Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-18 05:29:55

Description: دروس مادة الرياضيات للفصل الاول للشعب العلمية سنة ثالثة ثانوي

Search

Read the Text Version

‫‪ – 1‬ﺘﻌﺭﻴﻑ ‪:‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻤﻥ‬ ‫ﻨﺴﻤﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪ I‬ﻜل ﺩﺍﻟﺔ ‪ g‬ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ‪I‬‬ ‫ﻭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪I‬‬ ‫ﻭﺘﺤﻘﻕ ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ ‪ x‬ﻤﻥ ‪( ) ( )g′ x = f x : I‬‬ ‫‪ x‬ﻋﻠﻰ‬ ‫‪ x‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪0 : f‬‬ ‫ﺍﻷﻤﺜﻠﺔ ‪:‬‬ ‫‪ (1‬ﺍﻟﺩﺍﻟﺔ ‪4 : g‬‬ ‫‪ (2‬ﺍﻟﺩﺍﻟﺔ ‪ x x3 + 4 x : g‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪ x‬ﻋﻠﻰ‬ ‫‪3x2 + 4: f‬‬ ‫‪ (3‬ﺍﻟﺩﺍﻟﺔ ‪x : g‬‬‫‪ x‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬ ‫‪1 :f‬‬ ‫ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪x‬‬ ‫‪2x‬‬ ‫[∞‪]0;+‬‬ ‫‪ (4‬ﺍﻟﺩﺍﻟﺔ ‪ x cos x : g‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪ x sin x : f‬ﻋﻠﻰ‬ ‫‪ (5‬ﺍﻟﺩﺍﻟﺔ ‪ x x2 + sin x : g‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪ x 2 x + cos x : f‬ﻋﻠﻰ‬

‫‪ – 2‬ﻭﺠﻭﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪ ) 1‬ﺘﻘﺒل ﺩﻭﻥ ﺒﺭﻫﺎﻥ ( ‪:‬‬‫ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل‬ ‫ﺍﻟﻌﻜﺱ ﻏﻴﺭ ﺼﺤﻴﺢ ‪:‬‬ ‫ﻟﻴﺴﺕ ﻜل ﺩﺍﻟﺔ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻻ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ‪.‬‬ ‫ﻤﺜﺎل ﻤﻀﺎﺩ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪sin‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪cos‬‬ ‫‪1‬‬ ‫‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪x ≠ 0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫ﻭ ﻤﻥ ﺃﺠل ‪f ( x ) = 0 : x = 0‬‬ ‫ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ‪ ) 0‬ﻷﻨﻬﺎ ﻻ ﺘﻘﺒل ﻨﻬﺎﻴﺔ ﻋﻨﺩ ‪( 0‬‬ ‫ﻟﻜﻨﻬﺎ ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ ‪ g‬ﻋﻠﻰ ﺍﻷﻗل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪sin‬‬ ‫‪1‬‬ ‫‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪x ≠ 0‬‬ ‫‪x‬‬ ‫ﻭ ﻤﻥ ﺃﺠل ‪g ( x ) = 0 : x = 0‬‬ ‫ﻜﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ‬ ‫ﻭ ﻋﻠﻴﻪ ﻓﺸﺭﻁ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﻟﻭﺠﻭﺩ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﺸﺭﻁ ﻜﺎﻑ ﻭ ﻏﻴﺭ ﻻﺯﻡ ‪.‬‬‫ﺃﻱ ﻴﻜﻔﻲ ﺃﻥ ﺘﻜﻭﻥ ﺩﺍﻟﺔ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻟﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ‪I‬‬

‫‪ – 3‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ‪ gλ‬ﺍﻟﺘﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ‬ ‫‪ I‬ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ ‪( ) ( )gλ x = g x + λ :‬‬ ‫ﺤﻴﺙ ‪ g‬ﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪f‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ g‬ﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪I‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪ I‬ﻓﺈﻥ ‪( ) ( )g′ x = f x :‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪ gλ :‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪I‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪ I‬ﻓﺈﻥ ‪( ) ( )gλ′ x = f x‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪( ) ( )gλ′ x = g′ x : I‬‬ ‫ﻭ ﻤﻨﻪ ‪ gλ′ ( x) − g′( x) = 0‬ﺃﻱ ﺃﻥ ‪( gλ − g)′ ( x) = 0 :‬‬ ‫ﺇﺫﻥ ‪ gλ − g :‬ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ‪.‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺜﺎﺒﺕ ‪ λ‬ﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ‪ x‬ﻤﻥ ‪I‬‬ ‫‪gλ ( x) − g( x) = λ‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪gλ ( x ) = g ( x ) + λ :‬‬ ‫ﻤﺜﺎل‪: 1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ x x4 − x : g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ‬ ‫ﻟﻠﺩﺍﻟﺔ ‪ f x = 4 x3 − 1 : f‬ﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪( )gλ‬‬ ‫ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪gλ ( x) = x4 − x + λ :‬‬ ‫ﺤﻴﺙ ‪ λ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪.‬‬ ‫ﻤﺜﺎل‪: 2‬‬

‫ﺍﻟﺩﺍﻟﺔ ‪ x cos x - sin x : g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻟﻠﺩﺍﻟﺔ ‪.‬‬‫‪ x - sin x - cos x : f‬ﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ gλ‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ‬ ‫ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪( )gλ x = cos x - sin x + λ :‬‬ ‫ﺤﻴﺙ ‪ λ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪.‬‬‫‪ – 4‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ y0‬ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ ‪ x0‬ﻟﻠﻤﺘﻐﻴﺭ ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ‪:‬‬‫ﻟﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ‪ I‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﻋﻠﻰ ‪ I‬ﺘﺄﺨﺫ ﻗﻴﻤﺔ ﻤﻌﻴﻨﺔ ‪ y0‬ﻤﻥ ﺃﺠل ﻗﻴﻤﺔ ﻤﻌﻠﻭﻤﺔ‬ ‫‪ ، x0‬ﻤﻥ ‪ ، I‬ﻟﻠﻤﺘﻐﻴﺭ ‪. x‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫ﻟﺘﻜﻥ ‪ f‬ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻭ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ ‪ x0 . I‬ﻋﺩﺩ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ‪. I‬‬ ‫‪ y0‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻁﻲ ‪.‬‬ ‫ﻨﻌﻠﻡ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ gλ‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪ I‬ﻤﻌﺭﻓﺔ‬ ‫ﺒﺎﻟﻌﺒﺎﺭﺓ ‪ gλ x = g x + λ :‬ﺤﻴﺙ ‪ λ‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪( ) ( ).‬‬ ‫‪ gλ x0 = y0‬ﻭ ﻤﻨﻪ ‪ g x0 + λ = y0 :‬ﻭ ﻋﻠﻴﻪ ‪( ) ( ):‬‬ ‫) ‪ λ = y0 − g ( x0‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪gλ ( x ) = g ( x ) + y0 − g ( x 0 ) :‬‬ ‫ﻭ ﻤﻨﻪ ﺘﻭﺠﺩ ﻗﻴﻤﺔ ﻭﺤﻴﺩﺓ ﻟﻠﻌﺩﺩ ‪ λ‬ﺇﺫﻥ ﺘﻭﺠﺩ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫ﻤﺜﺎل ‪:‬‬‫ﻨﻌﻠﻡ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ gλ‬ﻟﻠﺩﺍﻟﺔ ‪x x2 − 4 : f‬‬‫∈ ‪( )λ‬‬ ‫‪x3‬‬‫‪ gλ‬ﺤﻴﺙ ‪:‬‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫‪− 4x + λ‬‬ ‫ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬‫ﻟﻨﺒﺤﺙ ﻋﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ 4‬ﻤﻥ ﺃﺠل ‪x = 0‬‬

‫‪03‬‬ ‫‪−‬‬ ‫)‪4(0‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫=‬ ‫‪4‬‬ ‫‪:‬‬ ‫ﺒﺎﻟﺘﺎﻟﻲ‬ ‫ﻭ‬ ‫ﺃﻱ ‪gλ (0) = 4 :‬‬ ‫‪3‬‬ ‫ﻭ ﻤﻨﻪ ‪λ = 4 :‬‬ ‫‪ gλ‬ﻭ ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ ‪( ).‬‬ ‫‪x‬‬ ‫=‬ ‫‪x4‬‬ ‫‪− 4x + 4‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪3‬‬ ‫‪ – 5‬ﺠﺩﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﺄﻟﻭﻓﺔ ‪:‬‬‫ﻤﻥ ﺠﺩﻭل ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻨﺴﺘﻨﺘﺞ ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ ﺍﻟﺫﻱ ﻴﻌﻁﻲ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬ ‫‪ g‬ﻟﺒﻌﺽ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ ‪ f‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪ λ . I‬ﻴﺩل ﻓﻲ ﻫﺫﺍ ﺍﻟﺠﺩﻭل ﻋﻠﻰ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪:‬‬ ‫ﺍﻟﻤﺠﺎل ‪I‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪g‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪f‬‬ ‫‪g(x) = λ‬‬ ‫‪f (x) = 0‬‬ ‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪x n+1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫‪f ( x) = xn‬‬ ‫‪n+1‬‬ ‫∈‪n‬‬ ‫∗‬ ‫ﺃﻭ‬ ‫∗‬ ‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪-1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪+‬‬ ‫‪xn‬‬ ‫(‬ ‫‪)n-1 xn-1‬‬ ‫‪n≥ 2‬ﻭ ∈‪n‬‬ ‫∗‬ ‫‪g(x) = 2 x + λ‬‬ ‫‪f (x) = 1‬‬ ‫‪+‬‬ ‫‪g( x) = -cos x + λ‬‬ ‫‪x‬‬ ‫‪g( x) = sin x + λ‬‬ ‫‪f ( x) = sin x‬‬ ‫‪f ( x) = cos x‬‬ ‫ﻜل ﺍﻟﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل‬ ‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪1‬‬ ‫‪cos2‬‬‫‪ -π‬‬ ‫‪+‬‬ ‫‪kπ‬‬ ‫;‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪kπ‬‬ ‫‪‬‬ ‫‪g ( x) = tan x + λ‬‬ ‫‪x‬‬ ‫‪‬‬‫‪ 2‬‬ ‫‪2‬‬ ‫ﺃﻭ‬ ‫ﺤﻴﺙ ∈ ‪k‬‬ ‫‪f (x) =1+tan2 x‬‬

‫‪ – 6‬ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪:‬‬‫ﻟﻠﺒﺤﺙ ﻋﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻤﺎ ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻟﺨﻭﺍﺹ ﺍﻵﺘﻴﺔ ﺍﻟﺘﻲ ﺘﺴﺘﻨﺘﺞ ﻤﺒﺎﺸﺭﺓ ﻤﻥ ﺨﻭﺍﺹ‬ ‫ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ ‪.‬‬ ‫ﺨﺎﺼﻴﺔ ‪: 1‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ g1‬ﻭ ‪ g2‬ﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ ‪ f1‬ﻭ ‪ f2‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ‬ ‫‪ g2 + g1‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f2 + f1‬ﻋﻠﻰ ‪. I‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ‪ x x + cos x :‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪:‬‬‫‪ f : x 1 − sin x‬ﻋﻠﻰ ‪.‬‬ ‫ﺨﺎﺼﻴﺔ ‪: 2‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻭ ﻜﺎﻥ ‪ λ‬ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪ λ g‬ﺩﺍﻟﺔ‬ ‫ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪. λ f‬‬ ‫ﻤﺜﺎل ‪:‬‬‫ﺍﻟﺩﺍﻟﺔ‪ x 2sin x :‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‪ x 2cos x :‬ﻋﻠﻰ ‪.‬‬ ‫ﺨﺎﺼﻴﺔ ‪: 3‬‬ ‫‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ f‬ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻓﺈﻥ ‪:‬‬‫ﻋﻠﻰ ‪I‬‬ ‫ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪f ′. f n :‬‬ ‫‪1‬‬ ‫‪f‬‬ ‫‪n+1‬‬ ‫‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ‬ ‫‪n+1‬‬‫‪ x‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪:‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪( )2 x x2 + 1 2 :‬‬ ‫‪1‬‬ ‫‪x2 + 1 3‬‬‫‪ x‬ﻋﻠﻰ) (‬‫‪3‬‬ ‫ﺨﺎﺼﻴﺔ ‪: 4‬‬‫‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪ f .‬ﺩﺍﻟﺔ ﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﺇﺫﺍ ﻜﺎﻨﺕ‬

