ﻨﺴﻤﻲ ﺩﺍﻟﺔ ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﻨﻴﺒﻴﺭﻴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ ، ln‬ﻭﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ‬ ‫ﺍﻟﻤﺠﺎل [∞‪ ]0;+‬ﺍﻟﻌﺩﺩ ‪lnx‬‬ ‫ﺃﻱ ‪x lnx :‬‬ ‫ﺏ( ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬ ‫‪ x‬ﻋﻠﻰ‬ ‫‪] [1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ ln‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ‪x‬‬ ‫∞‪0; +‬‬ ‫[∞‪]0; +‬‬‫‪ x‬ﺃﻱ‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ elnx = x‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪x‬‬ ‫ﻟﻨﺤﺴﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪x elnx‬‬ ‫ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ x elnx‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞‪ 0; +‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ‪] [ln′x .elnx‬‬‫‪ x‬ﻭ ﻋﻠﻴﻪ ‪ xln′ ( x ) = 1 :‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪ x‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ‪1‬‬ ‫‪x ln′( x) :‬‬ ‫ﻭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪x‬‬‫‪ x‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬ ‫‪1‬‬ ‫ﻫﻲ ﺍﻟﺩﺍﻟﺔ‬ ‫‪x‬‬ ‫‪lnx‬‬ ‫ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫ﻭ ﻤﻨﻪ‬ ‫= )‪ln′ ( x‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫[∞‪]0; +‬‬‫‪ x‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ ‪1‬‬ ‫ﻭ ﻋﻠﻴﻪ ﺒﻤﺎ ﺃﻥ ‪ ln1 = 0 :‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪lnx :‬‬ ‫‪ x‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞‪. ]0;+‬‬ ‫‪1‬‬ ‫ﻟﻠﺩﺍﻟﺔ ‪x‬‬

‫ﺝ( ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ) ‪h : x ln g ( x‬‬ ‫ﺤﻴﺙ ‪ g‬ﺩﺍﻟﺔ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪. I‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ x ln g x‬ﻫﻲ ﻤﺭﻜﺏ ﺍﻟﺩﺍﻟﺘﺎﻥ ‪ g‬ﻭ ‪ ln‬ﺤﻴﺙ ‪ g‬ﻤﻭﺠﺒﺔ ﻭﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ) (‬ ‫ﻋﻠﻰ ‪ I‬ﻭ ﺍﻟﺩﺍﻟﺔ ‪ ln‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪+‬‬‫ﻭ ﻋﻠﻴﻪ ‪ h‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I‬ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ﺍﻟﺩﺍﻟﺔ‬‫‪x‬‬ ‫)‪g′( x‬‬ ‫‪h′ : x‬‬ ‫‪g′‬‬ ‫(‬ ‫)‪x‬‬ ‫×‬ ‫‪g‬‬ ‫‪1‬‬ ‫ﺃﻱ ‪g ( x) :‬‬ ‫)‪(x‬‬ ‫ﺩ( ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ‪:‬‬ ‫• ∞‪lim lnx = +‬‬ ‫∞‪x→+‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﺠﺎل ∞‪ A;+‬ﺤﻴﺙ ‪[ [10n ≤ A < 10n+1 :‬‬ ‫ﺤﺴﺏ ﺘﻌﺭﻴﻑ ‪ e‬ﻟﺩﻴﻨﺎ ‪ 2 < e < 3 :‬ﻭ ﻋﻠﻴﻪ ‪e2 < 10 :‬‬‫ﻭ ﻤﻨﻪ ‪ e2 5 < 105 :‬ﺇﺫﻥ ‪ e10 < 105 :‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪( )lne10 < ln105 :‬‬‫ﺃﻱ ‪ 10 < ln105 :‬ﺇﺫﺍ ﻜﺎﻥ ‪ x ≥ 105 10n :‬ﻓﺈﻥ ‪( )lnx ≥ ln (10)5 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ lnx ≥ 10n.ln105 :‬ﻟﻜﻥ ‪ln105 > 10 :‬‬ ‫ﻭ ﻤﻨﻪ ‪ lnx ≥ 10n+1 > A :‬ﺇﺫﻥ ‪lnx > A :‬‬‫[∞‪( )lnx ∈[ A;+‬‬‫‪:‬‬ ‫ﻓﺈﻥ‬ ‫‪x‬‬ ‫∈‬ ‫‪‬‬ ‫‪105‬‬ ‫‪10‬‬ ‫;‬ ‫∞‪+‬‬ ‫‪‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل‬ ‫‪‬‬ ‫‪‬‬ ‫∞‪lim lnx = +‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫∞‪x→+‬‬ ‫∞‪lim lnx = −‬‬ ‫•‬ ‫‪x→0‬‬ ‫‪x>0‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫∞‪t → +‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪x →0‬‬ ‫ﻟﻤﺎ‬ ‫=‪t‬‬ ‫‪1‬‬ ‫ﻨﺠﺩ ‪:‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫ﺒﻭﻀﻊ ‪:‬‬ ‫‪x‬‬ ‫‪t‬‬ ‫‪x>0‬‬‫‪( )lim‬‬‫‪lnx‬‬ ‫‪1‬‬ ‫‪lim‬‬ ‫‪t‬‬‫‪x→0‬‬ ‫∞‪t →+‬‬ ‫=‬ ‫‪lim‬‬ ‫‪ln‬‬ ‫=‬ ‫‪−lnt‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪= −∞ :‬‬‫‪x>0‬‬ ‫∞‪t →+‬‬

‫‪lim‬‬ ‫‪lnx‬‬ ‫=‬ ‫‪0‬‬ ‫•‬ ‫‪x‬‬ ‫∞‪x → +‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﺭﺃﻴﻨﺎ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ e x ≥ x : x‬ﻭ ﻋﻠﻴﻪ‬ ‫ﻤﻥ ﺃﺠل ‪ lne x ≥ lnx : x > 0‬ﺃﻱ ﺃﻥ ‪x ≥ lnx :‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪x ≥ ln x :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ 2 x ≥ lnx :‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪x‬‬ ‫≥‬ ‫‪1‬‬ ‫‪lnx‬‬ ‫‪:‬‬ ‫ﺇﺫﻥ‬ ‫‪2‬‬‫‪lim‬‬ ‫‪2‬‬ ‫‪=0‬‬ ‫‪2 lnx‬‬ ‫‪2 x lnx‬‬ ‫‪x‬‬ ‫‪:‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ‬ ‫≥‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪x ≥x‬‬‫‪x→0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x>0‬‬ ‫‪lim‬‬ ‫‪lnx‬‬ ‫=‬ ‫‪0‬‬ ‫ﻓﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺩﻨﻰ ﻓﺈﻥ ‪:‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫• ‪lim xlnx = 0‬‬ ‫‪x→0‬‬ ‫‪x>0‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫∞‪t → +‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪x →0‬‬ ‫ﻟﻤﺎ‬ ‫ﻓﺈﻨﻪ ‪:‬‬ ‫=‪t‬‬ ‫‪1‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫ﺒﻭﻀﻊ ‪:‬‬ ‫‪x‬‬ ‫‪t‬‬ ‫‪x>0‬‬ ‫‪lim‬‬ ‫‪xlnx‬‬ ‫=‬ ‫‪lim 1 ln 1‬‬ ‫=‬ ‫‪lim‬‬ ‫‪−lnt‬‬ ‫=‬ ‫‪0‬‬ ‫‪tt→+∞ t‬‬ ‫‪t‬‬ ‫‪x→0‬‬ ‫∞‪t → +‬‬ ‫‪x>0‬‬ ‫‪lim‬‬ ‫‪ln (1 +‬‬ ‫)‪x‬‬ ‫=‬ ‫‪1‬‬ ‫•‬ ‫‪x→0‬‬ ‫‪x‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ t → lnt : f‬؛ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻭ ﻗﺎﺒﻠﺔ ﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫∞‪ 0;+‬ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪] [. 1‬‬ ‫‪f ′ (1) = lim‬‬ ‫‪f‬‬ ‫‪(1+ h) −‬‬ ‫‪f‬‬ ‫)‪(1‬‬ ‫ﻤﻥ ﺠﻬﺔ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪h→0‬‬ ‫‪h‬‬‫ﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ ‪:‬‬ ‫‪(1) ...‬‬ ‫‪f‬‬ ‫‪′‬‬ ‫)‪(1‬‬ ‫=‬ ‫‪lim‬‬ ‫‪ln‬‬ ‫‪(1 +‬‬ ‫)‪h‬‬ ‫ﺃﻱ ﺃﻥ ‪:‬‬ ‫‪h→0‬‬ ‫‪h‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook