– 1ﺘﻌﺭﻴﻑ : fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Iﻤﻥ ﻨﺴﻤﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻜل ﺩﺍﻟﺔ gﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ I ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ I ﻭﺘﺤﻘﻕ :ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ xﻤﻥ ( ) ( )g′ x = f x : I xﻋﻠﻰ xﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ 0 : f ﺍﻷﻤﺜﻠﺔ : (1ﺍﻟﺩﺍﻟﺔ 4 : g (2ﺍﻟﺩﺍﻟﺔ x x3 + 4 x : gﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ xﻋﻠﻰ 3x2 + 4: f (3ﺍﻟﺩﺍﻟﺔ x : g xﻋﻠﻰ ﺍﻟﻤﺠﺎل 1 :f ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x 2x [∞]0;+ (4ﺍﻟﺩﺍﻟﺔ x cos x : gﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x sin x : fﻋﻠﻰ (5ﺍﻟﺩﺍﻟﺔ x x2 + sin x : gﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x 2 x + cos x : fﻋﻠﻰ
– 2ﻭﺠﻭﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ : ﻤﺒﺭﻫﻨﺔ ) 1ﺘﻘﺒل ﺩﻭﻥ ﺒﺭﻫﺎﻥ ( :ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل ﺍﻟﻌﻜﺱ ﻏﻴﺭ ﺼﺤﻴﺢ : ﻟﻴﺴﺕ ﻜل ﺩﺍﻟﺔ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻻ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ . ﻤﺜﺎل ﻤﻀﺎﺩ : ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ :f ( x ) = 2 x sin 1 − cos 1 : ﻤﻥ ﺃﺠل x ≠ 0 x x ﻭ ﻤﻥ ﺃﺠل f ( x ) = 0 : x = 0 ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ) 0ﻷﻨﻬﺎ ﻻ ﺘﻘﺒل ﻨﻬﺎﻴﺔ ﻋﻨﺩ ( 0 ﻟﻜﻨﻬﺎ ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻷﻗل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : (g )x = x2 sin 1 : ﻤﻥ ﺃﺠل x ≠ 0 x ﻭ ﻤﻥ ﺃﺠل g ( x ) = 0 : x = 0 ﻜﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﻓﺸﺭﻁ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻟﻭﺠﻭﺩ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﺸﺭﻁ ﻜﺎﻑ ﻭ ﻏﻴﺭ ﻻﺯﻡ .ﺃﻱ ﻴﻜﻔﻲ ﺃﻥ ﺘﻜﻭﻥ ﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻟﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ I
– 3ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل : ﻤﺒﺭﻫﻨﺔ :ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل gλﺍﻟﺘﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Iﻭ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ ( ) ( )gλ x = g x + λ : ﺤﻴﺙ gﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ gﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ I ﻭ ﻋﻠﻴﻪ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Iﻓﺈﻥ ( ) ( )g′ x = f x : ﻭ ﻟﺩﻴﻨﺎ gλ :ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ I ﻭ ﻋﻠﻴﻪ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Iﻓﺈﻥ ( ) ( )gλ′ x = f x ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ( ) ( )gλ′ x = g′ x : I ﻭ ﻤﻨﻪ gλ′ ( x) − g′( x) = 0ﺃﻱ ﺃﻥ ( gλ − g)′ ( x) = 0 : ﺇﺫﻥ gλ − g :ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ . ﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺜﺎﺒﺕ λﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ I gλ ( x) − g( x) = λ ﻭ ﺒﺎﻟﺘﺎﻟﻲ gλ ( x ) = g ( x ) + λ : ﻤﺜﺎل: 1 ﺍﻟﺩﺍﻟﺔ x x4 − x : gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻟﻠﺩﺍﻟﺔ f x = 4 x3 − 1 : fﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ( )gλ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ gλ ( x) = x4 − x + λ : ﺤﻴﺙ λﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ . ﻤﺜﺎل: 2
ﺍﻟﺩﺍﻟﺔ x cos x - sin x : gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻟﻠﺩﺍﻟﺔ . x - sin x - cos x : fﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gλﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )gλ x = cos x - sin x + λ : ﺤﻴﺙ λﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ . – 4ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ y0ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ x0ﻟﻠﻤﺘﻐﻴﺭ : ﻤﺒﺭﻫﻨﺔ :ﻟﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﻋﻠﻰ Iﺘﺄﺨﺫ ﻗﻴﻤﺔ ﻤﻌﻴﻨﺔ y0ﻤﻥ ﺃﺠل ﻗﻴﻤﺔ ﻤﻌﻠﻭﻤﺔ ، x0ﻤﻥ ، Iﻟﻠﻤﺘﻐﻴﺭ . x ﺍﻟﺒﺭﻫﺎﻥ :ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻭ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ x0 . Iﻋﺩﺩ ﻴﻨﺘﻤﻲ ﺇﻟﻰ . I y0ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻁﻲ . ﻨﻌﻠﻡ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gλﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ gλ x = g x + λ :ﺤﻴﺙ λﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ( ) ( ). gλ x0 = y0ﻭ ﻤﻨﻪ g x0 + λ = y0 :ﻭ ﻋﻠﻴﻪ ( ) ( ): ) λ = y0 − g ( x0ﻭ ﺒﺎﻟﺘﺎﻟﻲ gλ ( x ) = g ( x ) + y0 − g ( x 0 ) : ﻭ ﻤﻨﻪ ﺘﻭﺠﺩ ﻗﻴﻤﺔ ﻭﺤﻴﺩﺓ ﻟﻠﻌﺩﺩ λﺇﺫﻥ ﺘﻭﺠﺩ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﻟﻠﺩﺍﻟﺔ . f ﻤﺜﺎل :ﻨﻌﻠﻡ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gλﻟﻠﺩﺍﻟﺔ x x2 − 4 : f∈ ( )λ x3 gλﺤﻴﺙ : x = 3 − 4x + λ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ :ﻟﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 4ﻤﻥ ﺃﺠل x = 0
03 − )4(0 + λ = 4 : ﺒﺎﻟﺘﺎﻟﻲ ﻭ ﺃﻱ gλ (0) = 4 : 3 ﻭ ﻤﻨﻪ λ = 4 : gλﻭ ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ( ). x = x4 − 4x + 4 ﻭ ﻋﻠﻴﻪ : 3 – 5ﺠﺩﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﺄﻟﻭﻓﺔ :ﻤﻥ ﺠﺩﻭل ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻨﺴﺘﻨﺘﺞ ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ ﺍﻟﺫﻱ ﻴﻌﻁﻲ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gﻟﺒﻌﺽ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ fﻓﻲ ﺍﻟﻤﺠﺎل λ . Iﻴﺩل ﻓﻲ ﻫﺫﺍ ﺍﻟﺠﺩﻭل ﻋﻠﻰ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ : ﺍﻟﻤﺠﺎل I ﺍﻟﺩﺍﻟﺔ g ﺍﻟﺩﺍﻟﺔ f g(x) = λ f (x) = 0 (g )x = x n+1 + λ f ( x) = xn n+1 ∈n ∗ ﺃﻭ ∗ (g )x = -1 + λ f )( x = 1 − + xn ( )n-1 xn-1 n≥ 2ﻭ ∈n ∗ g(x) = 2 x + λ f (x) = 1 + g( x) = -cos x + λ x g( x) = sin x + λ f ( x) = sin x f ( x) = cos x ﻜل ﺍﻟﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل f ( x ) = 1 cos2 -π + kπ ; π + kπ g ( x) = tan x + λ x 2 2 ﺃﻭ ﺤﻴﺙ ∈ k f (x) =1+tan2 x
– 6ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ :ﻟﻠﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺎ ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻟﺨﻭﺍﺹ ﺍﻵﺘﻴﺔ ﺍﻟﺘﻲ ﺘﺴﺘﻨﺘﺞ ﻤﺒﺎﺸﺭﺓ ﻤﻥ ﺨﻭﺍﺹ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ . ﺨﺎﺼﻴﺔ : 1ﺇﺫﺍ ﻜﺎﻨﺕ g1ﻭ g2ﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ f1ﻭ f2ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ g2 + g1ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f2 + f1ﻋﻠﻰ . I ﻤﺜﺎل : ﺍﻟﺩﺍﻟﺔ x x + cos x :ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : f : x 1 − sin xﻋﻠﻰ . ﺨﺎﺼﻴﺔ : 2ﺇﺫﺍ ﻜﺎﻨﺕ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻭ ﻜﺎﻥ λﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ λ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . λ f ﻤﺜﺎل :ﺍﻟﺩﺍﻟﺔ x 2sin x :ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x 2cos x :ﻋﻠﻰ . ﺨﺎﺼﻴﺔ : 3 nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ :ﻋﻠﻰ I ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f ′. f n : 1 f n+1 : ﺍﻟﺩﺍﻟﺔ n+1 xﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : ﻤﺜﺎل : ﺍﻟﺩﺍﻟﺔ ( )2 x x2 + 1 2 : 1 x2 + 1 3 xﻋﻠﻰ) (3 ﺨﺎﺼﻴﺔ : 4 nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ f .ﺩﺍﻟﺔ ﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﺇﺫﺍ ﻜﺎﻨﺕ
fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل Iﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ f ′ −1ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ n − 1 f n−1 :ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f nﻋﻠﻰ ( ). I ﻤﺜﺎل : 2x x −1x2 + 1 ﺍﻟﺩﺍﻟﺔ 2 x2 + 1 2 : xﻋﻠﻰ ( ) ( ). 3 ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ﺨﺎﺼﻴﺔ : 5 fﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل . Iﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل Iﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ f :ﺩﺍﻟﺔ f′ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ 2 fﻋﻠﻰ . I ﻤﺜﺎل : xﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ : ﺍﻟﺩﺍﻟﺔ x2 + x + 1 :x 2x +1 2 x2 + x + 1 ﺨﺎﺼﻴﺔ : 6 fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻭ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ . I1 hﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻓﻲ ﻤﺠﺎل I2ﻭ ﺘﺄﺨﺫ ﻗﻴﻤﺘﻬﺎ ﻓﻲ I1ﺇﺫﺍ ﻜﺎﻨﺕ hﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ I2ﻭ ﻜﺎﻨﺕ h′ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ I2ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ : x g h x ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ) ( x h′( x ) . f h( x )ﻋﻠﻰ ﺍﻟﻤﺠﺎل . I2 ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ x a cos(ax + b) : g ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل x h′( x ) . f h( x ) :
ﺤﻴﺙ h( x) = ax + b :ﻭ h′( x) = aﻭ f ( x) = cos x ﻭ ﻨﻌﻠﻡ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻫﻲ ﺍﻟﺩﻭﺍل : x sin(ax + b) + λ ﻨﺘﺎﺌﺞ : -ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x cos ax + b :ﻫﻲ ﺍﻟﺩﻭﺍل) ( xﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ 1 sin ( ax + b ) + λ a ﻤﻊ a ≠ 0ﻭ ∈ . λ -ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x sin ax + b :ﻫﻲ ﺍﻟﺩﻭﺍل ( ): xﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ −1 ( cos ax + )b + λ a ﻤﻊ a ≠ 0ﻭ ∈ . λ
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1ﻀﻊ ﻋﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ× ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ : – 1ﺇﺫﺍ ﻜﺎﻨﺕ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻤﺠﺎل I ﻓﺈﻥ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ . g xﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻭﺤﻴﺩﺓ – 2ﺍﻟﺩﺍﻟﺔx3 − 5 x : xﻋﻠﻰ . ﻟﻠﺩﺍﻟﺔ3 x2 − 5 : – 3ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ﻴﻤﻜﻥ ﺘﻌﻴﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻷﺼﻠﻴﺔ. – 4ﺇﺫﺍ ﻜﺎﻨﺕ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻓﺈﻥ g2ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . f 2 – 5ﺍﻟﺩﺍﻟﺔ g′ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . g′′ – 6ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﺘﻨﻌﺩﻡ ﻋﻨﺩ ﻋﺩﺩ x0ﻤﻥ . I – 7ﺍﻟﺩﺍﻟﺔ x sin 2 xﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ x cos 2 xﻋﻠﻰ .. xﻋﻠﻰ 1 xﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ −1 x – 8ﺍﻟﺩﺍﻟﺔ x2 – 9ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻫﻲ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ . – 10ﺍﻟﺩﺍﻟﺔ f (n) :ﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ . f – 11ﺍﻟﺩﺍﻟﺔ x cos x + sin x :ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ. x sin x − cos x : – 12ﺇﺫﺍ ﻜﺎﻨﺘﺎ gﻭ hﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻨﻔﺱ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ( ) ( ). h x − g x = λ : I xﻻﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞] [0;+ 1 – 13ﺍﻟﺩﺍﻟﺔ x
– 14ﺘﻭﺠﺩ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﺇﺤﺩﻯ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻫﻲ ﻨﻔﺴﻬﺎ . xﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ0 – 15ﺍﻟﺩﺍﻟﺔ x3 ﻟﻠﺩﺍﻟﺔ x 3 x2 – 16ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻓﻬﻲ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل . – 17ﻜل ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Iﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ . I -18ﻜل ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a;bﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ] [ ﻋﻠﻰ ]. [a;b xﻫﻲ ﺍﻟﺩﻭﺍل – 19ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ( )x2 + 1 2 ∈λ 1 x2 + 1 3 + λ ( )، x 3 xﻫﻲ ﺍﻟﺩﻭﺍل : x n – 20ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ∑ ai xi : i=0 ∑n i 1 1 ai x i +1 + λ + i=0 ﺍﻟﺘﻤﺭﻴﻥ . 2 ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻤﻌﻴﻨﺎ ﻤﺠﺎل ﺍﻟﺩﺭﺍﺴﺔ :1) f ( x) = 2x − 1 2) f ( x) = x2 − 4x + 33) f ( x) = −3x3 + 5x2 − 4 4) f ( x) = x4 − x3)5 f ( )x = 4 6) f = )(x 1 − 1 x2 x2 x3
7) f ( x) = 1 8) f ( x) = 1 x x−1 9) f ( x ) = cos2 x − sin2 x 10) f ( x ) = sin 2 x cos3 x . 3 ﺍﻟﺘﻤﺭﻴﻥ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻤﻌﻴﻨﺎ ﻤﺠﺎل ﺍﻟﺩﺭﺍﺴﺔf ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ( ) ( )1) f ( x) = x2 x3 + 1 2 2) f ( x) = ( x + 1) x2 + 2x −1 3 ( ) x x−1 + x2 − 2x + 4 33) f x = ( x2 1) 2 ( )4) f ( x) = 5) f ( x) = x3 6) f ( x) = x x4 + 1 x2 −17) f ( x) = 1 cos x − π 8) f ( x) = cos2x − sin3x 2 10) f ( x) = cos2x.sin2x 29) f ( x) = sin x.cos3 x 4 ﺍﻟﺘﻤﺭﻴﻥ( ) ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲg 0 = 0 ﺍﻟﺘﻲ ﺘﺤﻘﻕI ﻋﻠﻰ ﺍﻟﻤﺠﺎلf ﻟﻠﺩﺍﻟﺔg ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ : 1) f ( x) = sim x + cos x 2) f ( x) = 1 2 2 x+1 I= I= ]-1;+∞[3) f ( x ) = ( x 1 2) 3 4) f ( x) = xn -1 ; n∈ + I= ]-∞; −2[ I=
)5 f ( x ) = 1 x )6 f ( )x = x + 1 − ( x 1 cos2 + 1)2 =I − π ; π [∞I= ]-1;+ 2 27) f ( x) = sin x.cosn x )8 f ( )x = ( x 1 + ( x 1 + 2)2 + 2)3 ∈ I= ، n [I= ]-∞; −2 ﺍﻟﺘﻤﺭﻴﻥ 5 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( )f x = sin3 x : (1ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ . f (2ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ hﻟﻠﺩﺍﻟﺔ fﻭ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 2ﻤﻥ ﺃﺠل x = 0 ﺍﻟﺘﻤﺭﻴﻥ 6 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : f ( )x = x3 − 3x − (x 1)2 (1ﻋﻴﻥ D fﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻟﻠﺩﺍﻟﺔ . f (2ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ D fﻓﺈﻥ : f ( x ) = ax + b + ( x c 1)2 − ﺤﻴﺙ aﻭ bﻭ cﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﺎ . (3ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ∞] [. 1;+ (4ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ hﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ x = 2 ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ∞] [. 1;+ ﺍﻟﺘﻤﺭﻴﻥ 7
(1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ ( )g x = 3 − 2 x : (2ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( )( )f x = α x2 + β x + γ 3 − 2 x :ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ αﻭ βﻭ γﺒﺤﻴﺙ ﺘﻜﻭﻥ fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻟﻤﺠﺎل . ∞− ; 3 2 (3ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ gﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ . ﺍﻟﺘﻤﺭﻴﻥ 8 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ f ( x ) = sin x + sin3 x : f ( 1ﺍﺤﺴﺏ ) f ′( xﻭ ) . f ′′( x ( 2ﺒﻴﻥ ﺃﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ αﻭ βﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺤﻘﻴﻘﻲ xﻓﺈﻥ f ′′( x ) + α f ( x ) = β sin x : (3ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ gﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ .. h π = 1 : ﺒﺤﻴﺙ f ( 4ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ hﻟﻠﺩﺍﻟﺔ 2 F .ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﺘﻤﺭﻴﻥ 9 fﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻭ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Gﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎ ﻴﻠﻲ G ( x ) = F ( x ) − F ( − x ) : ﺒﻴﻥ ﺃﻥ Gﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ .( ). f x = x2 +1 ﺒﺎﻟﻌﺒﺎﺭﺓ : ﺍﻟﺘﻤﺭﻴﻥ 10 x2 + x+1 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ + Cﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ( ). – 1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ + – 2ﺒﻴﻥ ﺃﻥ Cﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ( ).