‫‪ f‬ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪f ′‬‬ ‫‪f ′ −1‬‬‫ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪ n − 1 f n−1 :‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f n‬ﻋﻠﻰ ‪( ). I‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫‪2x‬‬ ‫‪x‬‬ ‫‪−1‬‬‫‪x2 + 1‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪2 x2 + 1 2 :‬‬‫‪ x‬ﻋﻠﻰ ‪( ) ( ).‬‬ ‫‪3‬‬ ‫ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫ﺨﺎﺼﻴﺔ ‪: 5‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪. I‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ f‬ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪ f ′‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪ f :‬ﺩﺍﻟﺔ‬ ‫‪f′‬‬ ‫ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ 2 f‬ﻋﻠﻰ ‪. I‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫‪ x‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪x2 + x + 1 :‬‬‫‪x 2x +1‬‬ ‫‪2 x2 + x + 1‬‬ ‫ﺨﺎﺼﻴﺔ ‪: 6‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ I‬ﻭ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ ‪. I1‬‬ ‫‪ h‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻓﻲ ﻤﺠﺎل ‪ I2‬ﻭ ﺘﺄﺨﺫ ﻗﻴﻤﺘﻬﺎ ﻓﻲ ‪I1‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ h‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ I2‬ﻭ ﻜﺎﻨﺕ ‪ h′‬ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ‪ I2‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪:‬‬ ‫‪ x g h x ‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ) (‬‫‪ x h′( x ) . f h( x )‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪. I2‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪x a cos(ax + b) : g‬‬ ‫ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪x h′( x ) . f h( x ) :‬‬

‫ﺤﻴﺙ ‪ h( x) = ax + b :‬ﻭ ‪ h′( x) = a‬ﻭ ‪f ( x) = cos x‬‬ ‫ﻭ ﻨﻌﻠﻡ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ g‬ﻫﻲ ﺍﻟﺩﻭﺍل ‪:‬‬ ‫‪x sin(ax + b) + λ‬‬ ‫ﻨﺘﺎﺌﺞ ‪:‬‬‫‪ -‬ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ x cos ax + b :‬ﻫﻲ ﺍﻟﺩﻭﺍل) (‬‫‪ x‬ﺤﻴﺙ ‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ‬ ‫‪1‬‬ ‫‪sin‬‬ ‫(‬ ‫‪ax‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫)‬ ‫‪+‬‬ ‫‪λ‬‬ ‫‪a‬‬ ‫ﻤﻊ ‪ a ≠ 0‬ﻭ ∈ ‪. λ‬‬‫‪ -‬ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ x sin ax + b :‬ﻫﻲ ﺍﻟﺩﻭﺍل ‪( ):‬‬‫‪ x‬ﺤﻴﺙ ‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ‬ ‫‪−1‬‬ ‫( ‪cos‬‬ ‫‪ax‬‬ ‫‪+‬‬ ‫)‪b‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫‪a‬‬ ‫ﻤﻊ ‪ a ≠ 0‬ﻭ ∈ ‪. λ‬‬

‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬‫ﻀﻊ ﻋﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ× ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ ‪:‬‬ ‫‪ – 1‬ﺇﺫﺍ ﻜﺎﻨﺕ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﻤﺠﺎل ‪I‬‬ ‫ﻓﺈﻥ ‪ f‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪. g‬‬ ‫‪ x‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻭﺤﻴﺩﺓ‬ ‫‪ – 2‬ﺍﻟﺩﺍﻟﺔ‪x3 − 5 x :‬‬ ‫‪ x‬ﻋﻠﻰ ‪.‬‬ ‫ﻟﻠﺩﺍﻟﺔ‪3 x2 − 5 :‬‬ ‫‪ – 3‬ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ﻴﻤﻜﻥ ﺘﻌﻴﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻷﺼﻠﻴﺔ‪.‬‬ ‫‪ – 4‬ﺇﺫﺍ ﻜﺎﻨﺕ ‪ g‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ‪ f‬ﻓﺈﻥ ‪ g2‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ‬ ‫ﻟﻠﺩﺍﻟﺔ ‪. f 2‬‬ ‫‪ – 5‬ﺍﻟﺩﺍﻟﺔ ‪ g′‬ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪. g′′‬‬ ‫‪ – 6‬ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻭﺤﻴﺩﺓ‬ ‫ﺘﻨﻌﺩﻡ ﻋﻨﺩ ﻋﺩﺩ ‪ x0‬ﻤﻥ ‪. I‬‬ ‫‪ – 7‬ﺍﻟﺩﺍﻟﺔ ‪ x sin 2 x‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪ x cos 2 x‬ﻋﻠﻰ ‪.‬‬‫‪.‬‬ ‫‪ x‬ﻋﻠﻰ‬ ‫‪1‬‬ ‫‪ x‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ ‫‪−1‬‬ ‫‪x‬‬ ‫‪ – 8‬ﺍﻟﺩﺍﻟﺔ ‪x2‬‬ ‫‪ – 9‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻫﻲ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ‪.‬‬ ‫‪ – 10‬ﺍﻟﺩﺍﻟﺔ ‪ f (n) :‬ﻫﻲ ﺇﺤﺩﻯ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫‪ – 11‬ﺍﻟﺩﺍﻟﺔ‪ x cos x + sin x :‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ‬ ‫ﻟﻠﺩﺍﻟﺔ‪. x sin x − cos x :‬‬‫‪ – 12‬ﺇﺫﺍ ﻜﺎﻨﺘﺎ ‪ g‬ﻭ ‪ h‬ﺩﺍﻟﺘﺎﻥ ﺃﺼﻠﻴﺘﺎﻥ ﻟﻨﻔﺱ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﻤﺠﺎل ‪I‬‬‫ﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪( ) ( ). h x − g x = λ : I‬‬‫‪ x‬ﻻﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞‪] [0;+‬‬ ‫‪1‬‬ ‫‪ – 13‬ﺍﻟﺩﺍﻟﺔ ‪x‬‬

‫‪ – 14‬ﺘﻭﺠﺩ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﺇﺤﺩﻯ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻫﻲ ﻨﻔﺴﻬﺎ ‪.‬‬ ‫‪ x‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ‪0‬‬ ‫‪ – 15‬ﺍﻟﺩﺍﻟﺔ ‪x3‬‬ ‫ﻟﻠﺩﺍﻟﺔ ‪x 3 x2‬‬ ‫‪ – 16‬ﺇﺫﺍ ﻜﺎﻨﺕ ‪ f‬ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﻓﻬﻲ ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ‬ ‫ﻭﺤﻴﺩﺓ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل ‪.‬‬ ‫‪ – 17‬ﻜل ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ‪ I‬ﺘﻘﺒل ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ‪. I‬‬ ‫‪ -18‬ﻜل ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ a;b‬ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ] [‬ ‫ﻋﻠﻰ ]‪. [a;b‬‬ ‫‪ x‬ﻫﻲ ﺍﻟﺩﻭﺍل‬ ‫‪ – 19‬ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪( )x2 + 1 2‬‬ ‫∈‪λ‬‬ ‫‪1‬‬ ‫‪x2 + 1 3 + λ‬‬ ‫‪( )، x‬‬ ‫‪3‬‬ ‫‪ x‬ﻫﻲ ﺍﻟﺩﻭﺍل ‪:‬‬ ‫‪x‬‬ ‫‪n‬‬ ‫‪ – 20‬ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪∑ ai xi :‬‬ ‫‪i=0‬‬ ‫‪∑n‬‬ ‫‪i‬‬ ‫‪1‬‬ ‫‪1 ai‬‬ ‫‪x i +1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫‪+‬‬ ‫‪i=0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 2‬‬ ‫ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻤﻌﻴﻨﺎ ﻤﺠﺎل ﺍﻟﺩﺭﺍﺴﺔ ‪:‬‬‫‪1) f ( x) = 2x − 1‬‬ ‫‪2) f ( x) = x2 − 4x + 3‬‬‫‪3) f ( x) = −3x3 + 5x2 − 4 4) f ( x) = x4 − x3‬‬‫)‪5‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪4‬‬ ‫‪6) f‬‬ ‫= )‪(x‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪x2‬‬ ‫‪x3‬‬

7) f ( x) = 1 8) f ( x) = 1 x x−1 9) f ( x ) = cos2 x − sin2 x 10) f ( x ) = sin 2 x cos3 x . 3 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ ‫ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻤﻌﻴﻨﺎ ﻤﺠﺎل ﺍﻟﺩﺭﺍﺴﺔ‬f ‫ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬( ) ( )1) f ( x) = x2 x3 + 1 2 2) f ( x) = ( x + 1) x2 + 2x −1 3 ( ) x x−1 + x2 − 2x + 4 33) f x = ( x2 1) 2 ( )4) f ( x) = 5) f ( x) = x3 6) f ( x) = x x4 + 1 x2 −17) f ( x) = 1 cos x − π  8) f ( x) = cos2x − sin3x 2  10) f ( x) = cos2x.sin2x 29) f ( x) = sin x.cos3 x 4 ‫ﺍﻟﺘﻤﺭﻴﻥ‬( )‫ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ‬g 0 = 0 ‫ ﺍﻟﺘﻲ ﺘﺤﻘﻕ‬I ‫ ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬f ‫ ﻟﻠﺩﺍﻟﺔ‬g ‫ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ‬ : 1) f ( x) = sim x + cos x 2) f ( x) = 1 2 2 x+1 I= I= ]-1;+∞[3) f ( x ) = ( x 1 2) 3 4) f ( x) = xn -1 ; n∈ + I= ]-∞; −2[ I=

‫)‪5‬‬ ‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪1‬‬ ‫‪x‬‬ ‫)‪6‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪cos2‬‬ ‫‪+ 1)2‬‬ ‫=‪I‬‬ ‫‪‬‬ ‫‪−‬‬ ‫‪π‬‬ ‫;‬ ‫‪π‬‬ ‫‪‬‬ ‫[∞‪I= ]-1;+‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪7) f ( x) = sin x.cosn x‬‬ ‫)‪8‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪+ 2)2‬‬ ‫‪+ 2)3‬‬ ‫∈ ‪I= ، n‬‬ ‫[‪I= ]-∞; −2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪5‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪( )f x = sin3 x :‬‬ ‫‪ (1‬ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ g‬ﻟﻠﺩﺍﻟﺔ ‪. f‬‬‫‪ (2‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ‪ h‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻭ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ 2‬ﻤﻥ ﺃﺠل ‪x = 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪6‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪3x‬‬ ‫‪−‬‬ ‫‪(x‬‬ ‫‪1)2‬‬ ‫‪ (1‬ﻋﻴﻥ ‪ D f‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫‪ (2‬ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪ D f‬ﻓﺈﻥ ‪:‬‬ ‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪ax‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫‪+‬‬ ‫(‬ ‫‪x‬‬ ‫‪c‬‬ ‫‪1)2‬‬ ‫‪−‬‬ ‫ﺤﻴﺙ ‪ a‬ﻭ ‪ b‬ﻭ ‪ c‬ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﺎ ‪.‬‬ ‫‪ (3‬ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ g‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ∞‪] [. 1;+‬‬ ‫‪ (4‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ‪ h‬ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ ﻋﻨﺩ ‪x = 2‬‬ ‫ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ∞‪] [. 1;+‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪7‬‬

‫‪ (1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺤﻴﺙ ‪( )g x = 3 − 2 x :‬‬‫‪ (2‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪( )( )f x = α x2 + β x + γ 3 − 2 x :‬‬‫ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ‪ α‬ﻭ ‪ β‬ﻭ ‪ γ‬ﺒﺤﻴﺙ ﺘﻜﻭﻥ ‪ f‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ g‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬ ‫‪.‬‬ ‫‪‬‬ ‫∞‪−‬‬ ‫;‬ ‫‪3‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪ (3‬ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ‪ g‬ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪8‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪f ( x ) = sin x + sin3 x : f‬‬ ‫‪ ( 1‬ﺍﺤﺴﺏ ) ‪ f ′( x‬ﻭ ) ‪. f ′′( x‬‬‫‪ ( 2‬ﺒﻴﻥ ﺃﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ α‬ﻭ ‪ β‬ﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬‫ﺤﻘﻴﻘﻲ ‪ x‬ﻓﺈﻥ ‪f ′′( x ) + α f ( x ) = β sin x :‬‬ ‫‪ (3‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪ g‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪.‬‬‫‪.‬‬ ‫‪h‬‬ ‫‪π‬‬ ‫‪‬‬ ‫=‬ ‫‪1‬‬ ‫‪:‬‬ ‫ﺒﺤﻴﺙ‬ ‫‪f‬‬ ‫‪ ( 4‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ‪ h‬ﻟﻠﺩﺍﻟﺔ‬ ‫‪‬‬ ‫‪2‬‬ ‫‪ F .‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪9‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻭ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ‬‫‪ G‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎ ﻴﻠﻲ ‪G ( x ) = F ( x ) − F ( − x ) :‬‬ ‫ﺒﻴﻥ ﺃﻥ ‪ G‬ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ ‪.‬‬‫‪( ). f‬‬ ‫‪x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪+1‬‬ ‫ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪10‬‬ ‫‪x2 +‬‬ ‫‪x+1‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪+‬‬ ‫‪ C‬ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ‪( ).‬‬ ‫‪ – 1‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪+‬‬ ‫‪ – 2‬ﺒﻴﻥ ﺃﻥ ‪ C‬ﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ‪( ).‬‬

‫‪ – 3‬ﻟﺘﻜﻥ ‪ F‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ∞‪ 0;+‬ﻭ ﺍﻟﺘﻲ ﺘﻨﻌﺩﻡ[ ]‬ ‫ﻋﻨﺩ ‪ . 0‬ﺒﻴﻥ ﺃﻥ ‪ F‬ﻤﻭﺠﻭﺩﺓ ‪.‬‬ ‫‪ – 4‬ﺍﺴﺘﻨﺘﺞ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪. F‬‬ ‫‪ – 5‬ﻨﻌﺭﻑ ﻋﻠﻰ ‪ +‬ﺍﻟﺩﺍﻟﺘﺎﻥ ‪ H‬ﻭ ‪ K‬ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫)‪H ( x‬‬ ‫=‬ ‫‪F ( x) −‬‬ ‫‪x‬‬ ‫ﻭ‬ ‫)‪K ( x‬‬ ‫=‬ ‫‪F ( x) −‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪3‬‬ ‫ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺘﺎﻥ ‪ H‬ﻭ ‪ K‬ﻋﻠﻰ ‪. +‬‬ ‫ﺍﺴﺘﻨﺘﺞ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﺤﻴﺙ ‪x ≥ 0‬‬ ‫‪-‬‬ ‫‪-‬‬ ‫‪.‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫≤‬ ‫≤ )‪F(x‬‬ ‫‪x‬‬ ‫‪:‬‬ ‫ﻓﺈﻥ‬ ‫‪3‬‬ ‫‪( ).‬‬ ‫‪lim F‬‬ ‫‪x‬‬ ‫ﺍﺴﺘﻨﺘﺞ‬ ‫‪-‬‬ ‫∞‪x→+‬‬‫‪ – 6‬ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ F x = π‬ﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ ‪ α‬ﻓﻲ ‪( ). +‬‬ ‫‪π‬‬ ‫≤‬ ‫‪α‬‬ ‫≤‬ ‫‪3‬‬ ‫‪π‬‬ ‫‪ -‬ﺒﻴﻥ ﺃﻥ‪:‬‬ ‫‪2‬‬ ‫‪y′‬‬ ‫=‬ ‫‪x2‬‬ ‫‪+‬‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪11‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪:‬‬ ‫‪+ 1)2‬‬ ‫‪ -‬ﻋﻴﻥ ﺤﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻋﻠﻰ ‪{ }. − −1‬‬ ‫‪ -‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﺤل ﺍﻟﺫﻱ ﻴﻨﻌﺩﻡ ﻤﻥ ﺃﺠل ‪. x = 0‬‬ ‫‪ -‬ﻨﻀﻊ ‪ . y = f x :‬ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ‪( ). f‬‬ ‫‪ -‬ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. f‬‬ ‫‪ -‬ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ ‪( )C‬‬ ‫ﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪. f‬‬‫‪ -‬ﺃﻨﺸﺊ ) ‪ (C‬ﺒﻌﺩ ﺤﺴﺎﺏ ‪. f ( −2) , f (0) , f ( 2) , f (1) :‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ ‪12‬‬‫ﻋﻴﻥ ﺍﻟﺤل ﺍﻟﺫﻱ ﻴﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ 1‬ﻤﻥ ﺃﺠل ‪ x = 2‬ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪:‬‬‫‪.‬‬ ‫= ‪ y′‬ﻋﻠﻰ‬ ‫‪x+1‬‬ ‫‪x2 + 2x + 8‬‬‫‪ -‬ﺒﻭﻀﻊ ‪ . y = f x :‬ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪( ). f‬‬‫‪ -‬ﺍﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ ‪ C‬ﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ‪( ). f‬‬‫‪ -‬ﺍﺤﺴﺏ ﻜل ﻤﻥ‪f (-5) , f (-4), f (-2) , f ( 3) , f ( 2) , f (0) :‬‬‫ﺃﻋﻁﻲ ﺍﻟﻘﻴﻡ ﻤﺩﻭﺭﺓ ﺇﻟﻰ ‪ 10−2‬ﺜﻡ ﺃﻨﺸﺊ ‪( ). C‬‬

‫ﺍﻟﺤـﻠــــــﻭل‬ ‫‪. × (4‬‬ ‫‪× (3‬‬ ‫‪× (2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫‪. × (8‬‬ ‫‪× (7‬‬ ‫‪× (6‬‬ ‫‪√ (1‬‬ ‫‪. √ (12‬‬ ‫‪√ (11‬‬ ‫‪× (10‬‬ ‫‪√ (5‬‬ ‫‪. × (16‬‬ ‫‪√ (15‬‬ ‫‪√ (14‬‬ ‫‪√ (9‬‬ ‫‪. √ (20‬‬ ‫‪× (19‬‬ ‫‪√ (18‬‬ ‫‪× (13‬‬ ‫‪× (17‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 2‬‬ ‫ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪:‬‬ ‫= ‪Df‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ f x = 2 x − 1 :‬ﻭ ﻤﻨﻪ ‪( ):‬‬ ‫∈ ‪g( x) = x2 − x + λ ,λ‬‬ ‫‪ f ( x ) = x2 − 4 x + 3‬ﻭ ﻤﻨﻪ ‪Df = :‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬‫)‪g( x‬‬ ‫=‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪2x2‬‬ ‫‪+‬‬ ‫‪3x‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈ ‪,λ‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪ (5‬ﻟﺩﻴﻨﺎ ‪:‬‬‫‪ f ( x ) = −3 x3 + 5 x2 − 4‬ﻭ ﻤﻨﻪ ‪Df = :‬‬‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪−‬‬ ‫‪3‬‬ ‫‪x4‬‬ ‫‪+‬‬ ‫‪5‬‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪4x‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈‪; λ‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪ f x = x4 − x3‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫= ‪( )Df‬‬ ‫‪g‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪1‬‬ ‫‪x5‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x4‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈‪; λ‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫= ‪( )Df‬‬ ‫‪f‬‬ ‫‪x‬‬ ‫‪= x2‬‬ ‫ﻭ ﻤﻨﻪ ‪∗ :‬‬

‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ‪ −∞;0‬ﻭ ∞‪ 0;+‬ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ[ ] [ ]‬ ‫‪( ). g‬‬ ‫‪x‬‬ ‫=‬ ‫‪−4‬‬ ‫‪ g‬ﻋﻠﻰ ﻜل ﻤﻨﻬﻤﺎ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪x‬‬ ‫‪11‬‬ ‫= ‪( )Df‬‬ ‫‪= x2 − x3‬‬ ‫‪ 6) f‬ﻭ ﻤﻨﻪ ‪∗ :‬‬ ‫‪x‬‬ ‫‪ (6‬ﻟﺩﻴﻨﺎ ‪:‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﻤﺠﻤﻭﻉ ﺩﺍﻟﺘﻴﻥ ﻨﺎﻁﻘﺘﻴﻥ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺩﻭﺍل ﺃﺼﻠﻴﺔ‬ ‫ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ‪:‬‬ ‫‪ −∞;0‬ﺃﻭ ∞‪ 0;+‬ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪] [ ] [:‬‬‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪−1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈ ‪,λ‬‬ ‫‪x‬‬ ‫‪2x2‬‬ ‫‪f x=1‬‬ ‫‪x‬‬ ‫= ‪( )Df‬‬ ‫∗‬ ‫‪ (7‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪+‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﻤﻘﻠﻭﺏ ﺩﺍﻟﺔ ﺼﻤﺎﺀ ﻤﺴﺘﻤﺭﺓ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ‪ D f‬ﻭ ﻤﻨﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ‬ ‫‪ g‬ﺤﻴﺙ ‪:‬‬ ‫∈‪g(x) = 2 x + λ ; λ‬‬ ‫ﻭ ﻤﻨﻪ ‪Df = ]1;+∞[ :‬‬ ‫= )‪f (x‬‬ ‫‪1‬‬ ‫‪(8‬‬ ‫‪x−1‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻷﻨﻬﺎ ﻤﻘﻠﻭﺏ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻤﺴﺘﻤﺭﺘﻴﻥ ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ‪ g‬ﺤﻴﺙ ‪:‬‬ ‫∈ ‪g(x) = 2 x −1 + λ ; λ‬‬ ‫= ‪Df‬‬ ‫‪ f ( x ) = cos2 x − sin2 x (9‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻋﻠﻴﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ‪g‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪f ( x ) = cos 2 x :‬‬ ‫‪g‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪1‬‬ ‫‪sin‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈‪; λ‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪2‬‬

‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪sin 2‬‬ ‫‪x‬‬ ‫‪ (10‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪cos3‬‬ ‫‪x‬‬ ‫ﻭﻤﻨﻪ ‪Df = { x ∈ : cos x ≠ 0} :‬‬ ‫‪x‬‬ ‫≠‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪kπ‬‬ ‫;‬ ‫∈‪k‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪2‬‬ ‫‪Df‬‬ ‫=‬ ‫‪‬‬ ‫‪π‬‬ ‫‪+ kπ‬‬ ‫;‬ ‫‪π‬‬ ‫‪+‬‬ ‫(‬ ‫‪k‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪,‬‬ ‫∈‪k‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ f‬ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ‪ D f‬ﻷﻨﻬﺎ ﺤﺎﺼل ﻗﺴﻤﺔ ﻤﺭﻜﺏ ﺩﻭﺍل ﻤﺜﻠﻴﺔ‬ ‫ﻭ ﻜﺜﻴﺭﺍﺕ ﺤﺩﻭﺩ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ‪g‬‬‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪2sin x.cos‬‬ ‫‪x‬‬ ‫=‬ ‫‪2sin‬‬ ‫‪x‬‬ ‫=‬ ‫‪−2.‬‬ ‫‪− sin x‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪.cos3 x‬‬ ‫‪.cos2‬‬ ‫‪x‬‬ ‫‪[cos x]2‬‬ ‫‪g‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪−2‬‬ ‫×‬ ‫‪−1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪cos x‬‬ ‫‪2‬‬ ‫‪ λ‬ﺜﺎﺒﺕ ﺤﻘﻴﻘﻲ ‪( ).‬‬ ‫‪g‬‬ ‫‪x‬‬ ‫=‬ ‫‪cos‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﺤﻴﺙ‬ ‫‪x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 3‬‬ ‫ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫= ‪Df‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ f x = x2 x3 + 1 2 :‬ﻭ) () (‬ ‫‪1‬‬ ‫‪x3 + 1 2‬‬ ‫‪( )f‬‬‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪3‬‬ ‫‪.3‬‬ ‫‪x2‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪x3 + 1 3 + λ‬‬ ‫‪( )g‬‬‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪3‬‬ ‫×‬ ‫‪3‬‬ ‫;‬ ‫∈‪λ‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪1‬‬ ‫‪x3 + 1 3 + λ‬‬ ‫‪( ).‬‬ ‫‪9‬‬ ‫= )‪g(x‬‬ ‫ﺃﻱ ‪:‬‬

( )Df = ‫ ؛‬2) f ( x) = ( x + 1) x2 + 2x − 1 3 : ‫( ﻟﺩﻴﻨﺎ‬2 ( )f 1 3 ( x) = 2 .(2x + 2) x2 + 2x − 1 : ‫ﻭ ﻤﻨﻪ‬ 1 1 x2 + 2x − 1 4 + λ(( )gx) = 2 × 4 ; λ∈ : ‫ﺇﺫﻥ‬ 1 x2 + 2x − 1 4 + λ ( ). 8 g(x) = ; λ∈ : ‫ﺃﻱ‬ Df = f (x) = x : ‫( ﻟﺩﻴﻨﺎ‬3 x2 + 1 2 ( )‫؛‬ ( x) 1 2x 2 x2 + 1 2 ( )f = × : ‫ﻭ ﻤﻨﻪ‬ . g(x) = 1 −1 + λ ; λ∈ : ‫ﺇﺫﻥ‬ 2× x2 + 1 : ‫( ﻟﺩﻴﻨﺎ‬4 x−1 f (x) = x2 − 2x + 4 3 ( )Df = ‫؛‬ ( x ) 1 2x − 2 2 x2 − 2x + 4 2 ( )f = × : ‫ﻭ ﻤﻨﻪ‬. g(x) = 1 x2 −1 +λ ; λ∈ : ‫ﺇﺫﻥ‬ 2× − 2x + 4 Df = ( )‫؛‬ x3 f x= x4 + 1 : ‫( ﻟﺩﻴﻨﺎ‬5 f ( x ) = 1 × 2 4x3 : ‫ﻭ ﻤﻨﻪ‬ 2 x4 + 1

. g(x) = 1 × x4 + 1 + λ ; λ∈ : ‫ﺇﺫﻥ‬ 4 xDf = ]−∞;−1[ ∪ ]−1;+∞[ ‫ ؛‬f ( x) = x2 − 1 : ‫( ﻟﺩﻴﻨﺎ‬6 f (x) = 2x : ‫ﻭ ﻤﻨﻪ‬ 2 x2 −1 . g( x) = x2 −1 + λ ; λ ∈ : ‫ﺇﺫﻥ‬ Df = ‫؛‬ f ( x) = 1 cos  x − π  : ‫( ﻟﺩﻴﻨﺎ‬7 2  : ‫ﺇﺫﻥ‬ 2 g ( x ) = 1 sin  x − π  + λ ;λ∈ 2   2 Df = ‫ ؛‬f ( x) = cos 2x − sin3x : ‫( ﻟﺩﻴﻨﺎ‬8g ( x) = 1 sin 2x + 1 cos 3x + λ ; λ∈ : ‫ﺇﺫﻥ‬ 2 3 D f = ‫ ؛‬f ( x) = sin x.cos3 x : ‫( ﻟﺩﻴﻨﺎ‬9 g ( x ) = 1 cos4 x + λ ; λ∈ : ‫ﺇﺫﻥ‬ 4 Df = ‫ ؛‬f ( x) = cos 2x.sin2x : ‫( ﻟﺩﻴﻨﺎ‬10 f ( x ) = 1 × 2 sin 2 x .cos 2 x : ‫ﻭ ﻤﻨﻪ‬ 2 f ( x ) = 1 sin 4 x : ‫ﻭ ﻋﻠﻴﻪ‬ 2

‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪−1‬‬ ‫×‬ ‫‪1‬‬ ‫‪cos 4x‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪−1‬‬‫‪g‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪8‬‬ ‫‪cos‬‬ ‫‪4‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈‪; λ‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 4‬‬ ‫ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ‪:‬‬ ‫=‪I‬‬ ‫؛‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪sin‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪cos‬‬ ‫‪x‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪−1‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪x‬‬‫(‪g‬‬ ‫)‪x‬‬ ‫=‬ ‫‪1‬‬ ‫‪cos‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪sin‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪22‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪g‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪−2 cos‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪sin‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﺃﻱ ‪:‬‬ ‫ﻟﻜﻥ ‪:‬‬‫‪ g (0) = 0‬ﻭﻤﻨﻪ ‪ −2 + 0 + λ = 0 :‬ﺃﻱ‪λ = 2 :‬‬‫‪.‬‬ ‫= )‪g(x‬‬ ‫‪−2 cos‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪2 sin‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫؛ [∞‪I= ]-1;+‬‬ ‫= )‪f (x‬‬ ‫‪x+1‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪f (x) = 2× 2‬‬ ‫‪1‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪x+1‬‬ ‫ﺇﺫﻥ ‪g ( x ) = 2 x + 1 + λ :‬‬‫ﻟﻜﻥ ‪ g ( 0) = 0 :‬ﻭﻤﻨﻪ ‪ 2 + λ = 0 :‬ﺃﻱ ‪λ = −2 :‬‬ ‫ﺇﺫﻥ ‪. g ( x ) = 2 x + 1 − 2 :‬‬ ‫[‪I= ]-∞; −2‬‬ ‫؛‬ ‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫)‪2‬‬ ‫‪3‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪+‬‬

g( x) = 2( −1 + λ : ‫ﺇﺫﻥ‬ x + 2)2λ = 1 :‫ﺃﻱ‬ − 1 + λ = 0 :‫ﻭ ﻤﻨﻪ‬ g (0) = 0 : ‫ﻟﻜﻥ‬ 8 8 −1 1 . g( x) = 2( + 8 : ‫ﺇﺫﻥ‬ x + 2)2 I= ‫ ؛‬f ( x ) = xn − 1 ; n ∈ : ‫( ﻟﺩﻴﻨﺎ‬4 g( x) = x n+1 − x + λ : ‫ﺇﺫﻥ‬ n+1λ = 0 : ‫ﺃﻱ‬ 0 − 0 + λ = 0 : ‫ ﻭ ﻤﻨﻪ‬g (0) = 0 : ‫ﻟﻜﻥ‬ . g(x) = x n+1 x : ‫ﺇﺫﻥ‬ n+1− : ‫( ﻟﺩﻴﻨﺎ‬5 : ‫ﺇﺫﻥ‬ I=  − π ; π2  ‫؛‬ f ( x) = 1 x   cos2 2 g ( x) = tan x + λλ = 0 :‫ ﺃﻱ‬tan0 + λ = 0 :‫ ﻭ ﻤﻨﻪ‬g (0) = 0 : ‫ﻟﻜﻥ‬ . g ( x ) = tan x : ‫ﺇﺫﻥ‬I=]-1 ; +∞[ ‫؛‬ 6) f ( x) = x + 1 − ( x 1 1)2 : ‫( ﻟﺩﻴﻨﺎ‬6 + g(x) = x2 +x+ 1 +λ : ‫ﺇﺫﻥ‬ 2 x+1λ = −1 :‫ ﺃﻱ‬1 + λ = 0 :‫ ﻭ ﻤﻨﻪ‬g (0) = 0 : ‫ﻟﻜﻥ‬ . g(x) = x2 + x 1 −1 : ‫ﺇﺫﻥ‬ 2 x+1

I= f ( x ) = sin x .cosn x : ‫( ﻟﺩﻴﻨﺎ‬7 f ( x) = −1× ( − sin x)(cos x)n : ‫ﻭ ﻤﻨﻪ‬ g( x) = −1 cosn+1 x + λ : ‫ﺇﺫﻥ‬ n+1 −1 −1λ = n+1 :‫ﺃﻱ‬ n+1 + λ = 0 :‫ﻤﻨﻪ‬ ‫ﻭ‬ g (0) = 0 :‫ﻟﻜﻥ‬ g( x) = −1 cos n+1 x + n 1 1 : ‫ﺇﺫﻥ‬ n+1 + 1 1I= ]-∞ ; − 2[ ‫؛‬ f ( x) = ( x + ( x : ‫( ﻟﺩﻴﻨﺎ‬8 + 2)2 + 2)3 g( x) = −1 − 1 2)2 + λ : ‫ﺇﺫﻥ‬ x+2 2( x +λ = 5 :‫ﺃﻱ‬ −1 − 1 + λ = 0 :‫ﻭ ﻤﻨﻪ‬ g (0) = 0 :‫ﻟﻜﻥ‬ 8 2 8 −1 1 5 . g(x) = n+2 − 2)2 + 8 : ‫ﺇﺫﻥ‬ 2(n + . 5 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ : f ‫ – ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬1 ( )sin3 x = sin x .sin2 x = sin x 1 − cos2 x : ‫ﻟﺩﻴﻨﺎ‬ f ( x ) = sin x − sin x.cos2 x : ‫ﻭﻋﻠﻴﻪ‬ g ( x) = − cos x + 1 cos3 x + λ : ‫ﺇﺫﻥ‬ 3

h( x ) = − cos x + 1 cos3 x + λ : ‫ ﺤﻴﺙ‬h ‫ – ﺍﺴﺘﻨﺘﺎﺝ‬2 3 2 1 λ = 3 :‫ﺃﻱ‬ −1 + 3 + λ = 0 :‫ﻭﻤﻨﻪ‬ h(0) = 2 : ‫ﻤﻊ‬ . h( x ) = − cos x + 1 cos3 x + 2 : ‫ﺇﺫﻥ‬ 3 3 . 6 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ Df = { }− 1 : ‫ – ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ‬1 : a, b,c ‫ – ﺘﻌﻴﻴﻥ‬2f ( x ) = ( ax + b)( x2 − 2x + 1) + c ( x − 1)2 = ax 3 − 2ax 2 + ax + bx2 − 2bx + b + c ( x − 1)2 ax3 + ( −2a + b) x2 + (a + 2b) x + b + c = ( x − 1)2  a=1 : ‫ﺃﻱ‬  a=1 : ‫ﻭ ﻤﻨﻪ‬ b = +2 −2a + b = 0 c = −2 a − 2b = −3  b + c = 0 f ( x) = x + 2 − ( x 2 : ‫ﻭ ﻋﻠﻴﻪ‬ − 1)2 : g ‫ – ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬3

‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫(‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪− 1)2‬‬ ‫∈‪. λ‬‬ ‫؛‬ ‫)‪g(x‬‬ ‫=‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪2x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫‪x−1‬‬ ‫‪ -4‬ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ‪ h‬ﺤﻴﺙ ‪( )h 2 = 0 :‬‬ ‫)‪h( x‬‬ ‫=‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪2x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪x−1‬‬ ‫ﻭ ﻤﻨﻪ ‪ h( 2) = 2 + 4 + 2 + λ :‬ﺃﻱ ‪h( 2) = λ + 8 :‬‬ ‫ﺇﺫﻥ ‪ λ + 8 = 0 :‬ﻭ ﻤﻨﻪ ‪λ = −8 :‬‬ ‫‪.‬‬ ‫)‪h( x‬‬ ‫=‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫‪2x‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪8‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪2‬‬ ‫‪x−1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 7‬‬ ‫‪Df‬‬ ‫=‬ ‫‪‬‬ ‫∞‪−‬‬ ‫;‬ ‫‪3‬‬ ‫‪ 1‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪: g‬‬ ‫‪‬‬ ‫‪2 ‬‬‫∞‪ lim g ( x) = lim 3 − 2x = +‬؛ ‪lim g ( x) = 0‬‬ ‫<‬ ‫‪3‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬‫‪x‬‬ ‫‪2‬‬ ‫→‬ ‫‪g′( x) = 2‬‬ ‫‪−2‬‬ ‫‪2x‬‬ ‫=‬ ‫‪−1‬‬ ‫‪3−‬‬ ‫‪3− 2x‬‬ ‫;∞‪( )−‬‬‫‪3‬‬‫‪‬‬ ‫‪g′‬‬ ‫‪x‬‬ ‫ﻭ ﻤﻨﻪ‪< 0 :‬‬ ‫‪2‬‬ ‫‪‬‬ ‫ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬ ‫ﻭ ﻋﻠﻴﻪ ‪g‬‬

x −∞ 3 2g′( x) -g( x) +∞ 0 : α , β ,γ : ‫ ﺘﻌﻴﻴﻥ‬-2 ( ) ( ): ‫ ﻭ ﻟﺩﻴﻨﺎ‬f ′ x = g x : ‫ ﺘﻜﺎﻓﺊ‬g ‫ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬ff ′( x) = (2α x + β ) ( )3-2x + α x2 + β x + γ × -2 2 3-2 x( )= (2α x + β ) 3-2x - α x2 + β x + γ 3-2 x 3-2 xf ′( x) = (2α x + β )(3-2x) ( )3-2x - α x2 + β x + γ 3-2 x 3− 2x 3-2 x 3-2 x( )= 6α x-4α x2 + 3β -2β x-α x2 -β x-γ= 3-2 x × -5α x2 + ( 6α -3β ) x + 3β -γ  3-2 x : ‫ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ‬g ‫ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ‬f ‫ﺘﻜﻭﻥ‬ -5α x2 + (6α -3β ) x + 3β -γ =1 3− 2x -5α x2 + (6α -3β ) x + 3β -γ = 3 − 2x : ‫ﻭ ﻋﻠﻴﻪ‬

α =0  −5α = 0 6α − 3β = −2 β = 2 : ‫ﻭ ﻋﻠﻴﻪ‬  3β − γ = 3 : ‫ﻭ ﻤﻨﻪ‬ 3γ = −1 f ( x ) =  2 x − 1  3 − 2 x : ‫ﻭ ﻤﻨﻪ‬  3  : g ‫ – ﺇﻨﺸﺎﺀ ﺒﻴﺎﻥ‬3 y 3 2 1-3 -2 -1 0 1 2x . 8 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ : f ′′( x ) ‫ ﻭ‬f ′( x ) ‫( ﺤﺴﺎﺏ‬1 f ′( x ) = cos x + 3cos x sin2 x : ‫ﻟﺩﻴﻨﺎ‬ ( )f ′( x) = cos x 3 + sin2 x : ‫ﻭ ﻤﻨﻪ‬( )f ′′( x) = -sin x 3 + sin2 x + cos x (2cos x sin x) f ′′( x ) = sin x −3 − sin2 x + 2cos2 x f ′′( x ) + α f ( x ) = β sin x : β ‫ ﻭ‬α ‫( ﻨﺒﻴﻥ ﻭﺠﻭﺩ‬2

-3sin x-sin3 x + 2sin xcos2 x + α sin x + α sin3 x = β sin x ( )(α -3)sin x-sin3 x + 2sin x 1-sin2 x ×α sin3 x = β sin x(α -3)sin x-sin3 x + 2sin x-2sin3 x + α sin3 x-β sin x = 0(α − β − 1)sin x + (α − 3) 2sin3 x = 0 α = 3  α−3=0 β = 2 : ‫ ﺃﻱ‬α − β − 1 = 0 : ‫ﻭ ﻤﻨﻪ‬ f ′′( x) + 3 f ( x) = 2sin x : ‫ﺇﺫﻥ‬ : f ‫ ﻟﻠﺩﺍﻟﺔ‬g ‫( ﺇﻴﺠﺎﺩ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ‬3 ( )f 1 ( x) = 3 − f ′′( x) + 2sin x : ‫ﻤﻤﺎ ﺴﺒﻕ‬( )g 1( x ) = 3 − f ′( x) − 2cos x +λ , λ∈ : ‫ﻭ ﻋﻠﻴﻪ‬( ( ) )g 1 ( x ) = 3 cos x. 3 + sin2 x − 2cos x +λ : ‫ﺇﺫﻥ‬ ( )g 1 ( x ) = 3 cos x + cos x.sin2 x +λ : ‫ﺃﻱ‬ h π  = 1 : ‫ﺤﻴﺙ‬ h ‫ﺍﻷﺼﻠﻴﺔ‬ ‫ﺍﻟﺩﺍﻟﺔ‬ ‫ﺘﻌﻴﻴﻥ‬ (4  2 ( )h( 1 x ) = 3 cos x + cos x sin2 x +λ : ‫ﻟﺩﻴﻨﺎ‬ h π  = 1  cos π + cos π sin2 π  : ‫ﻭﻤﻨﻪ‬  3   2 2 2 2 h π  = λ : ‫ﺇﺫﻥ‬  2

‫‪( )h‬‬ ‫‪1‬‬‫(‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪3‬‬ ‫‪cos x + cos x sin2 x‬‬ ‫‪+λ‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﻭﻤﻨﻪ ‪λ = 1 :‬‬ ‫(‪( )h‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫)‬ ‫=‬ ‫‪3‬‬ ‫‪cos‬‬ ‫‪x‬‬ ‫‪1 + sin2 x‬‬ ‫‪+1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 9‬‬ ‫ﻨﺒﻴﻥ ﺃﻥ ‪ G‬ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪G ( x) = F ( x) − F ( − x) :‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪ F :‬ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻭ ﻤﻨﻪ ‪( ) ( )F ′ x = f x :‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ f‬ﻓﺭﺩﻴﺔ ﻓﺈﻥ ‪( ) ( )f − x = f x :‬‬ ‫ﻟﺩﻴﻨﺎ ‪G′( x) = F′( x) − (−1) F′(− x) :‬‬ ‫)‪G′( x) = F′( x) + F′(−x‬‬ ‫)‪G′( x) = f ( x) + f (−x‬‬ ‫‪G′( x) = f ( x) − f ( x) = 0‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ G x = λ :‬ﺤﻴﺙ ‪ λ :‬ﻋﺩﺩ ﺜﺎﺒﺕ ‪( ).‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 10‬‬ ‫‪ – 1‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪ f‬ﻋﻠﻰ ‪: +‬‬‫‪( ) ( )lim f‬‬ ‫‪x2‬‬ ‫>‬ ‫‪x2‬‬‫‪x→0‬‬ ‫‪ lim f‬ﻭﻤﻨﻪ ‪x = 1 :‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪=1‬‬ ‫‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫‪f‬‬ ‫(‪′‬‬ ‫)‪x‬‬ ‫=‬ ‫(‪2x‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫()‪x + 1) − (2x + 1‬‬ ‫‪x2‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪( )x2 + x + 1 2‬‬

‫(‪′‬‬ ‫)‪x‬‬ ‫‪2x3‬‬ ‫‪+‬‬ ‫‪2x2‬‬ ‫‪+ 2x − 2x3 − 2x‬‬ ‫‪−‬‬ ‫‪x2‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x2 + x + 1 2‬‬ ‫‪( )f‬‬ ‫=‬ ‫‪x2 − 1‬‬ ‫‪x2 + x + 1 2‬‬ ‫= )‪( )f ′( x‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫∞‪+‬‬ ‫‪-‬‬‫)‪f ′( x‬‬ ‫‪+‬‬ ‫ﻭ ﻤﻨﻪ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞‪ 1;+‬ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪[ ] [ [0;1‬‬ ‫ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫‪x0‬‬ ‫∞‪1 +‬‬‫)‪f ′(x‬‬ ‫‪-‬‬ ‫‪+‬‬ ‫‪11‬‬‫‪f (x) 2‬‬ ‫‪3‬‬ ‫‪ -2‬ﻨﺒﻴﻥ ﺃﻥ ‪ C‬ﻴﻘﺒل ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ‪( ):‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ lim f x = 1 :‬ﻓﺈﻥ ‪ y = 1‬ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ‪( ).‬‬ ‫∞‪x +‬‬ ‫‪ -3‬ﻨﺒﻴﻥ ﺃﻥ ‪ F‬ﻤﻭﺠﻭﺩﺓ ﻭﺒﻤﺎ ﺃﻨﻬﺎ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ‬ ‫ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ‪ +‬ﻭ ﻤﻨﻪ ‪ f‬ﺘﻘﺒل‬ ‫ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ‪ F‬ﻭ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻭﺤﻴﺩﺓ ﻷﻨﻬﺎ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ ‪ 0‬ﻋﻨﺩ ‪. 0‬‬ ‫‪ -4‬ﺍﺴﺘﻨﺘﺎﺝ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪: F‬‬‫ﻟﻜﻥ ‪:‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪+1‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪F ′( x ) = f ( x ) :‬‬ ‫‪x2 +‬‬ ‫‪x+1‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪F′( x) > 0 :‬‬ ‫‪3‬‬ ‫≤‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫‪≤1‬‬