– 3ﻟﺘﻜﻥ Fﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ∞ 0;+ﻭ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ[ ] ﻋﻨﺩ . 0ﺒﻴﻥ ﺃﻥ Fﻤﻭﺠﻭﺩﺓ . – 4ﺍﺴﺘﻨﺘﺞ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ . F – 5ﻨﻌﺭﻑ ﻋﻠﻰ +ﺍﻟﺩﺍﻟﺘﺎﻥ Hﻭ Kﻜﻤﺎ ﻴﻠﻲ :)H ( x = F ( x) − x ﻭ )K ( x = F ( x) − 2 x 3 ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺘﺎﻥ Hﻭ Kﻋﻠﻰ . + ﺍﺴﺘﻨﺘﺞ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﺤﻴﺙ x ≥ 0 - - . 2 x ≤ ≤ )F(x x : ﻓﺈﻥ 3 ( ). lim F x ﺍﺴﺘﻨﺘﺞ - ∞x→+ – 6ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ F x = πﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ αﻓﻲ ( ). + π ≤ α ≤ 3 π -ﺒﻴﻥ ﺃﻥ: 2 y′ = x2 + ( x 1 ﺍﻟﺘﻤﺭﻴﻥ 11 ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ : + 1)2 -ﻋﻴﻥ ﺤﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻋﻠﻰ { }. − −1 -ﺍﺴﺘﻨﺘﺞ ﺍﻟﺤل ﺍﻟﺫﻱ ﻴﻨﻌﺩﻡ ﻤﻥ ﺃﺠل . x = 0 -ﻨﻀﻊ . y = f x :ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ( ). f -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ ( )C ﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -ﺃﻨﺸﺊ ) (Cﺒﻌﺩ ﺤﺴﺎﺏ . f ( −2) , f (0) , f ( 2) , f (1) :
ﺍﻟﺘﻤﺭﻴﻥ 12ﻋﻴﻥ ﺍﻟﺤل ﺍﻟﺫﻱ ﻴﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 1ﻤﻥ ﺃﺠل x = 2ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ :. = y′ﻋﻠﻰ x+1 x2 + 2x + 8 -ﺒﻭﻀﻊ . y = f x :ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ( ). f -ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ Cﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ( ). f -ﺍﺤﺴﺏ ﻜل ﻤﻥf (-5) , f (-4), f (-2) , f ( 3) , f ( 2) , f (0) :ﺃﻋﻁﻲ ﺍﻟﻘﻴﻡ ﻤﺩﻭﺭﺓ ﺇﻟﻰ 10−2ﺜﻡ ﺃﻨﺸﺊ ( ). C
ﺍﻟﺤـﻠــــــﻭل . × (4 × (3 × (2 ﺍﻟﺘﻤﺭﻴﻥ. 1 . × (8 × (7 × (6 √ (1 . √ (12 √ (11 × (10 √ (5 . × (16 √ (15 √ (14 √ (9 . √ (20 × (19 √ (18 × (13 × (17 ﺍﻟﺘﻤﺭﻴﻥ . 2 ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ : = Df (1ﻟﺩﻴﻨﺎ f x = 2 x − 1 :ﻭ ﻤﻨﻪ ( ): ∈ g( x) = x2 − x + λ ,λ f ( x ) = x2 − 4 x + 3ﻭ ﻤﻨﻪ Df = : (2ﻟﺩﻴﻨﺎ : (3ﻟﺩﻴﻨﺎ :)g( x = x3 − 2x2 + 3x + λ ∈ ,λ (4ﻟﺩﻴﻨﺎ : 3 (5ﻟﺩﻴﻨﺎ : f ( x ) = −3 x3 + 5 x2 − 4ﻭ ﻤﻨﻪ Df = :(g )x = − 3 x4 + 5 x3 − 4x + λ ∈; λ 4 3 f x = x4 − x3ﻭ ﻤﻨﻪ : = ( )Df g ( )x = 1 x5 − 1 x4 + λ ∈; λ 5 4 4 = ( )Df f x = x2 ﻭ ﻤﻨﻪ ∗ :
ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ −∞;0ﻭ ∞ 0;+ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ[ ] [ ] ( ). g x = −4 gﻋﻠﻰ ﻜل ﻤﻨﻬﻤﺎ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : x 11 = ( )Df = x2 − x3 6) fﻭ ﻤﻨﻪ ∗ : x (6ﻟﺩﻴﻨﺎ :ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﺠﻤﻭﻉ ﺩﺍﻟﺘﻴﻥ ﻨﺎﻁﻘﺘﻴﻥ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ : −∞;0ﺃﻭ ∞ 0;+ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ] [ ] [:(g )x = −1 + 1 + λ ∈ ,λ x 2x2 f x=1 x = ( )Df ∗ (7ﻟﺩﻴﻨﺎ : + ﻭ ﻤﻨﻪ :ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻤﻘﻠﻭﺏ ﺩﺍﻟﺔ ﺼﻤﺎﺀ ﻤﺴﺘﻤﺭﺓ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ D fﻭ ﻤﻨﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ gﺤﻴﺙ : ∈g(x) = 2 x + λ ; λ ﻭ ﻤﻨﻪ Df = ]1;+∞[ : = )f (x 1 (8 x−1ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻷﻨﻬﺎ ﻤﻘﻠﻭﺏ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻤﺴﺘﻤﺭﺘﻴﻥ ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ gﺤﻴﺙ : ∈ g(x) = 2 x −1 + λ ; λ = Df f ( x ) = cos2 x − sin2 x (9ﻭ ﻤﻨﻪ : ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ g ﻭ ﻟﺩﻴﻨﺎ f ( x ) = cos 2 x : g ( x ) = 1 sin 2 x + λ ∈; λ ﻭ ﻤﻨﻪ : 2
f ( x ) = sin 2 x (10ﻟﺩﻴﻨﺎ : cos3 x ﻭﻤﻨﻪ Df = { x ∈ : cos x ≠ 0} : x ≠ π + kπ ; ∈k ﺇﺫﻥ : 2 Df = π + kπ ; π + ( k + )1 π , ∈k ﺃﻱ : 2 2 2 ﻭ ﻋﻠﻴﻪ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ D fﻷﻨﻬﺎ ﺤﺎﺼل ﻗﺴﻤﺔ ﻤﺭﻜﺏ ﺩﻭﺍل ﻤﺜﻠﻴﺔ ﻭ ﻜﺜﻴﺭﺍﺕ ﺤﺩﻭﺩ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ gf ( )x = 2sin x.cos x = 2sin x = −2. − sin x ﻭ ﻟﺩﻴﻨﺎ : .cos3 x .cos2 x [cos x]2 g ( x ) = −2 × −1 + λ ﻭ ﻤﻨﻪ : cos x 2 λﺜﺎﺒﺕ ﺤﻘﻴﻘﻲ ( ). g x = cos + λ ﺇﺫﻥ : ﺤﻴﺙ x ﺍﻟﺘﻤﺭﻴﻥ . 3 ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : = Df (1ﻟﺩﻴﻨﺎ f x = x2 x3 + 1 2 :ﻭ) () ( 1 x3 + 1 2 ( )f( x ) = 3 .3 x2 ﻭ ﻤﻨﻪ : 1 1 x3 + 1 3 + λ ( )g( x ) = 3 × 3 ; ∈λ ﺇﺫﻥ : 1 x3 + 1 3 + λ ( ). 9 = )g(x ﺃﻱ :
( )Df = ؛2) f ( x) = ( x + 1) x2 + 2x − 1 3 : ( ﻟﺩﻴﻨﺎ2 ( )f 1 3 ( x) = 2 .(2x + 2) x2 + 2x − 1 : ﻭ ﻤﻨﻪ 1 1 x2 + 2x − 1 4 + λ(( )gx) = 2 × 4 ; λ∈ : ﺇﺫﻥ 1 x2 + 2x − 1 4 + λ ( ). 8 g(x) = ; λ∈ : ﺃﻱ Df = f (x) = x : ( ﻟﺩﻴﻨﺎ3 x2 + 1 2 ( )؛ ( x) 1 2x 2 x2 + 1 2 ( )f = × : ﻭ ﻤﻨﻪ . g(x) = 1 −1 + λ ; λ∈ : ﺇﺫﻥ 2× x2 + 1 : ( ﻟﺩﻴﻨﺎ4 x−1 f (x) = x2 − 2x + 4 3 ( )Df = ؛ ( x ) 1 2x − 2 2 x2 − 2x + 4 2 ( )f = × : ﻭ ﻤﻨﻪ. g(x) = 1 x2 −1 +λ ; λ∈ : ﺇﺫﻥ 2× − 2x + 4 Df = ( )؛ x3 f x= x4 + 1 : ( ﻟﺩﻴﻨﺎ5 f ( x ) = 1 × 2 4x3 : ﻭ ﻤﻨﻪ 2 x4 + 1
. g(x) = 1 × x4 + 1 + λ ; λ∈ : ﺇﺫﻥ 4 xDf = ]−∞;−1[ ∪ ]−1;+∞[ ؛f ( x) = x2 − 1 : ( ﻟﺩﻴﻨﺎ6 f (x) = 2x : ﻭ ﻤﻨﻪ 2 x2 −1 . g( x) = x2 −1 + λ ; λ ∈ : ﺇﺫﻥ Df = ؛ f ( x) = 1 cos x − π : ( ﻟﺩﻴﻨﺎ7 2 : ﺇﺫﻥ 2 g ( x ) = 1 sin x − π + λ ;λ∈ 2 2 Df = ؛f ( x) = cos 2x − sin3x : ( ﻟﺩﻴﻨﺎ8g ( x) = 1 sin 2x + 1 cos 3x + λ ; λ∈ : ﺇﺫﻥ 2 3 D f = ؛f ( x) = sin x.cos3 x : ( ﻟﺩﻴﻨﺎ9 g ( x ) = 1 cos4 x + λ ; λ∈ : ﺇﺫﻥ 4 Df = ؛f ( x) = cos 2x.sin2x : ( ﻟﺩﻴﻨﺎ10 f ( x ) = 1 × 2 sin 2 x .cos 2 x : ﻭ ﻤﻨﻪ 2 f ( x ) = 1 sin 4 x : ﻭ ﻋﻠﻴﻪ 2
(g )x = −1 × 1 cos 4x + λ ﺇﺫﻥ : 2 4 ﺃﻱ : −1g ( x ) = 8 cos 4 x + λ ∈; λ ﺍﻟﺘﻤﺭﻴﻥ . 4 ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ : =I ؛ f ( )x = sin x + cos x (1ﻟﺩﻴﻨﺎ : 2 2 −1 x 1 x(g )x = 1 cos 2 + 1 sin 2 + λ ﺇﺫﻥ : 22 x x g ( x ) = −2 cos 2 + 2 sin 2 + λ ﺃﻱ : ﻟﻜﻥ : g (0) = 0ﻭﻤﻨﻪ −2 + 0 + λ = 0 :ﺃﻱλ = 2 :. = )g(x −2 cos x + 2 sin x + 2 ﺇﺫﻥ: 2 2 1 ؛ [∞I= ]-1;+ = )f (x x+1 (2ﻟﺩﻴﻨﺎ : f (x) = 2× 2 1 ﻭ ﻤﻨﻪ : x+1 ﺇﺫﻥ g ( x ) = 2 x + 1 + λ :ﻟﻜﻥ g ( 0) = 0 :ﻭﻤﻨﻪ 2 + λ = 0 :ﺃﻱ λ = −2 : ﺇﺫﻥ . g ( x ) = 2 x + 1 − 2 : [I= ]-∞; −2 ؛ f ( x ) = ( x 1 )2 3 (3ﻟﺩﻴﻨﺎ : +
g( x) = 2( −1 + λ : ﺇﺫﻥ x + 2)2λ = 1 :ﺃﻱ − 1 + λ = 0 :ﻭ ﻤﻨﻪ g (0) = 0 : ﻟﻜﻥ 8 8 −1 1 . g( x) = 2( + 8 : ﺇﺫﻥ x + 2)2 I= ؛f ( x ) = xn − 1 ; n ∈ : ( ﻟﺩﻴﻨﺎ4 g( x) = x n+1 − x + λ : ﺇﺫﻥ n+1λ = 0 : ﺃﻱ 0 − 0 + λ = 0 : ﻭ ﻤﻨﻪg (0) = 0 : ﻟﻜﻥ . g(x) = x n+1 x : ﺇﺫﻥ n+1− : ( ﻟﺩﻴﻨﺎ5 : ﺇﺫﻥ I= − π ; π2 ؛ f ( x) = 1 x cos2 2 g ( x) = tan x + λλ = 0 : ﺃﻱtan0 + λ = 0 : ﻭ ﻤﻨﻪg (0) = 0 : ﻟﻜﻥ . g ( x ) = tan x : ﺇﺫﻥI=]-1 ; +∞[ ؛ 6) f ( x) = x + 1 − ( x 1 1)2 : ( ﻟﺩﻴﻨﺎ6 + g(x) = x2 +x+ 1 +λ : ﺇﺫﻥ 2 x+1λ = −1 : ﺃﻱ1 + λ = 0 : ﻭ ﻤﻨﻪg (0) = 0 : ﻟﻜﻥ . g(x) = x2 + x 1 −1 : ﺇﺫﻥ 2 x+1
I= f ( x ) = sin x .cosn x : ( ﻟﺩﻴﻨﺎ7 f ( x) = −1× ( − sin x)(cos x)n : ﻭ ﻤﻨﻪ g( x) = −1 cosn+1 x + λ : ﺇﺫﻥ n+1 −1 −1λ = n+1 :ﺃﻱ n+1 + λ = 0 :ﻤﻨﻪ ﻭ g (0) = 0 :ﻟﻜﻥ g( x) = −1 cos n+1 x + n 1 1 : ﺇﺫﻥ n+1 + 1 1I= ]-∞ ; − 2[ ؛ f ( x) = ( x + ( x : ( ﻟﺩﻴﻨﺎ8 + 2)2 + 2)3 g( x) = −1 − 1 2)2 + λ : ﺇﺫﻥ x+2 2( x +λ = 5 :ﺃﻱ −1 − 1 + λ = 0 :ﻭ ﻤﻨﻪ g (0) = 0 :ﻟﻜﻥ 8 2 8 −1 1 5 . g(x) = n+2 − 2)2 + 8 : ﺇﺫﻥ 2(n + . 5 ﺍﻟﺘﻤﺭﻴﻥ : f – ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ1 ( )sin3 x = sin x .sin2 x = sin x 1 − cos2 x : ﻟﺩﻴﻨﺎ f ( x ) = sin x − sin x.cos2 x : ﻭﻋﻠﻴﻪ g ( x) = − cos x + 1 cos3 x + λ : ﺇﺫﻥ 3
h( x ) = − cos x + 1 cos3 x + λ : ﺤﻴﺙh – ﺍﺴﺘﻨﺘﺎﺝ2 3 2 1 λ = 3 :ﺃﻱ −1 + 3 + λ = 0 :ﻭﻤﻨﻪ h(0) = 2 : ﻤﻊ . h( x ) = − cos x + 1 cos3 x + 2 : ﺇﺫﻥ 3 3 . 6 ﺍﻟﺘﻤﺭﻴﻥ Df = { }− 1 : – ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ1 : a, b,c – ﺘﻌﻴﻴﻥ2f ( x ) = ( ax + b)( x2 − 2x + 1) + c ( x − 1)2 = ax 3 − 2ax 2 + ax + bx2 − 2bx + b + c ( x − 1)2 ax3 + ( −2a + b) x2 + (a + 2b) x + b + c = ( x − 1)2 a=1 : ﺃﻱ a=1 : ﻭ ﻤﻨﻪ b = +2 −2a + b = 0 c = −2 a − 2b = −3 b + c = 0 f ( x) = x + 2 − ( x 2 : ﻭ ﻋﻠﻴﻪ − 1)2 : g – ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ3
f ( )x = x + 2 − ( x 2 − 1)2 ∈. λ ؛ )g(x = 1 x2 + 2x + 2 + λ ﻭ ﻤﻨﻪ : 2 x−1 -4ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ hﺤﻴﺙ ( )h 2 = 0 : )h( x = 1 x2 + 2x + 2 + λ ﻟﺩﻴﻨﺎ : 2 x−1 ﻭ ﻤﻨﻪ h( 2) = 2 + 4 + 2 + λ :ﺃﻱ h( 2) = λ + 8 : ﺇﺫﻥ λ + 8 = 0 :ﻭ ﻤﻨﻪ λ = −8 : . )h( x = 1 x2 + 2x + 2 − 8 ﺇﺫﻥ: 2 x−1 ﺍﻟﺘﻤﺭﻴﻥ . 7 Df = ∞− ; 3 1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : g 2 ∞ lim g ( x) = lim 3 − 2x = +؛ lim g ( x) = 0 < 3 ∞x→− ∞x→−x 2 → g′( x) = 2 −2 2x = −1 3− 3− 2x ;∞( )−3 g′ x ﻭ ﻤﻨﻪ< 0 : 2 ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﻭ ﻋﻠﻴﻪ g
x −∞ 3 2g′( x) -g( x) +∞ 0 : α , β ,γ : ﺘﻌﻴﻴﻥ-2 ( ) ( ): ﻭ ﻟﺩﻴﻨﺎf ′ x = g x : ﺘﻜﺎﻓﺊg ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔff ′( x) = (2α x + β ) ( )3-2x + α x2 + β x + γ × -2 2 3-2 x( )= (2α x + β ) 3-2x - α x2 + β x + γ 3-2 x 3-2 xf ′( x) = (2α x + β )(3-2x) ( )3-2x - α x2 + β x + γ 3-2 x 3− 2x 3-2 x 3-2 x( )= 6α x-4α x2 + 3β -2β x-α x2 -β x-γ= 3-2 x × -5α x2 + ( 6α -3β ) x + 3β -γ 3-2 x : ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥg ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔf ﺘﻜﻭﻥ -5α x2 + (6α -3β ) x + 3β -γ =1 3− 2x -5α x2 + (6α -3β ) x + 3β -γ = 3 − 2x : ﻭ ﻋﻠﻴﻪ