‫ﻭﻤﻨﻪ ‪ F‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞‪[ [. 0;+‬‬ ‫‪ -5‬ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ‪: H‬‬‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫≥‬ ‫‪2‬‬ ‫ﻟﻜﻥ‬ ‫= )‪H′(x‬‬ ‫‪F′(x) −‬‬ ‫‪2‬‬ ‫=‬ ‫‪f‬‬ ‫‪( x) −‬‬ ‫‪2‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﻭ ﻤﻨﻪ ‪ H ′ x ≥ 0 :‬ﻭﻋﻠﻴﻪ ‪ H‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪( ). +‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ‪: k‬‬ ‫‪ K′(x) = F′(x) −1= f (x) −1‬؛ ‪f (x) ≤1‬‬ ‫‪ K ′ x ≤ 0‬ﻭ ﻋﻠﻴﻪ ‪ K‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪( )+‬‬ ‫‪( )2‬‬‫‪x‬‬ ‫≤‬ ‫‪F‬‬ ‫‪x‬‬ ‫‪ -‬ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ‪≤ x :‬‬ ‫‪3‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪f ( x ) ≤ 1 :‬‬ ‫‪f‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫≥‬ ‫‪2‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪x‬‬ ‫≤‬ ‫‪F‬‬ ‫(‬ ‫‪x‬‬ ‫)‬ ‫≤‬ ‫‪x‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫ﻭ ﻤﻨﻪ ‪F ( x ) ≤ x :‬‬ ‫‪ -‬ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻨﻬﺎﻴﺔ ‪:‬‬‫‪( )lim F‬‬ ‫‪x‬‬ ‫‪ lim‬ﻭ ﻋﻠﻴﻪ ‪= +∞ :‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim x‬‬ ‫=‬ ‫∞‪+‬‬ ‫‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫∞‪x +‬‬ ‫‪3‬‬‫∞‪x +‬‬ ‫∞‪x +‬‬ ‫‪ -6‬ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ F x = π‬ﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ ‪ α‬ﻓﻲ ‪( ): +‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ F‬ﻤﺴﺘﻤﺭﺓ ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ +‬ﻭ ﺒﻤﺎ ﺃﻥ ‪π ∈ +‬‬ ‫ﻓﺈﻥ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ ‪ α‬ﺒﺤﻴﺙ ‪( )f α = π‬‬ ‫ﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ‬ ‫‪π‬‬ ‫≤‬ ‫‪α‬‬ ‫≤‬ ‫‪3‬‬ ‫‪π‬‬ ‫‪ -‬ﻨﺒﻴﻥ ﺃﻥ‬ ‫‪2‬‬‫‪2‬‬ ‫‪‬‬ ‫‪3π‬‬ ‫‪‬‬ ‫≤‬ ‫‪F‬‬ ‫‪‬‬ ‫‪3π‬‬ ‫‪‬‬ ‫≤‬ ‫‪3π‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪2‬‬ ‫‪π‬‬ ‫≤‬ ‫‪F‬‬ ‫‪(π‬‬ ‫)‬ ‫≤‬ ‫‪π‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫‪3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪F‬‬ ‫‪(π‬‬ ‫)‬ ‫‪≤π‬‬ ‫≤‬ ‫‪F‬‬ ‫‪‬‬ ‫‪3π‬‬ ‫‪‬‬ ‫‪:‬‬ ‫ﺇﺫﻥ‬ ‫‪π‬‬ ‫≤‬ ‫‪F‬‬ ‫‪‬‬ ‫‪3π‬‬ ‫‪‬‬ ‫≤‬ ‫‪3π‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪.‬‬ ‫ﺍﻟﻤﻨﺘﻬﻴﺔ‬ ‫ﺍﻟﺘﺯﺍﻴﺩﺍﺕ‬ ‫ﻨﻅﺭﻴﺔ‬ ‫ﺤﺴﺏ‬ ‫‪π‬‬ ‫‪≤α‬‬ ‫≤‬ ‫‪3π‬‬ ‫ﻭﻋﻠﻴﻪ‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪11‬‬ ‫‪ -‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻋﻠﻰ ‪ − −1‬ﻫﻭ ‪{ }:‬‬ ‫‪y‬‬ ‫=‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪λ‬‬ ‫∈‪; λ‬‬ ‫‪3‬‬ ‫‪x+1‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﺍﻟﺤل ‪ f‬ﺤﻴﺙ ‪( ): f 0 = 0‬‬ ‫‪f (0) = 0‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪:‬‬ ‫‪f‬‬ ‫= )‪(x‬‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪γ‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪+‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪ 0 = −1 + λ‬ﻭﻤﻨﻪ ‪λ = 1 :‬‬ ‫‪f‬‬ ‫(‬ ‫)‪x‬‬ ‫=‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪+1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪3‬‬ ‫‪x+1‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻠﺩﺍﻟﺔ ‪: f‬‬ ‫[∞‪Df = ]−∞;−1[ ∪ ]−1;+‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫=‪+1‬‬ ‫∞‪−‬‬ ‫‪3‬‬ ‫‪x+‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪(x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x3‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫=‪+1‬‬ ‫∞‪+‬‬ ‫‪3‬‬ ‫‪x+‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫∞‪lim f ( x) = −‬‬ ‫‪،‬‬ ‫∞‪lim f ( x) = +‬‬ ‫‪x>−1‬‬ ‫‪x<−1‬‬ ‫‪x > −1‬‬ ‫‪x < −1‬‬ ‫‪f‬‬ ‫(‪′‬‬ ‫)‪x‬‬ ‫=‬ ‫‪x2‬‬ ‫‪+‬‬ ‫(‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪+ 1)2‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ‪ D f‬ﻟﺩﻴﻨﺎ ‪( )f ′ x > 0 :‬‬

‫ﺇﺫﻥ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ‪ −1;+∞ :‬ﻭ ‪] [ ] [−∞;−1‬‬‫‪x −∞ −1‬‬ ‫∞‪+‬‬‫)‪f ′( x‬‬ ‫‪+‬‬ ‫‪+‬‬‫)‪f (x‬‬ ‫∞‪+‬‬ ‫∞‪+‬‬ ‫∞‪−‬‬ ‫∞‪−‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ﺃﺭﺒﻌﺔ ﻓﺭﻭﻉ ﻻﻨﻬﺎﺌﻴﺔ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻌﺎﺩﻟﺘﻪ ‪x = −1 :‬‬ ‫‪lim‬‬ ‫‪f‬‬ ‫)‪( x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x2‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫=‬ ‫∞‪+‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪x‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫∞‪x →+‬‬ ‫)‪x( x + 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪ C‬ﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻋﻨﺩ ∞‪( )+‬‬ ‫ﻭﺁﺨﺭ ﻋﻨﺩ ∞‪. −‬‬‫‪f‬‬ ‫(‬ ‫)‪-2‬‬ ‫=‬ ‫‪-2‬‬ ‫؛‬ ‫‪f‬‬ ‫(‬ ‫)‪2‬‬ ‫=‬ ‫‪10‬‬ ‫؛‬ ‫‪f‬‬ ‫)‪(1‬‬ ‫=‬ ‫‪5‬‬ ‫‪ -‬ﺇﻨﺸﺎﺀ ‪( ): C‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪. f (0) = 0‬‬

‫‪y‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬‫‪-3 -2 -1 0‬‬ ‫‪1 2x‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪. 12‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ‪: f‬‬‫= ‪y′‬‬ ‫‪2x + 2‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫= ‪y′‬‬ ‫‪x+1‬‬ ‫‪2‬‬ ‫‪x2 + 2x + 8‬‬ ‫ﻟﺩﻴﻨﺎ ‪x2 + 2 x + 8 :‬‬ ‫)‪y′ = g′( x‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫)‪2 g(x‬‬‫ﻭﻋﻠﻴﻪ ‪ y = g ( x ) + c = x2 + 2 x + 8 + c :‬؛ ∈ ‪c‬‬ ‫ﺇﺫﻥ ‪ f ( x ) = x2 + 2 x + 8 + c :‬؛ ∈ ‪c‬‬‫ﻟﻜﻥ ‪ f ( 2) = 1 :‬ﻭﻋﻠﻴﻪ ‪( 2)2 + 2( 2) + 8 + c = 1 :‬‬ ‫ﺇﺫﻥ ‪ 4 + c = 1 :‬ﺃﻱ ‪c = −3 :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪f ( x ) = x2 + 2 x + 8 − 3 :‬‬

‫‪ -‬ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ‪: f‬‬ ‫[∞‪Df = ]−∞;+‬‬ ‫∞‪lim f ( x) = +‬‬ ‫‪،‬‬ ‫∞‪lim f ( x) = +‬‬ ‫∞‪x→−‬‬ ‫∞‪x→+‬‬ ‫‪f ′(x) = x +1‬‬ ‫‪x2 + 2x + 8‬‬ ‫‪x‬‬ ‫ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ ‪:‬‬‫)‪f ′(x‬‬ ‫∞‪−∞ 1- +‬‬ ‫‪-+‬‬ ‫ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞‪[ [−1;+‬‬ ‫ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪] ]. −∞;−1‬‬ ‫‪x‬‬ ‫∞‪−‬‬ ‫‪ -‬ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬‫)‪f ′( x‬‬ ‫‪-‬‬ ‫∞‪- 1 +‬‬‫)‪f (x‬‬ ‫∞‪+‬‬ ‫‪+‬‬ ‫)‪f (−1‬‬ ‫∞‪+‬‬ ‫‪ f (−1) = 7 − 3‬؛ ‪f (−1) −0,35‬‬ ‫‪ -‬ﺩﺭﺍﺴﺔ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻭﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻴﻭﺠﺩ ﻓﺭﻋﺎﻥ‬ ‫ﻻﻨﻬﺎﺌﻴﺎﻥ ‪:‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪8‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪x2‬‬ ‫‪‬‬‫‪( )lim f x‬‬ ‫‪= lim‬‬ ‫‪−‬‬ ‫‪3‬‬ ‫∞‪x→+‬‬ ‫‪x‬‬ ‫‪x‬‬‫∞‪xx→+‬‬

= lim x 1+ 2 + 8 − 3 x x x2 x x→+∞ = lim 1+ 2 + 8 − 3 =1 x→+∞ x x2 xlim  f ( x) − x  = lim x2 + 2x + 8 − 3 − xx→+∞ x→+∞  x2 + 2x + 8 − ( x + 3)   x2 + 2x + 8 + ( x + 3)  = lim     x→+∞  x2 + 2x + 8 + x + 3  = lim ( x2 + 2x + 8) − ( x + 3) x→+∞ x2 + 2 x + 8 + x + 3 = lim x2 + 2x + 8 − x2 − 6x − 9 x→+∞  2 8 3 x  1+ x x2 +1+ + x    x −4 − 1 x  = lim = −2 x→+∞  2 8 3 x  1+ x x2 +1+ + x    . +∞ ‫ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩ‬y = x − 2 : ‫ﻭ ﻋﻠﻴﻪ‬ x 2  1 + 2 + 8   x x2  ( )lim f x = lim − 2 x x→−∞ x x→−∞ x

− x  1 + 2 + 8  3  x x2  x = lim − x→−∞ x = lim − 1+ 2 + 8 − 3 = −1 x→−∞ x x2 xlim  f ( x) + x  = lim x2 + 2x + 8 − 3 + xx→−∞ x→−∞  x2 + 2x + 8-( x + 3)  x2 + 2x + 8 + ( - x + 3)   = lim     x→−∞  x2 + 2x + 8 + ( - x + 3)    ( )x2 + 2x + 8 − (− x + 3)2 = lim x→−∞ x2 + 2 x + 8 − x + 3 = lim x2 + 2x + 8 − x2 + 6x − 9 x→−∞ x2 + 2 x + 8 − x + 3 = lim 8x −1 x→−∞ x2 + 2 x + 8 − x + 3 x  8 − 1   x  = lim = −4 x→−∞ x − 1+ x x2 1+ x  + −  . −∞ ‫ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩ‬y = − x − 4 : ‫ﻭﻤﻨﻪ‬ f (0) −0,17 : ‫ﻭﻤﻨﻪ‬ : ‫ﺍﻟﺤﺴﺎﺏ‬ f (0) = 8 − 3 f (2) = 16 − 3 = 1

f (3) 1,80 , f (3) = 23 − 3f (−2) −0,17 , f (−2) = 8 − 3 f (−4) = 1f (−5) 1,80 , f (−5) = 23 − 3 ( ): C ‫ﺇﻨﺸﺎﺀ‬ y 3 2 1-5 -4 -3 -2 -1 0 1 2 3 4x -1 -2 -3 -4

‫‪ - 4‬ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ‬ ‫ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫‪ -‬ﺘﻭﻅﻴﻑ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﺍﻟﻨﻴﺒﺭﻴﺔ ‪.‬‬ ‫‪ -‬ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ‪.‬‬‫ﺗﺼﻤﻴﻢ اﻟﺪرس‬ ‫ﺃﻨﺸﻁﺔ‬ ‫ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ‬‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل‬ ‫ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺤـﻠــــــﻭل‬

‫ﺃﻨﺸﻁﺔ‬ ‫ﺍﻟﻨﺸﺎﻁ ‪:‬‬‫ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴﻼﻥ ﺍﻟﺒﻴﺎﻨﻴﺎﻥ ‪ C f‬ﻭ ' ‪ C f‬ﻟﺩﺍﻟﺔ ‪ f‬ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ' ‪ f‬ﻓﻲ ﻤﻌﻠـﻤﻴﻥ) ( ) (‬ ‫ﻤﺨﺘﻠﻔﻴﻥ ‪.‬‬ ‫‪yy‬‬ ‫‪33‬‬‫)’‪2,5 (Cf‬‬ ‫‪2,5‬‬ ‫‪2‬‬ ‫)‪2 (Cf‬‬‫‪1,5‬‬ ‫‪1,5‬‬‫‪11‬‬‫‪0,5‬‬ ‫‪0,5‬‬‫‪-1,5 -1 -0,5 0 0,5 1 x‬‬ ‫‪-1,5 -1 -0,5 0 0,5 1 x‬‬ ‫‪ -1‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ‪ f‬ﻭ ' ‪. f‬‬ ‫‪ -2‬ﺃﺤﺴﺏ ﻜل ﻤﻥ )‪ f (0‬ﻭ )‪. f '(0‬‬ ‫‪ -3‬ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ ‪ f‬ﻭ ' ‪ f‬ﺜﻡ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻨﻬﺎ ‪.‬‬ ‫‪ -4‬ﻋﻴﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ‪ f‬ﻭ ' ‪. f‬‬ ‫‪ -5‬ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل ﺍﻟﺩﺍﻟﺘﻴﻥ ‪ f‬ﻭ ' ‪. f‬‬ ‫‪ -6‬ﻨﻔﺭﺽ ﺃﻥ ' ‪ f = f‬ﺍﺤﺴﺏ ''' ‪. f‬‬ ‫ﺍﻟﺤل ‪:‬‬ ‫‪ -(1‬ﺍﻟﺩﺍﻟﺘﺎﻥ ‪ f‬ﻭ ' ‪ f‬ﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ‬ ‫‪f ' (0) = 1 ، f (0) = 1 -(2‬‬ ‫‪ -(3‬ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ ‪ f‬ﻭ ' ‪: f‬‬‫ﺇﻥ ﺍﻟﺒﻴﺎﻨﻴﻥ ‪ C f‬ﻭ ' ‪ C f‬ﻴﻘﻌﺎﻥ ﻓﻭﻕ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ ﻋﻠﻴﻪ ﻓﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ) ( ) (‬ ‫‪ x‬ﻓﺈﻥ ‪:‬‬

‫‪ f ' x > 0‬ﻭ ‪ f x > 0‬ﻭ ﻋﻠﻴﻪ ‪ f‬ﻭ ' ‪ f‬ﻤﺘﺯﺍﻴﺩﺘﺎﻥ ﻋﻠﻰ) ( ) (‬ ‫‪ -(4‬ﺘﻌﻴﻴﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪:‬‬ ‫‪x‬‬ ‫∞‪−∞ +‬‬ ‫∞‪x −‬‬ ‫∞‪+‬‬‫)‪f ′( x‬‬ ‫‪+‬‬ ‫)‪f ′′( x‬‬ ‫‪+‬‬‫)‪f (x‬‬ ‫)‪f (x‬‬ ‫‪ -(5‬ﺍﻟﻤﺨﻤﻨﺔ ﺤﻭل ‪ f‬ﻭ ' ‪: f‬‬ ‫ﻨﻼﺤﻅ ﺃﻥ ‪. f (0) = f ′(0) = 1 :‬‬ ‫‪lim f ( x) = lim f ( x) = 0‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪lim f ( x) = lim f ( x) = +‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫ﻭ ﻨﻘﻭل ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻓﺈﻥ ‪( ) ( )f ′ x = f x :‬‬ ‫‪ -(6‬ﺇﺫﺍ ﻓﺭﻀﻨﺎ ﺃﻥ ‪ f = f ′‬ﻓﺈﻥ ‪:‬‬ ‫‪f ′′ = f ′ = f‬‬ ‫‪f ′′′ = f ′′ = f‬‬ ‫ﺇﺫﻥ ‪. f ′′′ = f :‬‬

‫ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ‪:‬‬ ‫‪ -1‬ﻤﺒﺭﻫﻨﺔ ‪ ) : 1‬ﻤﻘﺒﻭﻟﺔ ( ‪:‬‬‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪ y′ = y‬ﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ ﻋﻠﻰ ﻴﺤﻘﻕ ‪( )f 0 = 1‬‬ ‫ﻭﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪exp‬‬ ‫‪ – 2‬ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ‪:‬‬ ‫‪ exp‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ ‪:‬‬‫* ‪ exp‬ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ‪. exp :‬‬ ‫* ‪exp(0) = 1‬‬ ‫‪ -3‬ﻤﺒﺭﻫﻨﺔ ‪: 2‬‬‫ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪.‬‬‫ﻜﻤﺎ ﻴﻠﻲ ‪g ( x) = exp( x) .exp( − x ) :‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﻨﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﻋﻠﻰ‬ ‫‪ g‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬‫‪g′( x) = exp( x) . exp(−x) - exp( x) . exp(−x) = 0‬‬‫ﻭ ﻤﻨﻪ ‪ g‬ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻭ ﻋﻠﻴﻪ ‪:‬‬‫ﺒﻤﺎ ﺃﻥ ‪ exp(0) = 1‬ﻓﺈﻥ ‪g ( x ) = 1 :‬‬‫ﻭ ﻋﻠﻴﻪ ‪exp( x) .exp( − x) = 1 :‬‬ ‫ﻭ ﻤﻨﻪ ‪ exp :‬ﻻ ﺘﻨﻌﺩﻡ ﺃﺒﺩﺍ ‪.‬‬‫ﻟﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ‪ exp‬ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﺒﺎﻟﺨﻠﻑ ‪:‬‬‫ﻨﻔﺭﺽ ﻭﺠﻭﺩ ﻋﺩﺩ ‪ x0‬ﺒﺤﻴﺙ ‪ exp x0 ≤ 0‬ﻓﻲ ﺍﻟﻤﺠﺎل ‪( )0 ; x0 ‬‬‫ﺃﻭ ﺍﻟﻤﺠﺎل ‪ .  x0 ; 0‬ﺍﻟﺩﺍﻟﺔ ‪ exp‬ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻓﻬﻲ ﺇﺫﻥ ﻤﺴﺘﻤﺭﺓ‪.‬‬‫ﻭ ﻟﺩﻴﻨﺎ ‪ ( )exp x0 < 0 :‬ﻭ ‪exp(0) > 0‬‬

‫ﻭﻤﻨﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ exp x = 0‬ﺘﻘﺒل ﺤﻼ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل ﻭ ﻫﺫﺍ) (‬ ‫ﻴﻨﺎﻗﺽ ﺍﻟﻔﺭﺽ ﻷﻥ ‪ exp‬ﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰ ‪.‬‬ ‫ﻭ ﻤﻨﻪ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﻋﺩﺩ ‪ x0‬ﻤﻥ ﺒﺤﻴﺙ ‪( )exp x0 < 0‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ exp x > 0‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪( ). x‬‬‫ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫‪ -4‬ﻤﺒﺭﻫﻨﺔ‪: 3‬‬ ‫‪ a‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪.‬‬ ‫ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪ y′ = ay‬ﻫﻲ ﺍﻟﺩﻭﺍل ‪ fk‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ‬ ‫‪ fk x = k.exp ax‬ﺤﻴﺙ ‪ k‬ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ‪( ) ( ).‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ fk‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪ fk′‬ﻤﻌﺭﻓﺔ‬ ‫ﻜﻤﺎ ﻴﻠﻲ ) ‪fk′ ( x) = ka.exp(a x‬‬‫ﻷﻥ ‪ fk‬ﻫﻲ ﺠﺩﺍﺀ ﻋﺩﺩ ﻓﻲ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻭ ﻋﻠﻴﻪ ‪fk′ ( x) = afk ( x) :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪ fk‬ﺤل ﻋﻠﻰ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪y′ = ay‬‬ ‫ﻨﻔﺭﺽ ﻭﺠﻭﺩ ﺤل ﺁﺨﺭ ‪ g‬ﻋﻠﻰ ‪( ) ( )g′ x = a.g x :‬‬‫= )‪u(x‬‬ ‫)‪g(x‬‬ ‫ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫ﻟﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ u‬ﻋﻠﻰ‬ ‫) ‪exp ( ax‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ u‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ‪:‬‬ ‫( ‪u′‬‬ ‫)‪x‬‬ ‫=‬ ‫(‪g′‬‬ ‫( ‪x)exp(ax) − a.exp(ax).g‬‬ ‫)‪x‬‬ ‫‪exp ( ax )  2‬‬‫= )‪u′( x‬‬ ‫)‪g′( x) − ag ( x‬‬ ‫=‬ ‫)‪g′( x) − g′( x‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫) ‪exp ( ax‬‬ ‫) ‪exp ( ax‬‬ ‫ﺇﺫﻥ ‪u′( x ) = 0 :‬‬

‫‪ u x = k :‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪( ):‬‬ ‫ﻭ ﻤﻨﻪ ‪ u‬ﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ‪ .‬ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ‬ ‫)‪g( x‬‬ ‫)‬ ‫=‬ ‫‪k‬‬ ‫‪exp ( ax‬‬ ‫ﺃﻱ ﺃﻥ ‪g ( x) = k.exp(ax) :‬‬ ‫‪ -5‬ﻤﺒﺭﻫﻨﺔ ‪: 4‬‬‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ a‬ﻭ ‪exp(a + b) = exp(a ) × exp(b) : b‬‬ ‫ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ‬ ‫)‪ g ( x ) = exp( x + b‬ﺤﻴﺙ ‪ b‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪.‬‬‫ﺍﻟﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪ g′‬ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬‫)‪ g′( x ) = exp( x + b‬ﻭ ﻋﻠﻴﻪ ‪ g′ x = g x‬ﻭ ﻤﻨﻪ ‪ g‬ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ) ( ) (‬ ‫ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ‪y′ = y‬‬ ‫ﻭ ﻤﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ ‪g ( x ) = k.exp( x ) : 3‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪exp( x + b) = k.exp( x) :‬‬ ‫ﻟﻜﻥ ﻤﻥ ﺃﺠل ‪exp(b) = k.exp(0) : x = 0‬‬ ‫ﻟﻜﻥ ‪ exp(0) = 1 :‬ﻭ ﻤﻨﻪ ‪k = exp(b) :‬‬‫ﻭ ﺒﻭﻀﻊ ‪ x = a :‬ﻨﺠﺩ ‪exp(a + b) = exp(a) exp(b) :‬‬ ‫‪ –6‬ﻨﺘﺎﺌﺞ ‪:‬‬ ‫‪ a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ x .‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪.‬‬ ‫‪exp‬‬ ‫(‬ ‫)‪−a‬‬ ‫=‬ ‫‪1‬‬ ‫‪a‬‬ ‫)‬ ‫‪(1‬‬ ‫( ‪exp‬‬