α =0 −5α = 0 6α − 3β = −2 β = 2 : ﻭ ﻋﻠﻴﻪ 3β − γ = 3 : ﻭ ﻤﻨﻪ 3γ = −1 f ( x ) = 2 x − 1 3 − 2 x : ﻭ ﻤﻨﻪ 3 : g – ﺇﻨﺸﺎﺀ ﺒﻴﺎﻥ3 y 3 2 1-3 -2 -1 0 1 2x . 8 ﺍﻟﺘﻤﺭﻴﻥ : f ′′( x ) ﻭf ′( x ) ( ﺤﺴﺎﺏ1 f ′( x ) = cos x + 3cos x sin2 x : ﻟﺩﻴﻨﺎ ( )f ′( x) = cos x 3 + sin2 x : ﻭ ﻤﻨﻪ( )f ′′( x) = -sin x 3 + sin2 x + cos x (2cos x sin x) f ′′( x ) = sin x −3 − sin2 x + 2cos2 x f ′′( x ) + α f ( x ) = β sin x : β ﻭα ( ﻨﺒﻴﻥ ﻭﺠﻭﺩ2
-3sin x-sin3 x + 2sin xcos2 x + α sin x + α sin3 x = β sin x ( )(α -3)sin x-sin3 x + 2sin x 1-sin2 x ×α sin3 x = β sin x(α -3)sin x-sin3 x + 2sin x-2sin3 x + α sin3 x-β sin x = 0(α − β − 1)sin x + (α − 3) 2sin3 x = 0 α = 3 α−3=0 β = 2 : ﺃﻱα − β − 1 = 0 : ﻭ ﻤﻨﻪ f ′′( x) + 3 f ( x) = 2sin x : ﺇﺫﻥ : f ﻟﻠﺩﺍﻟﺔg ( ﺇﻴﺠﺎﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ3 ( )f 1 ( x) = 3 − f ′′( x) + 2sin x : ﻤﻤﺎ ﺴﺒﻕ( )g 1( x ) = 3 − f ′( x) − 2cos x +λ , λ∈ : ﻭ ﻋﻠﻴﻪ( ( ) )g 1 ( x ) = 3 cos x. 3 + sin2 x − 2cos x +λ : ﺇﺫﻥ ( )g 1 ( x ) = 3 cos x + cos x.sin2 x +λ : ﺃﻱ h π = 1 : ﺤﻴﺙ h ﺍﻷﺼﻠﻴﺔ ﺍﻟﺩﺍﻟﺔ ﺘﻌﻴﻴﻥ (4 2 ( )h( 1 x ) = 3 cos x + cos x sin2 x +λ : ﻟﺩﻴﻨﺎ h π = 1 cos π + cos π sin2 π : ﻭﻤﻨﻪ 3 2 2 2 2 h π = λ : ﺇﺫﻥ 2
( )h 1( x ) = 3 cos x + cos x sin2 x +λ ﺇﺫﻥ : ﻭﻤﻨﻪ λ = 1 : (( )h 1 x ) = 3 cos x 1 + sin2 x +1 ﻭﻋﻠﻴﻪ : ﺍﻟﺘﻤﺭﻴﻥ . 9 ﻨﺒﻴﻥ ﺃﻥ Gﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ : ﻟﺩﻴﻨﺎ G ( x) = F ( x) − F ( − x) : ﻭ ﻟﺩﻴﻨﺎ F :ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻭ ﻤﻨﻪ ( ) ( )F ′ x = f x : ﻭ ﺒﻤﺎ ﺃﻥ fﻓﺭﺩﻴﺔ ﻓﺈﻥ ( ) ( )f − x = f x : ﻟﺩﻴﻨﺎ G′( x) = F′( x) − (−1) F′(− x) : )G′( x) = F′( x) + F′(−x )G′( x) = f ( x) + f (−x G′( x) = f ( x) − f ( x) = 0 ﻭ ﻋﻠﻴﻪ G x = λ :ﺤﻴﺙ λ :ﻋﺩﺩ ﺜﺎﺒﺕ ( ). ﺍﻟﺘﻤﺭﻴﻥ . 10 – 1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ fﻋﻠﻰ : +( ) ( )lim f x2 > x2x→0 lim fﻭﻤﻨﻪ x = 1 : x = lim =1 : ﻟﺩﻴﻨﺎ ∞x→+ ∞x→+ f (′ )x = (2x x2 + ()x + 1) − (2x + 1 x2 + )1 ( )x2 + x + 1 2
(′ )x 2x3 + 2x2 + 2x − 2x3 − 2x − x2 − 1 x2 + x + 1 2 ( )f = x2 − 1 x2 + x + 1 2 = )( )f ′( x x 0 1 ∞+ -)f ′( x + ﻭ ﻤﻨﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 1;+ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ [ ] [ [0;1 ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : x0 ∞1 +)f ′(x - + 11f (x) 2 3 -2ﻨﺒﻴﻥ ﺃﻥ Cﻴﻘﺒل ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ( ): ﺒﻤﺎ ﺃﻥ lim f x = 1 :ﻓﺈﻥ y = 1ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ( ). ∞x + -3ﻨﺒﻴﻥ ﺃﻥ Fﻤﻭﺠﻭﺩﺓ ﻭﺒﻤﺎ ﺃﻨﻬﺎ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ +ﻭ ﻤﻨﻪ fﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ Fﻭ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻭﺤﻴﺩﺓ ﻷﻨﻬﺎ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 0ﻋﻨﺩ . 0 -4ﺍﺴﺘﻨﺘﺎﺝ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ : Fﻟﻜﻥ : f )(x = x2 +1 ﺤﻴﺙ : ﻟﺩﻴﻨﺎ F ′( x ) = f ( x ) : x2 + x+1 2 ﻭﻋﻠﻴﻪ F′( x) > 0 : 3 ≤ f ( )x ≤1
ﻭﻤﻨﻪ Fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞[ [. 0;+ -5ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ : Hf ( )x ≥ 2 ﻟﻜﻥ = )H′(x F′(x) − 2 = f ( x) − 2 ﻟﺩﻴﻨﺎ : 3 3 3 ﻭ ﻤﻨﻪ H ′ x ≥ 0 :ﻭﻋﻠﻴﻪ Hﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ( ). + -ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ : k K′(x) = F′(x) −1= f (x) −1؛ f (x) ≤1 K ′ x ≤ 0ﻭ ﻋﻠﻴﻪ Kﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ( )+ ( )2x ≤ F x -ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ≤ x : 3 ﻭﻟﺩﻴﻨﺎ f ( x ) ≤ 1 : f ( x ) ≥ 2 ﻟﺩﻴﻨﺎ : 3 2 3 x ≤ F ( x ) ≤ x ﺇﺫﻥ : ﻭ ﻤﻨﻪ F ( x ) ≤ x : -ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻨﻬﺎﻴﺔ :( )lim F x limﻭ ﻋﻠﻴﻪ = +∞ : 2 x = lim x = ∞+ : ﻟﺩﻴﻨﺎ ∞x + 3∞x + ∞x + -6ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ F x = πﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ αﻓﻲ ( ): + ﺍﻟﺩﺍﻟﺔ Fﻤﺴﺘﻤﺭﺓ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ +ﻭ ﺒﻤﺎ ﺃﻥ π ∈ + ﻓﺈﻥ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ αﺒﺤﻴﺙ ( )f α = π ﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ π ≤ α ≤ 3 π -ﻨﺒﻴﻥ ﺃﻥ 22 3π ≤ F 3π ≤ 3π ﺤﻴﺙ : 2 π ≤ F (π ) ≤ π ﻟﺩﻴﻨﺎ :3 3 2 2 2
F (π ) ≤π ≤ F 3π : ﺇﺫﻥ π ≤ F 3π ≤ 3π ﻭﻤﻨﻪ : 2 2 2 . ﺍﻟﻤﻨﺘﻬﻴﺔ ﺍﻟﺘﺯﺍﻴﺩﺍﺕ ﻨﻅﺭﻴﺔ ﺤﺴﺏ π ≤α ≤ 3π ﻭﻋﻠﻴﻪ 2 ﺍﻟﺘﻤﺭﻴﻥ 11 -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻋﻠﻰ − −1ﻫﻭ { }: y = x3 − 1 + λ ∈; λ 3 x+1 -ﺘﻌﻴﻴﻥ ﺍﻟﺤل fﺤﻴﺙ ( ): f 0 = 0 f (0) = 0 ﻭﺒﻤﺎ ﺃﻥ : f = )(x x3 − x 1 1 + γ ﻟﺩﻴﻨﺎ : 3 + ﻓﺈﻥ : 0 = −1 + λﻭﻤﻨﻪ λ = 1 : f ( )x = x3 − 1 +1 ﻭﻋﻠﻴﻪ : 3 x+1 -ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻠﺩﺍﻟﺔ : f [∞Df = ]−∞;−1[ ∪ ]−1;+ lim f )(x = lim x3 − 1 1 =+1 ∞− 3 x+ ∞x→− ∞x→− lim f )(x = lim x3 − 1 1 =+1 ∞+ 3 x+ ∞x→+ ∞x→+ ∞lim f ( x) = − ، ∞lim f ( x) = + x>−1 x<−1 x > −1 x < −1 f (′ )x = x2 + ( x 1 + 1)2 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ D fﻟﺩﻴﻨﺎ ( )f ′ x > 0 :
ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ −1;+∞ :ﻭ ] [ ] [−∞;−1x −∞ −1 ∞+)f ′( x + +)f (x ∞+ ∞+ ∞− ∞− -ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : ﻟﺩﻴﻨﺎ ﺃﺭﺒﻌﺔ ﻓﺭﻭﻉ ﻻﻨﻬﺎﺌﻴﺔ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ x = −1 : lim f )( x = lim x2 − 1 + 1 = ∞+ ﻭ ﻟﺩﻴﻨﺎ : 3 x ∞x →+ x ∞x →+ )x( x + 1 ﻭﻋﻠﻴﻪ Cﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞( )+ ﻭﺁﺨﺭ ﻋﻨﺩ ∞. −f ( )-2 = -2 ؛ f ( )2 = 10 ؛ f )(1 = 5 -ﺇﻨﺸﺎﺀ ( ): C 3 3 6 . f (0) = 0
y 3 2 1-3 -2 -1 0 1 2x -1 -2 -3 ﺍﻟﺘﻤﺭﻴﻥ . 12 -ﺘﻌﻴﻴﻥ : f= y′ 2x + 2 ﻭ ﻤﻨﻪ : = y′ x+1 2 x2 + 2x + 8 ﻟﺩﻴﻨﺎ x2 + 2 x + 8 : )y′ = g′( x ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل : )2 g(xﻭﻋﻠﻴﻪ y = g ( x ) + c = x2 + 2 x + 8 + c :؛ ∈ c ﺇﺫﻥ f ( x ) = x2 + 2 x + 8 + c :؛ ∈ cﻟﻜﻥ f ( 2) = 1 :ﻭﻋﻠﻴﻪ ( 2)2 + 2( 2) + 8 + c = 1 : ﺇﺫﻥ 4 + c = 1 :ﺃﻱ c = −3 : ﻭ ﻋﻠﻴﻪ f ( x ) = x2 + 2 x + 8 − 3 :
-ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : f [∞Df = ]−∞;+ ∞lim f ( x) = + ، ∞lim f ( x) = + ∞x→− ∞x→+ f ′(x) = x +1 x2 + 2x + 8 x ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ :)f ′(x ∞−∞ 1- + -+ ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞[ [−1;+ ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] ]. −∞;−1 x ∞− -ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ :)f ′( x - ∞- 1 +)f (x ∞+ + )f (−1 ∞+ f (−1) = 7 − 3؛ f (−1) −0,35 -ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻴﻭﺠﺩ ﻓﺭﻋﺎﻥ ﻻﻨﻬﺎﺌﻴﺎﻥ : x 2 1 + 2 + 8 x x2 ( )lim f x = lim − 3 ∞x→+ x x∞xx→+
= lim x 1+ 2 + 8 − 3 x x x2 x x→+∞ = lim 1+ 2 + 8 − 3 =1 x→+∞ x x2 xlim f ( x) − x = lim x2 + 2x + 8 − 3 − xx→+∞ x→+∞ x2 + 2x + 8 − ( x + 3) x2 + 2x + 8 + ( x + 3) = lim x→+∞ x2 + 2x + 8 + x + 3 = lim ( x2 + 2x + 8) − ( x + 3) x→+∞ x2 + 2 x + 8 + x + 3 = lim x2 + 2x + 8 − x2 − 6x − 9 x→+∞ 2 8 3 x 1+ x x2 +1+ + x x −4 − 1 x = lim = −2 x→+∞ 2 8 3 x 1+ x x2 +1+ + x . +∞ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩy = x − 2 : ﻭ ﻋﻠﻴﻪ x 2 1 + 2 + 8 x x2 ( )lim f x = lim − 2 x x→−∞ x x→−∞ x
− x 1 + 2 + 8 3 x x2 x = lim − x→−∞ x = lim − 1+ 2 + 8 − 3 = −1 x→−∞ x x2 xlim f ( x) + x = lim x2 + 2x + 8 − 3 + xx→−∞ x→−∞ x2 + 2x + 8-( x + 3) x2 + 2x + 8 + ( - x + 3) = lim x→−∞ x2 + 2x + 8 + ( - x + 3) ( )x2 + 2x + 8 − (− x + 3)2 = lim x→−∞ x2 + 2 x + 8 − x + 3 = lim x2 + 2x + 8 − x2 + 6x − 9 x→−∞ x2 + 2 x + 8 − x + 3 = lim 8x −1 x→−∞ x2 + 2 x + 8 − x + 3 x 8 − 1 x = lim = −4 x→−∞ x − 1+ x x2 1+ x + − . −∞ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩy = − x − 4 : ﻭﻤﻨﻪ f (0) −0,17 : ﻭﻤﻨﻪ : ﺍﻟﺤﺴﺎﺏ f (0) = 8 − 3 f (2) = 16 − 3 = 1
f (3) 1,80 , f (3) = 23 − 3f (−2) −0,17 , f (−2) = 8 − 3 f (−4) = 1f (−5) 1,80 , f (−5) = 23 − 3 ( ): C ﺇﻨﺸﺎﺀ y 3 2 1-5 -4 -3 -2 -1 0 1 2 3 4x -1 -2 -3 -4
- 4ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ . -ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ.ﺗﺼﻤﻴﻢ اﻟﺪرس ﺃﻨﺸﻁﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ :ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴﻼﻥ ﺍﻟﺒﻴﺎﻨﻴﺎﻥ C fﻭ ' C fﻟﺩﺍﻟﺔ fﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ' fﻓﻲ ﻤﻌﻠـﻤﻴﻥ) ( ) ( ﻤﺨﺘﻠﻔﻴﻥ . yy 33)’2,5 (Cf 2,5 2 )2 (Cf1,5 1,5110,5 0,5-1,5 -1 -0,5 0 0,5 1 x -1,5 -1 -0,5 0 0,5 1 x -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ ' . f -2ﺃﺤﺴﺏ ﻜل ﻤﻥ ) f (0ﻭ ). f '(0 -3ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ fﻭ ' fﺜﻡ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻨﻬﺎ . -4ﻋﻴﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ ' . f -5ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ ' . f -6ﻨﻔﺭﺽ ﺃﻥ ' f = fﺍﺤﺴﺏ ''' . f ﺍﻟﺤل : -(1ﺍﻟﺩﺍﻟﺘﺎﻥ fﻭ ' fﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ f ' (0) = 1 ، f (0) = 1 -(2 -(3ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ fﻭ ' : fﺇﻥ ﺍﻟﺒﻴﺎﻨﻴﻥ C fﻭ ' C fﻴﻘﻌﺎﻥ ﻓﻭﻕ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻋﻠﻴﻪ ﻓﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ) ( ) ( xﻓﺈﻥ :
f ' x > 0ﻭ f x > 0ﻭ ﻋﻠﻴﻪ fﻭ ' fﻤﺘﺯﺍﻴﺩﺘﺎﻥ ﻋﻠﻰ) ( ) ( -(4ﺘﻌﻴﻴﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : x ∞−∞ + ∞x − ∞+)f ′( x + )f ′′( x +)f (x )f (x -(5ﺍﻟﻤﺨﻤﻨﺔ ﺤﻭل fﻭ ' : f ﻨﻼﺤﻅ ﺃﻥ . f (0) = f ′(0) = 1 : lim f ( x) = lim f ( x) = 0 ∞x→− ∞x→− ∞lim f ( x) = lim f ( x) = + ∞x→+ ∞x→+ ﻭ ﻨﻘﻭل ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻓﺈﻥ ( ) ( )f ′ x = f x : -(6ﺇﺫﺍ ﻓﺭﻀﻨﺎ ﺃﻥ f = f ′ﻓﺈﻥ : f ′′ = f ′ = f f ′′′ = f ′′ = f ﺇﺫﻥ . f ′′′ = f :
ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ : -1ﻤﺒﺭﻫﻨﺔ ) : 1ﻤﻘﺒﻭﻟﺔ ( :ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y′ = yﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ ﻋﻠﻰ ﻴﺤﻘﻕ ( )f 0 = 1 ﻭﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ fﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ exp – 2ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ : expﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ :* expﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ . exp : * exp(0) = 1 -3ﻤﺒﺭﻫﻨﺔ : 2ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ .ﻜﻤﺎ ﻴﻠﻲ g ( x) = exp( x) .exp( − x ) : ﺍﻟﺒﺭﻫﺎﻥ : ﺤﻴﺙ : ﻨﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ gﻋﻠﻰ gﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰg′( x) = exp( x) . exp(−x) - exp( x) . exp(−x) = 0ﻭ ﻤﻨﻪ gﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻭ ﻋﻠﻴﻪ :ﺒﻤﺎ ﺃﻥ exp(0) = 1ﻓﺈﻥ g ( x ) = 1 :ﻭ ﻋﻠﻴﻪ exp( x) .exp( − x) = 1 : ﻭ ﻤﻨﻪ exp :ﻻ ﺘﻨﻌﺩﻡ ﺃﺒﺩﺍ .ﻟﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ expﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﺒﺎﻟﺨﻠﻑ :ﻨﻔﺭﺽ ﻭﺠﻭﺩ ﻋﺩﺩ x0ﺒﺤﻴﺙ exp x0 ≤ 0ﻓﻲ ﺍﻟﻤﺠﺎل ( )0 ; x0 ﺃﻭ ﺍﻟﻤﺠﺎل . x0 ; 0ﺍﻟﺩﺍﻟﺔ expﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻓﻬﻲ ﺇﺫﻥ ﻤﺴﺘﻤﺭﺓ.ﻭ ﻟﺩﻴﻨﺎ ( )exp x0 < 0 :ﻭ exp(0) > 0
ﻭﻤﻨﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ exp x = 0ﺘﻘﺒل ﺤﻼ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل ﻭ ﻫﺫﺍ) ( ﻴﻨﺎﻗﺽ ﺍﻟﻔﺭﺽ ﻷﻥ expﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰ . ﻭ ﻤﻨﻪ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﻋﺩﺩ x0ﻤﻥ ﺒﺤﻴﺙ ( )exp x0 < 0 ﻭ ﻋﻠﻴﻪ exp x > 0ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( ). xﺒﺎﻟﻌﺒﺎﺭﺓ : -4ﻤﺒﺭﻫﻨﺔ: 3 aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ . ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y′ = ayﻫﻲ ﺍﻟﺩﻭﺍل fkﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ fk x = k.exp axﺤﻴﺙ kﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ( ) ( ). ﺍﻟﺒﺭﻫﺎﻥ : ﺍﻟﺩﺍﻟﺔ fkﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ fk′ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ) fk′ ( x) = ka.exp(a xﻷﻥ fkﻫﻲ ﺠﺩﺍﺀ ﻋﺩﺩ ﻓﻲ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻭ ﻋﻠﻴﻪ fk′ ( x) = afk ( x) : ﻭ ﻋﻠﻴﻪ fkﺤل ﻋﻠﻰ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y′ = ay ﻨﻔﺭﺽ ﻭﺠﻭﺩ ﺤل ﺁﺨﺭ gﻋﻠﻰ ( ) ( )g′ x = a.g x := )u(x )g(x ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : ﻟﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ uﻋﻠﻰ ) exp ( ax ﺍﻟﺩﺍﻟﺔ uﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ : ( u′ )x = (g′ ( x)exp(ax) − a.exp(ax).g )x exp ( ax ) 2= )u′( x )g′( x) − ag ( x = )g′( x) − g′( x ﻭ ﻤﻨﻪ : ) exp ( ax ) exp ( ax ﺇﺫﻥ u′( x ) = 0 :
u x = k :ﻭ ﺒﺎﻟﺘﺎﻟﻲ ( ): ﻭ ﻤﻨﻪ uﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ .ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ )g( x ) = k exp ( ax ﺃﻱ ﺃﻥ g ( x) = k.exp(ax) : -5ﻤﺒﺭﻫﻨﺔ : 4ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ exp(a + b) = exp(a ) × exp(b) : b ﺒﺎﻟﻌﺒﺎﺭﺓ : ﺍﻟﺒﺭﻫﺎﻥ : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ) g ( x ) = exp( x + bﺤﻴﺙ bﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﺍﻟﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ g′ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ :) g′( x ) = exp( x + bﻭ ﻋﻠﻴﻪ g′ x = g xﻭ ﻤﻨﻪ gﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ) ( ) ( ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y′ = y ﻭ ﻤﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ g ( x ) = k.exp( x ) : 3 ﻭ ﻋﻠﻴﻪ exp( x + b) = k.exp( x) : ﻟﻜﻥ ﻤﻥ ﺃﺠل exp(b) = k.exp(0) : x = 0 ﻟﻜﻥ exp(0) = 1 :ﻭ ﻤﻨﻪ k = exp(b) :ﻭ ﺒﻭﻀﻊ x = a :ﻨﺠﺩ exp(a + b) = exp(a) exp(b) : –6ﻨﺘﺎﺌﺞ : aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ x .ﻋﺩﺩ ﻁﺒﻴﻌﻲ . exp ( )−a = 1 a ) (1 ( exp
: ﺍﻟﺒﺭﻫﺎﻥ( )exp(0) = exp a + ( −a) ( ) ﻭ ﻟﺩﻴﻨﺎexp 0 = 1 ﻟﺩﻴﻨﺎ( ( )): (1) ﻭ ﻋﻠﻴﻪ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔexp a + −a = 1 : ﻭ ﻤﻨﻪ exp(a)exp(−a) = 1 exp ( −a ) = 1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ exp ( a ) exp ( a − b) = exp ( a ) (2 exp ( b )exp(a − b) = exp(a + (−b)) = exp(a) exp(−b) :ﺍﻟﺒﺭﻫﺎﻥ= exp ( a ) 1 ) exp ( b exp ( a − b) = exp ( a ) : ﺇﺫﻥ exp ( b ) exp(nx) = (exp( x))n (3( )exp(0.x ) = ( )exp 0 0 : n = 0 ﻓﻤﺜﻼ ﻤﻥ ﺃﺠل ( )exp 0 = 1 : ﻭ ﻤﻨﻪ ﻤﺤﻘﻘﺔ ﻷﻥ . ﻭ ﻫﻲ ﻤﺤﻘﻘﺔexp(1.x ) = exp( x )1 : n = 1 : ﻭ ﻤﻥ ﺃﺠل( ) ( )4 ﻭ ﻫﻲ ﺼﺤﻴﺤﺔ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔexp 2.x = exp x 2 : n = 2 : ﻭ ﻤﻥ ﺃﺠل .( ) ( )exp n.x = exp x n : ﻓﺈﻥn ﻭ ﻋﻠﻴﻪ ﻨﻘﺒل ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ
-7ﺍﻟﻤﺒﺭﻫﻨﺔ : 5ﻨﺭﻤﺯ ﺇﻟﻰ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 1ﺒﺎﻟﺩﺍﻟﺔ expﺒﺎﻟﺭﻤﺯ eﺃﻱ exp 1 = e :ﻭ ﻴﺴﻤﻰ eﺍﻟﻌﺩﺩ) ( ﺍﻟﻨﻴﺒﻴﺭﻱ . ﺤﻴﺙ ﺘﻌﻁﻰ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻗﻴﻤﺔ e = 2, 718281828... : e ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ( )exp x = e x : x ﺍﻟﺒﺭﻫﺎﻥ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﺒﻕ ( ) ( )exp nx = exp x n : -ﻭ ﻤﻥ ﺃﺠل x = 1ﻟﺩﻴﻨﺎ exp( n) = exp(1)n : ﻭ ﻋﻠﻴﻪ exp( n) = en : -ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ﺴﺎﻟﺏ x = )exp( x 1 = 1 ﻟﺩﻴﻨﺎ : e- x )exp(− xa = 1 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻨﺎﻁﻕ : xﻨﻀﻊ x = paﺤﻴﺙ : - q ﻤﻊ qﻫﻭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ . exp(qa) = exp(a)q ﻟﻜﻥ qa = 1ﻭ ﻤﻨﻪ exp(a )q = exp(1) = e : 1 ﻭ ﻋﻠﻴﻪ exp(a ) = e q : 1 p q = )exp( x = )exp( pa exp(a) p = e ﻭ ﻋﻠﻴﻪ : pﻭﻤﻨﻪ exp( x ) = e q = e x :ﺇﺫﻥ exp( x ) = e x :
-ﻨﻘﺒل ﺃﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﺍﺼﻁﻼﺤﺎ -ﺃﻱ ﺃﻥ exp( x ) = e x : -8ﺇﻋﺎﺩﺓ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﻭ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺭﻤﺯ : e x (1ﺍﻟﺩﺍﻟﺔ x e xﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﻫﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ . x e x :ﺤﻴﺙ . e0 = 1 : (2ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ . e x > 0 : x (3ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ bﻟﺩﻴﻨﺎ :e−a = 1 • • ea+b = ea ⋅ eb ea• ena = ea n؛ ∈ ( )n ea−b = ea • eb -9ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ : ∞lim e x = + (a ∞x→+ ﺍﻟﺒﺭﻫﺎﻥ : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ ( ). f x = e x − x : ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺩﺍﻟﺘﻴﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ( )f ' x = e x − 1 :ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ x e xﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻷﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻓﺎﻥ f '( x ) ≥ 0 : ﺘﻜﺎﻓﺊ e x ≥ 1ﺃﻱ e x ≥ e0ﻭ ﻤﻨﻪ x ≥ 0 :ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 0, +ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ] ] [ [−∞,0
∞x − 0 ∞+)f ′( x - +)f (x 1 ﺍﻟﻌﺩﺩ 1ﻫﻭ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ( )f x ≥ 1 : x ﻭ ﺒﺎﻟﺘﺎﻟﻲ f x ≥ 0 :ﻭ ﻤﻨﻪ e x − x ≥ 0ﺇﺫﻥ ( )e x ≥ x : ﻭ ﺒﻤﺎ ﺃﻥ lim x = +∞ :ﻓﺈﻥ lim e x = 0 : ∞x→+ ∞x→+ ﻭ ﺫﻟﻙ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺩﻨﻰ . lim e x = 0 (b ∞x→− ﺍﻟﺒﺭﻫﺎﻥ : ﻭ ﻫﺫﺍ ﺒﻭﻀﻊ − x = z : lim e x = lim 1 = lim 1 e− x ez ∞x→− ∞x→− ∞z→+ lim ex ∞= + (c x ∞x→+ ﺍﻟﺒﺭﻫﺎﻥ : ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ e x ≥ x : xﻤﻤﺎ ﺴﺒﻕ x ≥ x : x ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ 2 e2
e x 2 ≥ x 2 : x≥0 ﻤﻥ ﺃﺠل 2 2 ex x ﻭ ﻋﻠﻴﻪ : ex ≥ x2 ﺇﺫﻥ : x ≥4 4lim e x ∞= + ﻓﺈﻥ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺼﺭ : lim x = ∞+ ﻭ ﺒﻤﺎ ﺃﻥ∞xx→+ 4 ∞x→+ lim xe x = 0 (d ∞x→− ﺍﻟﺒﺭﻫﺎﻥ :lim xe x = lim x = lim −1 = lim −1 = 0 e− x e−x ez∞x→− ∞x→− ∞x→− ∞z→+ −x z ﻭ ﺫﻟﻙ ﺒﻭﻀﻊ z = − x e x − 1 x lim (e x→0ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 0ﺤﻴﺙ : xﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﺒﺭﻫﺎﻥ : ﺍﻟﺩﺍﻟﺔ e x : f (1) ... f )′(0 = lim e x -e0 = lim e x -1 x-0 x x→0 x→0ﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻫﻲ ﺍﻟﺩﺍﻟﺔ f ′ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )f ′ x = e x : ﻭﻋﻠﻴﻪ ( 2) ... f ′(0) = e0 = 1 : e x − 1 x lim =1 : ﻭ )( 2 )(1 ﻤﻥ x→0
ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻠﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ f : x e x :∞x − ∞+)f ′( x + ∞f ( x) + 0 ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ A 0;1ﻫﻲ ( ): ) y = f ′(0) .( x − 0) + f (0ﻭ ﻤﻨﻪ y = x + 1 :ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ) B ( 0;1ﻫﻲ y = f ′(1) .( x − 1) + f (1) :ﻭ ﻤﻨﻪ y = e ( x − 1) + e : ﻭﻋﻠﻴﻪ y = ex : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ : y 3 )2,5 (Cf 2 1,5 1 0,5 -1,5 -1 -0,5 0 0,5 1 x
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427