: ‫ﺍﻟﺒﺭﻫﺎﻥ‬( )exp(0) = exp a + ( −a) ( )‫ ﻭ ﻟﺩﻴﻨﺎ‬exp 0 = 1 ‫ﻟﺩﻴﻨﺎ‬( ( )): (1) ‫ ﻭ ﻋﻠﻴﻪ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ‬exp a + −a = 1 : ‫ﻭ ﻤﻨﻪ‬ exp(a)exp(−a) = 1 exp ( −a ) = 1 : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ exp ( a ) exp ( a − b) = exp ( a ) (2 exp ( b )exp(a − b) = exp(a + (−b)) = exp(a) exp(−b) :‫ﺍﻟﺒﺭﻫﺎﻥ‬= exp ( a ) 1 ) exp ( b exp ( a − b) = exp ( a ) : ‫ﺇﺫﻥ‬ exp ( b ) exp(nx) = (exp( x))n (3( )exp(0.x ) = ( )exp 0 0 : n = 0 ‫ﻓﻤﺜﻼ ﻤﻥ ﺃﺠل‬ ( )exp 0 = 1 : ‫ﻭ ﻤﻨﻪ ﻤﺤﻘﻘﺔ ﻷﻥ‬ . ‫ ﻭ ﻫﻲ ﻤﺤﻘﻘﺔ‬exp(1.x ) = exp( x )1 : n = 1 : ‫ﻭ ﻤﻥ ﺃﺠل‬( ) ( )4 ‫ ﻭ ﻫﻲ ﺼﺤﻴﺤﺔ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ‬exp 2.x = exp x 2 : n = 2 : ‫ﻭ ﻤﻥ ﺃﺠل‬ .( ) ( )exp n.x = exp x n : ‫ ﻓﺈﻥ‬n ‫ﻭ ﻋﻠﻴﻪ ﻨﻘﺒل ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ‬

‫‪ -7‬ﺍﻟﻤﺒﺭﻫﻨﺔ ‪: 5‬‬‫ﻨﺭﻤﺯ ﺇﻟﻰ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ‪ 1‬ﺒﺎﻟﺩﺍﻟﺔ ‪ exp‬ﺒﺎﻟﺭﻤﺯ ‪ e‬ﺃﻱ ‪ exp 1 = e :‬ﻭ ﻴﺴﻤﻰ ‪ e‬ﺍﻟﻌﺩﺩ) (‬ ‫ﺍﻟﻨﻴﺒﻴﺭﻱ ‪.‬‬ ‫ﺤﻴﺙ ﺘﻌﻁﻰ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻗﻴﻤﺔ ‪e = 2, 718281828... : e‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪( )exp x = e x : x‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻟﺩﻴﻨﺎ ﻤﻤﺎ ﺴﺒﻕ ‪( ) ( )exp nx = exp x n :‬‬ ‫‪ -‬ﻭ ﻤﻥ ﺃﺠل ‪ x = 1‬ﻟﺩﻴﻨﺎ ‪exp( n) = exp(1)n :‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪exp( n) = en :‬‬ ‫‪ -‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ﺴﺎﻟﺏ ‪x‬‬ ‫= )‪exp( x‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪e- x‬‬ ‫)‪exp(− x‬‬‫‪a‬‬ ‫=‬ ‫‪1‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻨﺎﻁﻕ ‪ : x‬ﻨﻀﻊ ‪ x = pa‬ﺤﻴﺙ ‪:‬‬ ‫‪-‬‬ ‫‪q‬‬ ‫ﻤﻊ ‪ q‬ﻫﻭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ‪.‬‬ ‫‪exp(qa) = exp(a)q‬‬ ‫ﻟﻜﻥ ‪ qa = 1‬ﻭ ﻤﻨﻪ ‪exp(a )q = exp(1) = e :‬‬ ‫‪1‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪exp(a ) = e q :‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪p‬‬ ‫‪‬‬ ‫‪q‬‬ ‫‪‬‬‫= )‪exp( x‬‬ ‫= )‪exp( pa‬‬ ‫‪exp(a) p‬‬ ‫=‬ ‫‪e‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪p‬‬‫ﻭﻤﻨﻪ ‪ exp( x ) = e q = e x :‬ﺇﺫﻥ ‪exp( x ) = e x :‬‬

‫‪ -‬ﻨﻘﺒل ﺃﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﺍﺼﻁﻼﺤﺎ‬ ‫‪ -‬ﺃﻱ ﺃﻥ ‪exp( x ) = e x :‬‬‫‪ -8‬ﺇﻋﺎﺩﺓ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﻭ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺭﻤﺯ ‪: e x‬‬‫‪ (1‬ﺍﻟﺩﺍﻟﺔ ‪ x e x‬ﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﻫﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ‬‫ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻫﻲ ‪ . x e x :‬ﺤﻴﺙ ‪. e0 = 1 :‬‬ ‫‪ (2‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪. e x > 0 : x‬‬ ‫‪ (3‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ a‬ﻭ ‪ b‬ﻟﺩﻴﻨﺎ ‪:‬‬‫‪e−a‬‬ ‫=‬ ‫‪1‬‬ ‫•‬ ‫• ‪ea+b = ea ⋅ eb‬‬ ‫‪ea‬‬‫• ‪ ena = ea n‬؛ ∈ ‪( )n‬‬ ‫‪ea−b‬‬ ‫=‬ ‫‪ea‬‬ ‫•‬ ‫‪eb‬‬ ‫‪ -9‬ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ‪:‬‬ ‫∞‪lim e x = +‬‬ ‫‪(a‬‬ ‫∞‪x→+‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪( ). f x = e x − x :‬‬ ‫ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺩﺍﻟﺘﻴﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺤﻴﺙ ‪( )f ' x = e x − 1 :‬‬‫ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ‪ x e x‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻷﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬ ‫ﻓﺎﻥ ‪f '( x ) ≥ 0 :‬‬ ‫ﺘﻜﺎﻓﺊ ‪ e x ≥ 1‬ﺃﻱ ‪ e x ≥ e0‬ﻭ ﻤﻨﻪ ‪ x ≥ 0 :‬ﺇﺫﻥ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ‬ ‫∞‪ 0, +‬ﻭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪] ] [ [−∞,0‬‬

‫∞‪x −‬‬ ‫‪0‬‬ ‫∞‪+‬‬‫)‪f ′( x‬‬ ‫‪-‬‬ ‫‪+‬‬‫)‪f (x‬‬ ‫‪1‬‬ ‫ﺍﻟﻌﺩﺩ ‪ 1‬ﻫﻭ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪( )f x ≥ 1 : x‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪ f x ≥ 0 :‬ﻭ ﻤﻨﻪ ‪ e x − x ≥ 0‬ﺇﺫﻥ ‪( )e x ≥ x :‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ lim x = +∞ :‬ﻓﺈﻥ ‪lim e x = 0 :‬‬ ‫∞‪x→+‬‬ ‫∞‪x→+‬‬ ‫ﻭ ﺫﻟﻙ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺩﻨﻰ ‪.‬‬ ‫‪lim e x = 0‬‬ ‫‪(b‬‬ ‫∞‪x→−‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻭ ﻫﺫﺍ ﺒﻭﻀﻊ ‪− x = z :‬‬ ‫‪lim e x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫=‬ ‫‪lim‬‬ ‫‪1‬‬ ‫‪e− x‬‬ ‫‪ez‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪z→+‬‬ ‫‪lim‬‬ ‫‪ex‬‬ ‫∞‪= +‬‬ ‫‪(c‬‬ ‫‪x‬‬ ‫∞‪x→+‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ e x ≥ x : x‬ﻤﻤﺎ ﺴﺒﻕ‬ ‫‪x‬‬ ‫≥‬ ‫‪x‬‬ ‫‪:‬‬ ‫‪x‬‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬ ‫‪2‬‬ ‫‪e2‬‬

‫‪‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫≥‬ ‫‪‬‬ ‫‪x 2‬‬ ‫‪:‬‬ ‫‪x≥0‬‬ ‫ﻤﻥ ﺃﺠل‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪‬‬ ‫‪ex x‬‬ ‫ﻭ ﻋﻠﻴﻪ ‪:‬‬ ‫‪ex‬‬ ‫≥‬ ‫‪x2‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪x ≥4‬‬ ‫‪4‬‬‫‪lim e x‬‬ ‫∞‪= +‬‬ ‫ﻓﺈﻥ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺼﺭ ‪:‬‬ ‫‪lim‬‬ ‫‪x‬‬ ‫=‬ ‫∞‪+‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ‬‫∞‪xx→+‬‬ ‫‪4‬‬ ‫∞‪x→+‬‬ ‫‪lim xe x = 0‬‬ ‫‪(d‬‬ ‫∞‪x→−‬‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬‫‪lim xe x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x‬‬ ‫=‬ ‫‪lim‬‬ ‫‪−1‬‬ ‫=‬ ‫‪lim‬‬ ‫‪−1‬‬ ‫=‬ ‫‪0‬‬ ‫‪e− x‬‬ ‫‪e−x‬‬ ‫‪ez‬‬‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪x→−‬‬ ‫∞‪z→+‬‬ ‫‪−x z‬‬ ‫ﻭ ﺫﻟﻙ ﺒﻭﻀﻊ ‪z = − x‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪lim‬‬ ‫‪(e‬‬ ‫‪x→0‬‬‫ﻭ ﻋﻠﻴﻪ ﻓﻬﻲ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 0‬ﺤﻴﺙ ‪:‬‬ ‫‪ x‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬ ‫ﺍﻟﺒﺭﻫﺎﻥ ‪:‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪e x : f‬‬ ‫‪(1) ... f‬‬ ‫)‪′(0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪e x -e0‬‬ ‫=‬ ‫‪lim‬‬ ‫‪e x -1‬‬ ‫‪x-0‬‬ ‫‪x‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬‫ﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ‪ f ′‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪( )f ′ x = e x :‬‬ ‫ﻭﻋﻠﻴﻪ ‪( 2) ... f ′(0) = e0 = 1 :‬‬ ‫‪e‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪lim‬‬ ‫‪=1‬‬ ‫‪:‬‬ ‫ﻭ )‪( 2‬‬ ‫)‪(1‬‬ ‫ﻤﻥ‬ ‫‪x→0‬‬

‫ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﻠﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ‪f : x e x :‬‬‫∞‪x −‬‬ ‫∞‪+‬‬‫)‪f ′( x‬‬ ‫‪+‬‬ ‫∞‪f ( x) +‬‬ ‫‪0‬‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ‪ A 0;1‬ﻫﻲ ‪( ):‬‬ ‫)‪ y = f ′(0) .( x − 0) + f (0‬ﻭ ﻤﻨﻪ ‪y = x + 1 :‬‬‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ )‪ B ( 0;1‬ﻫﻲ ‪ y = f ′(1) .( x − 1) + f (1) :‬ﻭ‬ ‫ﻤﻨﻪ ‪y = e ( x − 1) + e :‬‬ ‫ﻭﻋﻠﻴﻪ ‪y = ex :‬‬ ‫ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ‪:‬‬ ‫‪y‬‬ ‫‪3‬‬ ‫)‪2,5 (Cf‬‬ ‫‪2‬‬ ‫‪1,5‬‬ ‫‪1‬‬ ‫‪0,5‬‬ ‫‪-1,5 -1 -0,5 0 0,5 1 x‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook