اﻹرﺳﺎل اﻷول -1ﺍﻟﻨﻬﺎﻴﺎﺕ ﻭ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ. -2ﺍﻻﺸﺘﻘﺎﻗﻴﺔ . -3ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ . -4ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ . -5ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ . -6ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺭﻜﺒﺔ . – 7ﺍﻟﺘﺸﺎﺒﻬﺎﺕ ﺍﻟﻤﺴﺘﻭﻴﺔ ﺍﻟﻤﺒﺎﺸﺭﺓ .
ﺍﻟﻨﻬﺎﻴﺎﺕ ﻭ ﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺤﺴﺎﺏ ﻨﻬﺎﻴﺔ ﻤﻨﺘﻬﻴﺔ ﺃﻭ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ ﻟﺩﺍﻟﺔ ﻟﻤﺠﺎﻻﺕ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ - 2ﺤﺴﺎﺏ ﻨﻬﺎﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺃﻭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﻭﺘﺭﻜﻴﺏ ﺩﺍﻟﺘﻴﻥ . -3ﺩﺭﺍﺴﺔ ﺍﻟﺴﻠﻭﻙ ﺍﻟﺘﻘﺎﺭﺒﻲ ﻟﺩﺍﻟﺔ. -4ﺍﺴﺘﻌﻤﺎل ﻤﺒﺭﻫﻨﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻹﺜﺒﺎﺕ ﻭﺠﻭﺩ ﺤﻠﻭل ﻟﻠﻤﻌﺎﺩﻟﺔ : k , f ( x ) = kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻁﻰ . ﺗﺼﻤﻴﻢ اﻟﺪرس أﻧﺸﻄﺔ اﻟﻨﻬﺎیﺎت اﻻﺳﺘﻤﺮاریﺔ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻹﻋﻼم واﻻﺗﺼﺎل ﺗﻤﺎریﻦ وﻡﺸﻜﻼت اﻟﺤﻠﻮل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ: 1 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ - 0ﻜﻤﺎﻴﻠﻲ { }: . )f (x = 2x + 3 x (1ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ :x 102 104 108 1010)f (x (2ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻓﺈﻥ : . )f (x =2+ 3 x (3ﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≥ 109ﻓﺈﻥ ( )2 < f x < 2 + 10−9 : (4ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل ( )lim f x ∞x→+ (5ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ :x 0,0000001 0,00000001 0,000000001)f (x (6ﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≤ 10−9ﻓﺈﻥ ( )f x ≥ 2 + 3 . 109 : (7ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ :x -0,9997 -0,9998 -0,9999)f (x -8ﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≥ −10−9 :ﻓﺈﻥ f ( x) ≤ 2 - 3 . 109 :
ﻭ )lim f ( x -9ﻤﺎ ﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل ( )lim f x : x→0 x→0 x >0 x <0 ﺍﻟﺤل : -1ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : x 102 104 108 1010)f (x 2,03 2,0003 2,00000003 2,000000003 f )(x =2+ 3 -2ﻨﺒﻴﻥ ﺃﻥ : x 2x 3 2x + 3 )f (x = x + x ﻭﻋﻠﻴﻪ : = )f (x x ﻟﺩﻴﻨﺎ : )f (x =2+ 3 ﻭﺒﺎﻟﺘﺎﻟﻲ : x -3ﻨﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≥ 109 :ﻓﺈﻥ ( )2 ≤ f x ≤ 2 + 10−9 : f (x) ≥ 2 ﻭﻤﻨﻪ 3 ≥ 0 ﻭ )f (x =2+ 3 ﻟﺩﻴﻨﺎ x x 11 x ≤ 109 ﻭﻟﺩﻴﻨﺎ x ≥ 109ﻭﻤﻨﻪ ( )f x ≤ 2 + 10−9 ﻭﻤﻨﻪ : 2+ 1 ≤ 2 + 10- 9 ﻭﻋﻠﻴﻪ : x ﺇﺫﻥ . 2 ≤ f ( x ) ≤ 2 + 10−9 : lim f ( x) = 2 -4ﻟﺩﻴﻨﺎ ﺍﻟﻤﺨﻤﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ : -5ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : ∞x→+x 0,0000001 0,00000001 0,000000001)f (x 30000002 300000002 3000000002 -6ﻨﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≤ 10-9 :ﻓﺈﻥ( ). f x ≥ 2 + 3 . 109 :
3 ≥ 3 . 109 ﻭﻤﻨﻪ : 1 ≥ 1 ﻓﺈﻥ : x ﺇﺫﺍ ﻜﺎﻥ≤ 10-9 : x x 10-9 3( ). f x ≥ 2 + 3 . 109 ﻭﺒﺎﻟﺘﺎﻟﻲ: 2+ x ﻭﻋﻠﻴﻪ≥ 2 + 3 . 109 :x -0,9997 -0,9998 -7ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : -0,9999( )f x -1,00090027 -1,00060012 -1,00030003 -8ﻨﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ≥ -10-9 :ﻓﺈﻥ( ). f x ≤ 2 - 3 . 109 : 3 ≤ -3 . 109 ﻭﻤﻨﻪ : 1 ≤ -1 ﻓﺈﻥ : x ≥ -10-9 ﺇﺫﺍ ﻜﺎﻥ: x x 10-9 3)f (x ﻭﺒﺎﻟﺘﺎﻟﻲ ≤ 2 - 3 . 109 : 2+ x ﻭﻋﻠﻴﻪ≤ 2 - 3 . 109 : lim f ( x) = +∞ ، -9ﺍﻟﺘﺨﻤﻴﻥ : x→0 ∞lim f ( x) = - x >0 x→0 x <0 ﺍﻟﻨﺸﺎﻁ : 2 ﺘﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻜﻤﺎﻴﻠﻲ : ﻤﻥ ﺃﺠل f ( x ) = -x + 1 : x < 1 ﻭ ﻤﻥ ﺃﺠل f ( x ) = x + 1 : x ≥ 1 -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f -2ﺃﺤﺴﺏ ( ). f 1 -3ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ) (Cﻟﻠﺩﺍﻟﺔ ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ. -4ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻠﻰ ﺍﻟﻤﻨﺤﻨﻰ ) (Cﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 1؟ -5ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻠﻰ ﺍﻟﻤﻨﺤﻨﻰ ) (Cﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ : [ ]-∞ ; 1ﻭ [∞]1 ; +
ﺍﻟﺤل : -1ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻫﻲ . -2ﺤﺴﺎﺏ )f (1) = 1 + 1 = 2 : f (1 -3ﺇﻨﺸﺎﺀ ): (C y 6 5 4 3 2 1-3 -2 -1 0 1 2 3x -1 -4ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cﻤﺘﻘﻁﻊ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ . 1 -5ﻨﻼﺤﻅ ﺃﻥ ) (Cﺨﻁ ﻏﻴﺭ ﻤﺘﻘﻁﻊ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ 1 ; +ﻭﻜﺫﻟﻙ ﺨﻁ ﻏﻴﺭ ﻤﺘﻘﻁﻊ ﻋﻠﻰ ﺍﻟﻤﺠﺎل[ ] [. ]-∞ ; 1 ﻭﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ -∞ ; 1ﻭ ∞] [ ] [. 1 ; + ﺍﻟﻨﺸﺎﻁ : 3 ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ . f
y4321-5 -4 -3 -2 -1 0 1 2 3 4x -1-2-3-4 -1ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f -2ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ f x = 0ﻤﻊ ﺤﺼﺭ ﻜل ﺤل ﻓﻲ ﻤﺠﺎل) (ﻤﻥ ﺍﻟﺸﻜل . a ; bﻤﺎ ﻫﻲ ﺇﺸﺎﺭﺓ ﻜل ﻤﻥ f aﻭ ( ) ( ) ] [. f b -3ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ( )f x = 2 ﻤﺎﻫﻲ ﺍﻟﻤﺨﻤﻨﺎﺕ ﺍﻟﺘﻲ ﺘﺴﺘﻨﺘﺠﻬﺎ ؟ ﺍﻟﺤل : (1ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] 4؛ [-5 (2ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ( ): f x = 0 ﻟﻠﻤﻌﺎﺩﻟﺔ f x = 0ﺤﻠﻴﻥ ( ). x2 , x1 ﺤﻴﺙ [ x1 ∈ ]1 ; 2ﻭ [x2 ∈ ]-5 ; -4 ﻭﻟﺩﻴﻨﺎ f (1) > 0 :ﻭ f ( 2) < 0 ﻭﻜﺫﻟﻙ f ( −5) > 0 :ﻭ f ( −4) > 0
(3ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ( )f x = 2 ﻟﻠﻤﻌﺎﺩﻟﺔ 4 ، f x = 2 :ﺤﻠﻭل( ). ﺍﻟﻤﺨﻤﻨﺎﺕ : (1ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻤﺠﺎل a ; bﻭﻜﺎﻥ] [ f a . f b < 0ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ x0ﺒﺤﻴﺙ f x0 = 0ﻭ) ( ) ( ) ( [x0 ∈ ]a ; b (2ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل a ; bﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ cﻤﺤﺼﻭﺭ ﺒﻴﻥ ( ) [ ]f a ﻭ f bﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ x0ﺒﺤﻴﺙ ] [ ( )x0 ∈ a ; b ﻭ . f ( x0 ) = c -Iﺍﻟﻨﻬﺎﻴﺎﺕ -1ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ∞ +ﺃﻭ ∞: − ﺘﻌﺭﻴﻑ : 1ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞ +ﻫﻲ ∞ +ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، A ﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Bﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ x > B :ﻴﻜﻭﻥ f (x) > A ﺃﻭ ∞( )lim f = + ﻭﻨﻜﺘﺏ ∞= + ∞+ lim f x ∞x→+ ﺘﻌﺭﻴﻑ : 2−( )limfﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞ +ﻫﻲ ∞ −ﻴﻌﻨﻲ ﺃﻥ ∞x = +∞x→+ ( )lim fx ∞= - ﻭﻨﻜﺘﺏ : ∞x→+
ﺘﻌﺭﻴﻑ : 3ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞ −ﻫﻲ ∞ +ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، Aﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Bﺒﺤﻴﺙ ﺇﺫﺍ ﻜﺎﻥ x < -Bﻴﻜﻭﻥ ( )f x > A ( )lim f x ﻭﻨﻜﺘﺏ ∞= + ∞x→− ﺘﻌﺭﻴﻑ : 4ﻨﻘﻭل ﻋﻥ ﺩﺍﻟﺔ fﺃﻨﻬﺎ ﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ −ﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞−( )lim∞x→− − f ∞x = + ﺇﺫﺍ ﻜﺎﻨﺕ : ﻭﻨﻜﺘﺏ lim f ( x ) = -∞ : ∞x→− ﺘﻌﺭﻴﻑ : 5ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞ +ﻫﻲ ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، e ﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Bﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ x > Bﻴﻜﻭﻥ 0 ≤ f (x) - < e ﻭﻨﻜﺘﺏ lim f ( x ) = : ∞x→+ ﺘﻌﺭﻴﻑ : 6ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞ −ﻫﻲ ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، eﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Bﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ x < -Bﻴﻜﻭﻥ 0 ≤ f (x) - < e ﻭﻨﻜﺘﺏ lim f ( x ) = : ∞x→− ﻤﻼﺤﻅﺎﺕ : xﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺒﻘﻴﺔ ﺍﻟﺘﻌﺎﺭﻴﻑ ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ∞lim f ( x) = + ، ∞lim f ( x) = -x→ x0 x→ x0 x< x0 x> x0x ∈ x0 - α ; x0 ∪ x0 ; α + x0 x - x0 < α xﺘﻌﻨﻲ : 0 ≤ f ( x) - < α xﺘﻌﻨﻲ f ( x) ∈ ] - e ; + e[ :
xﺇﺫﺍ ﻗﺒﻠﺕ ﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻨﻬﺎﻴﺔ ﻋﻨﺩ x0ﺃﻭ ﻋﻨﺩ ∞ +ﺃﻭ ﻋﻨﺩ ∞ −ﻓﺈﻥ ﻫﺫﻩ ﺍﻟﻨﻬﺎﻴﺔ) ( ) (≤ .0 ﻭﺤﻴﺩﺓ. -2ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ : x0 ﺘﻌﺭﻑ : 1 ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ x0ﻫﻲ ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، eﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ αﺒﺤﻴﺙ : ﺇﺫﺍ ﻜﺎﻥ 0 < x - x0 < αﻴﻜﻭﻥ f ( x ) - < e : ﺘﻌﺭﻴﻑ : 2ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ x0ﺒﻘﻴﻡ ﺃﻜﺒﺭ ﻫﻲ ∞ +ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ، A ﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ αﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ 0 < x - x0 < αﻴﻜﻭﻥ f (x) > A ﻭﻨﻜﺘﺏ lim f ( x ) = +∞ : x→ x0 x> x0 ﺘﻌﺭﻴﻑ : 3 ﺍﻟﻘﻭل ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ x0ﺒﻘﻴﻡ ﺃﺼﻐﺭ ﻫﻲ ∞ −ﻴﻌﻨﻲ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏﺘﻤﺎﻤﺎ ، Aﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ αﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ 0 < x0 - x < α ﻴﻜﻭﻥ f ( x ) < - A ∞( )lim f x = - ﻭﻨﻜﺘﺏ : x→ x0 x< x0 -3ﻤﺒﺭﻫﻨﺎﺕ ﺃﻭﻟﻴﺔ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻴﺎﺕ : fﻭ gﺩﺍﻟﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ′ , , x0 .ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ. ﻨﻘﺒل ﺩﻭﻥ ﺒﺭﻫﺎﻥ ،ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﻁﺎﺓ ﻋﻠﻰ ﺸﻜل ﺠﺩﻭل.
ﻓﺈﻥ : ﻭﻜﺎﻨﺕ : ﺃ -ﻨﻬﺎﻴﺔ ﺍﻟﻤﺠﻤﻭﻉ : ﺇﺫﺍ ﻜﺎﻨﺕ :)lim ( f + g)( x )lim g( x )lim f ( xx→ x0 x→ x0 x→ x0 +′ ′ ∞+ ∞+ ∞+ ∞− ∞+ ∞− ∞− ﺏ -ﻨﻬﺎﻴﺔ ﺍﻟﺠﺩﺍﺀ : ∞+ ∞+ ﺇﺫﺍ ﻜﺎﻨﺕ : ∞− ∞− )lim f ( x ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ∞− x→ x0 ﻓﺈﻥ : ﻭﻜﺎﻨﺕ : )( > 0)lim ( f × g)( x )( < 0 )lim g( xx→ x0 ∞+ x→ x0 ×′ 0 ∞+ ′ ∞− ∞+ ∞+ ∞+ ∞+ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ∞ +ﺃﻭ ∞−
lim 1 ﻓﺈﻥ ) ( x ﺠـ -ﻨﻬﺎﻴﺔ ﺍﻟﻤﻘﻠﻭﺏ : f x→ x0 ﺇﺫﺍ ﻜﺎﻨﺕ lim f ( x ) : x→ x0 1 ∞0 + ∞0 − )+∞ 0 ; ( f ( x) > 0 )−∞ 0 ; ( f ( x) < 0 ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ 0 ﺩ -ﻨﻬﺎﻴﺔ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ : f ﻨﻜﺘﺏ ( ): x lim g ﻟﺤﺴﺎﺏ : x→ x0lim )f (x = lim )f (x × 1 )g( xx→ x0 x→ x0 )g( x ﺜﻡ ﻨﺴﺘﻌﻤل ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻀﺭﺏ ﻭ ﺒﺎﻟﻤﻘﻠﻭﺏ ﻫـ -ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ : fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻭﺠﺒﺔ ﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ( )lim ( )lim f x x→ x0 x→ x0 ﻓﺈﻥ f x ﺇﺫﺍ ﻜﺎﻨﺕ : ∞+∞ + ﺩ -ﻨﻬﺎﻴﺔ ﻤﺭﻜﺏ ﺩﺍﻟﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ : c , b , aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ .ﺇﺫﺍ ﻜﺎﻨﺕ ( )lim f x = b x→a
lim ( gof )( x) = c ﻓﺈﻥ : ( )lim g x ﻭﻜﺎﻨﺕ = c x→a x→b ﻤﻼﺤﻅﺔ : ﺘﺒﻘﻰ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ∞ x → +ﺃﻭ ∞. x → - -4ﺍﻟﻨﻬﺎﻴﺎﺕ ﺒﺎﻟﻤﻘﺎﺭﻨﺔ : h , g , fﺩﻭﺍل ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ . I ﻤﺒﺭﻫﻨﺔ ) :1ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺴﻔل( ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ xﻤﻥ ( ) ( )g x ≤ f x : I∞( ) ( )lim f x = + ﻭﻜﺎﻨﺕ ∞= +x→ x0 ﻓﺈﻥ lim g x x→ x0 ﻤﺒﺭﻫﻨﺔ ) :2ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﻋﻠﻰ( ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ xﻤﻥ ( ) ( )f x ≤ g x : Iﻭﻜﺎﻨﺕ ∞ lim g ( x ) = -ﻓﺈﻥ ∞lim f ( x ) = -x→ x0 x→ x0 ﻤﺒﺭﻫﻨﺔ ) : 3ﺍﻟﺤﺼﺭ(ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ xﻤﻥ ( ) ( ) ( )g x ≤ f x ≤ h x : I= ( ) ( ) ( )lim f xx→ x0 ﻓﺈﻥ : lim g x = lim h x = ﻭﻜﺎﻨﺕ x→ x0 x→ x0 ﻤﻼﺤﻅﺔ :ﺘﺒﻘﻰ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ∞ x → +ﺃﻭ ∞. x → - -5ﻨﻬﺎﻴﺔ ﺒﻌﺽ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ : ﺃ -ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭﺓ ﺍﻟﺤﺩﻭﺩ :ﻨﻬﺎﻴﺔ ﻜﺜﻴﺭﺓ ﺤﺩﻭﺩ ﻋﻨﺩ ∞ +ﺃﻭ ﻋﻨﺩ ∞ −ﻫﻲ ﻨﻬﺎﻴﺔ ﺤﺩﻩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻋﻨﺩ ∞ +ﺃﻭ) ( ) ( ) ( ﻋﻨﺩ )∞. ( − ﺏ -ﺍﻟﺩﺍﻟﺔ ﺍﻟﻨﺎﻁﻘﺔ :ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻋﻨﺩ ∞ +ﺃﻭ ∞ −ﻫﻲ ﻨﻬﺎﻴﺔ ﺤﺎﺼل ﻗﺴﻤﺔ ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻓﻲ ﺍﻟﺒﺴﻁ) ( ) ( ﻋﻠﻰ ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻓﻲ ﺍﻟﻤﻘﺎﻡ .
-6ﺍﻟﻨﻬﺎﻴﺎﺕ ﻭ ﺍﻟﺴﻠﻭﻙ ﺍﻟﺘﻘﺎﺭﺒﻲ : ﺃ -ﺍﻟﻔﺭﻉ ﺍﻟﻼﻨﻬﺎﺌﻲ : Cﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ fﻓﻲ ﻤﺴﺘﻭ ﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ) ( ). O ; i , j ) M ( x ; yﻨﻘﻁﺔ ﻤﺘﻐﻴﺭﺓ ﻤﻥ ) . (Cﻋﻨﺩﻤﺎ ﻴﻤﻜﻨﻨﺎ ﺠﻌل xﺃﻭ yﻜﺒﻴﺭ ﺠﺩﺍ ﺒﺎﻟﻘﺩﺭ ﺍﻟﺫﻱ ﻨﺭﻴﺩﻩ ﻨﻘﻭل ﺇﻥ ﻟﻠﻤﻨﺤﻨﻰ Cﻓﺭﻋﺎ ﻻﻨﻬﺎﺌﻴﺎ ( ). ﺏ -ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻭ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻤﻜﺎﻓﺌﺔ : (αﺇﺫﺍ ﻜﺎﻨﺕ lim f ( x ) = +∞ :ﺃﻭ ∞ lim f ( x ) = -ﻓﺈﻥ : x→ x0 x→ x0 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ Cﻟﻠﺩﺍﻟﺔ fﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ﻤﻌﺎﺩﻟﺘﻪ( ). x = x0 : ( ) ( )lim f (βﺇﺫﺍ ﻜﺎﻨﺕ = y0 : ∞x→− x = y0 lim fﺃﻭ x ∞x→+ ﻓﺈﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ Cﻟﻠﺩﺍﻟﺔ fﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ﻤﻌﺎﺩﻟﺘﻪ ( ): . y = y0 )lim f ( x ∞= + ﺃﻭ ( )lim f x (γﺇﺫﺍ ﻜﺎﻨﺕ ∞= + ∞x→− ∞x→+ ( )lim fx ﻨﺤﺴﺏ : x ∞x →+ Cﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ) ( ( ): lim fx xﺇﺫﺍ ﻜﺎﻨﺕ = 0 ∞x →+ x ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل. Cﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ) ( : lim )f (x ∞= + xﺇﺫﺍ ﻜﺎﻨﺕ ∞x →+ x ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ .lim ) f ( x - ax ∞= + ﻭ ( )lim fx xﺇﺫﺍ ﻜﺎﻨﺕ = a x∞x →+ ∞x →+ ﺤﻴﺙ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ﻓﺈﻥ :
Cﻴﻘﺒل ﻓﺭﻋﺎ ﻤﻜﺎﻓﺌﺎ ﺒﺎﺘﺠﺎﻩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( ). y = ax :( ) ( )lim fx x∞x →+ f x - ax = b ﻭ lim xﺇﺫﺍ ﻜﺎﻨﺕ = a ∞x →+ ﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻓﺈﻥ : Cﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ﻤﺎﺌﻼ ﻤﻌﺎﺩﻟﺘﻪ ( ). y = ax + b : ﻤﻼﺤﻅﺔ : fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ Cﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ( ) ( ). O ; i , j∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ y = ax + b :ﻴﻜﻭﻥ ∆ ﻤﺴﺘﻘﻴﻤﺎ ﻤﺎﺌﻼ ﻟﻠﻤﻨﺤﻨﻰ Cﺇﺫﺍ) ( ) ( ) ( lim ) f ( x - (ax + b) =0 ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : ∞x →+ -IIﺍﻻﺴﺘﻤﺭﺍﺭﻴﺔ : -1ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻗﻴﻤﺔ . x0 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ﻤﻔﺘﻭﺡ Iﻴﺸﻤل x0ﻭﻏﻴﺭ ﺨﺎل .ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﺇﺫﺍ ( ) ( )lim fx =f x0 ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ : x→ x0 xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . 4 ﺃﻤﺜﻠﺔ : xﺍﻟﺩﺍﻟﺔ x - 4 : f( ) ( )lim f x = 0 = f 4 ﻭﻟﺩﻴﻨﺎ : ﻷﻥ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ x→4 xﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 0ﻷﻨﻬﺎ ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻠﻰ xﺍﻟﺩﺍﻟﺔ x : ﻤﺠﺎل ﻤﻔﺘﻭﺡ ﻴﺸﻤل . 0ﺤﻴﺙ ﺃﻨﻬﺎ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞[ [. 0 ; +
xﺩﺍﻟﺔ ﺍﻟﺠﺯﺀ ﺍﻟﺼﺤﻴﺢ [ ]x x : ﻭﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺠﺯﺀﻩ ﺍﻟﺼﺤﻴﺢ ﻓﻤﺜﻼ [-3,5] = -4 , [1,78] = 1 , [0,5] = 0 : ﺃﻱ ﺃﻥ x :ﻴﺭﻤﺯ ﺇﻟﻰ ﺍﻟﺠﺯﺀ ﺍﻟﺼﺤﻴﺢ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ [ ]. x ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﺍﻟﻌﺩﺩ 4ﻤﺜﻼ . ﺇﺫﻥ ﺇﻥ ﻤﻥ ﺃﺠل x ∈ 3 ; 4 :ﻓﺈﻥ [ ] [ [x = 3 : ﻤﻥ ﺃﺠل x ∈[4 ; 5[ :ﻓﺈﻥ [ x] = 4 : ﻭﻋﻠﻴﻪ lim[ x] = 3 :ﻭ lim[ x] = 4 x→4 x→4 x>4 x<4 xﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ 4ﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ ﻭﻤﻨﻪ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ [ ]x ﻷﻨﻬﺎ ﻏﻴﺭ ﻭﺤﻴﺩﺓ . -2ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻋﺩﺩ x0ﻤﻥ ﺍﻟﻴﻤﻴﻥ fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل x0 ; x0 + aﺤﻴﺙ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ.( ) ( )lim fx=fx0 ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ :x→ x0x> x0 -3ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻋﺩﺩ x0ﻤﻥ ﺍﻟﻴﺴﺎﺭ : fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل x0 - a ; x0 : ﺤﻴﺙ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ. ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ : lim f )( x = f ) ( x0 x→ x0 x< x0 ﺃﻤﺜﻠﺔ : xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 0ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻷﻨﻬﺎ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞ 0 ; +ﻭ[ [ xﺍﻟﺩﺍﻟﺔ x )lim f ( x) = 0 = f (0 x→0 x>0
xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 5ﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻷﻨﻬﺎ ﻤﻌﺭﻓﺔ ﻋﻠﻰ -∞ ; 5ﻭ] ] xﺍﻟﺩﺍﻟﺔ 5 - x )lim f ( x) = 0 = f (5 x→5 x<5 xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 4ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻷﻨﻬﺎ xﺩﺍﻟﺔ ﺍﻟﺠﺯﺀ ﺍﻟﺼﺤﻴﺢ [ ]x : ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ 5؛ [4ﻤﺜﻼ ﻭ [ ] [ ]lim x = 4 = 4 x→4 x>4 xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﺍﻟﻌﺩﺩ 0ﻤﻥ ﺍﻟﻴﻤﻴﻥ ﻭﻋﻨﺩ ﺍﻟﻌﺩﺩ 0 xﺍﻟﺩﺍﻟﺔ [ ]x : fﻤﻥ ﺍﻟﻴﺴﺎﺭ ﻷﻥ lim f ( x ) = lim x = 0 = 0 = f (0) :x→0 x→0x>0 x>0ﻭ ﻜﺫﻟﻙ lim f ( x) = lim ( − x) = 0 = 0 = f (0) :x→0 x→0x<0 x<0 ﻤﻼﺤﻅﺎﺕ : xﺇﺫﺍ ﻜﺎﻨﺕ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻓﺈﻥ x0 ∈ D f : xﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻋﺩﺩ x0ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ﻭ ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ. -4ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل : Iﻤﺠﺎل ﻤﻔﺘﻭﺡ ﻤﻥ ﺍﻟﺸﻜل a ; b :ﺃﻭ -∞ ; bﺃﻭ ∞] [ ] [ ] [. a ; + fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ . I xﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻜل ﻗﻴﻤﺔ x0ﻤﻥ . I xﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﻤﻐﻠﻕ a ; bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ] [ ﻜﺎﻨﺕ - :ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﻤﻔﺘﻭﺡ ] [a ; b -ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ aﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ -ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ bﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ xﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ[ [ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ a ; bﻭ ﻜﺎﻨﺕ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ aﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ] [.
xﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ] ] ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ a ; bﻭ ﻜﺎﻨﺕ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ bﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ] [. xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . ﺃﻤﺜﻠﺔ : xﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ . xﻭ sinx (1ﺍﻟﺩﺍﻟﺔ x - 1 : (2ﺍﻟﺩﺍﻟﺘﺎﻥ cosx xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ∞[ [0 ; + (3ﺍﻟﺩﺍﻟﺔ x xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . (4ﺍﻟﺩﺍﻟﺔ x ﻤﻼﺤﻅﺎﺕ : (1ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ . I ⊂ D f : (2ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﻓﺈﻥ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻫﻭ ﺨﻁ ﻏﻴﺭ ﻤﻨﻘﻁﻊ [ ]، ﺒﺩﺍﻴﺘﻪ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ aﻭ ﻨﻬﺎﻴﺘﻪ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ .b -5ﺘﻤﺩﻴﺩ ﺩﺍﻟﺔ ﺒﺎﻻﺴﺘﻤﺭﺍﺭ : x0ﻋﺩﺩ ﺤﻘﻴﻘﻲ I .ﻤﺠﺎل ﻤﻥ ﻴﺸﻤل . x0 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻨﺩ x0ﻭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻜل ﻗﻴﻤﺔ ﻤﻥ { }. I - x0 ﺇﺫﺍ ﻗﺒﻠﺕ ﺍﻟﺩﺍﻟﺔ fﻨﻬﺎﻴﺔ ﻋﻨﺩ x0ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ :ﻤﻥ ﺃﺠل } g ( x) = f ( x) : x ∈ I - {x0ﻭ = ) g ( x0 ﺘﺴﻤﻰ ﺍﻤﺘﺩﺍﺩ ﺍﻟﺩﺍﻟﺔ fﺒﺎﻻﺴﺘﻤﺭﺍﺭ ﻋﻨﺩ . x0 ﻤﺜﺎل : ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ :g(0) = 1 ؛ (g )x = sin x :x ≠ 0 ﻤﻥ ﺃﺠل x fﺒﺎﻻﺴﺘﻤﺭﺍﺭ ﻋﻨﺩ ( ). 0x = sin x ﻫﻲ ﺍﻤﺘﺩﺍﺩ ﻟﻠﺩﺍﻟﺔ fﺤﻴﺙ : x
-6ﻤﺒﺭﻫﻨﺎﺕ ﻋﻠﻰ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺴﺘﻤﺭﺓ : f xﻭ gﺩﺍﻟﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ ،ﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﺇﺫﺍ ﻜﺎﻨﺕ = lim f xﻭﻜﺎﻨﺕ gﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻓﺈﻥ ( ): x→ x0 . lim (g f ( x) = g ) x→ x0 f xﻭ gﺩﺍﻟﺘﺎﻥ .ﺇﺫﺍ ﻜﺎﻨﺕ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻋﺩﺩ x0ﻭ ﻜﺎﻨﺕ gﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ f x0ﻓﺈﻥ) (ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ gofﺘﻜﻭﻥ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . x0 f xﻭ gﺩﺍﻟﺘﺎﻥ ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻨﺩ x0ﻭ λﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﺍﻟﺩﻭﺍل ﺍﻟﺘﺎﻟﻴﺔ λf ; f × g ; f + g :ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻭﺇﺫﺍ ﻜﺎﻨﺕﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻨﺩ ( ). x0fﻭ1 g x0 ≠0g g ﻓﺈﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ﻨﺘﺎﺌﺞ : xﺍﻟﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺍﻟﺤﺩﻭﺩ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . xﻜل ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻜل ﻗﻴﻤﺔ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ. xﺍﻟﺩﻟﺘﺎﻥ x cos (ax + b) :ﻭ )x sin (ax + bﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ،ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ . xﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻜل ﻗﻴﻤﺔ x0ﺘﺨﺘﻠﻑ ﻋﻥ : xﺍﻟﺩﺍﻟﺔ tan x ∈. k ﻭ π + kπ 2 -7ﻤﺒﺭﻫﻨﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﺴﻁﺔ : xﻤﺒﺭﻫﻨﺔ : 1 ﻨﻘﺒل ﺒﺩﻭﻥ ﺒﺭﻫﺎﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ :ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ kﻤﺤﺼﻭﺭ ﺒﻴﻥ ( ) [ ]f aﻭ f bﻴﻭﺠﺩ ﻋﺩﺩ cﻤﺤﺼﻭﺭ ﺒﻴﻥ aﻭ bﺒﺤﻴﺙ ( ) ( ). f c = k :ﻓﻲ ﺍﻟﺸﻜل ﺃﺩﻨﺎﻩ ﺘﻭﺠﺩ ﺜﻼﺜﺔ ﺃﻋﺩﺍﺩ C1 , C2 , C3ﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ aﻭ bﺒﺤﻴﺙ f (C1 ) = f (C2 ) = f (C3 ) = k :
)f(b k)f(a a C1 C2 C3 b ﻤﺒﺭﻫﻨﺔ : 2 ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺒﺭﻫﻨﺔ ) (1ﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻓﺈﻥ ﺍﻟﻌﺩﺩ Cﻭﺤﻴﺩ. ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ fﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﺍﻥ x1ﻭ x2ﻤﻥ] [ a ; bﺒﺤﻴﺙ ﺇﺫﺍ ﻜﺎﻥ x1 < x2ﻓﺈﻥ ( ) ( ) [ ]f x1 < f x2ﻓﺈﺫﺍ ﻜﺎﻥ C1 , C2ﻋﺩﺩﺍﻥ ﺤﻴﺙ C1 < C2ﻓﺈﻥ f C1 < f C2 :ﺃﻱ ﺃﻥ) ( ) ( f C1 ≠ f C2ﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ cﺒﺤﻴﺙ ( ) ( ) ( ). f C = k : ﻤﺒﺭﻫﻨﺔ : 3ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل a ; bﺃﻭ ∞ a ; +ﻓﺈﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ [ [ [ [kﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ) ( ) ( ) () (أو lim f x lim f x ﻤﺤﺼﻭﺭ ﺒﻴﻥ f aﻭ ∞x→+ x→b f x = kﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ Cﻓﻲ ﺍﻟﻤﺠﺎل ∞[ [ ( ). a ; + ﻤﺒﺭﻫﻨﺔ : 4ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ a ; bﻭ ﻜﺎﻨﺕ f a . f b < 0ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﻠﻰ] [ ) ( ) (ﺍﻷﻗل ،ﻋﺩﺩ ﺤﻘﻴﻘﻲ Cﻤﻥ ﺍﻟﻤﺠﺎل a ; bﺒﺤﻴﺙ . f C = 0ﻭ ﺇﺫﺍ ﻜﺎﻨﺕ fﺭﺘﻴﺒﺔ[ ] ) ( ﺘﻤﺎﻤﺎ ﺃﻴﻀﺎ ﻓﺈﻥ ﺍﻟﻌﺩﺩ Cﻭﺤﻴﺩ.
ﻤﺜﺎل : 1 ; 1 ﺘﻘﺒل ﺤﻼ ﻓﻲ ﺍﻟﻤﺠﺎل ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x3 + x - 1 = 0 : . 2 ﺍﻟﺤل : ﻨﻌﺭﻑ ﺩﺍﻟﺔ fﻜﻤﺎ ﻴﻠﻲ ( ). f x = x3 + x - 1 :. 1 ; 1 ﻷﻨﻬﺎ ﺩﺍﻟﺔ ﻜﺜﻴﺭﺓ ﺤﺩﻭﺩ ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ 2 f 1 × )f (1 <0 ﻭﻋﻠﻴﻪ : f 1 = - 3 ﻭ f (1) = 1 2 2 8 ﺒﺤﻴﺙ : 1 ; 1 ﻭﺒﺎﻟﺘﺎﻟﻲ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ) (4ﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩ cﻓﻲ ﺍﻟﻤﺠﺎل 2 f c = 0ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ x3 + x - 1 = 0ﺤل ﻋﻠﻰ ﺍﻷﻗل ﻓﻲ ﺍﻟﻤﺠﺎل) ( . 1 ; 1 2 ﻨﻘﻁﺔ ﺍﻟﺘﻭﻗﻑ :ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻓﻲ x0ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ﻓﻘﻁ )ﺃﻭ ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ﻓﻘﻁ( ﻨﻘﻭل ﺇﻥ ﺍﻟﻨﻘﻁﺔ N 0ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ x0ﻨﻘﻁﺔ ﺘﻭﻗﻑ.)f(x0 N0 )f(x0 N0 x0 x0
ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل= )f (x x2 − x + 3 ﺍﻟﺘﻁﺒﻴﻕ : 1 ( x − 1)2 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ :∞ lim f ( x ) = + ﻨﻌﻠﻡ ﺃﻥ : x→1ﻜﻴﻑ ﻴﻤﻜﻥ ﺘﺨﻤﻴﻥ ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺍﻟﺤل : ﻭﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ (1ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ : ﺍﻟﺩﺍﻟﺔ ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ: ﻭﻨﺩﺨل ﺍﻷﺭﻗﺎﻡ (2ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ : ﻷﻥ xﻴﺘﻨﺎﻫﻰ ﻨﺤﻭ 1ﺃﻤﺎ ﻗﻴﻡ )f ( xﻓﻬﻲ ﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ ) f (0,9ﻭ )f (1,1 ﺃﻱ ﺒﻴﻥ 291ﻭ . 311 ﺜﻡ ﻨﺨﺘﺎﺭ (3ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ZoomFitﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ . ﻓﻨﺤﺼل ﻋﻠﻰ (4ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻘﺎﺒل :
ﻨﻘﻭﻡ ﺒﺘﺤﺭﻴﻙ ﻨﻘﻁﺔ ﻤﻥ (5ﻨﻨﻘﺭﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺍﻟﻘﺔ ﺤﺘﻰ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 0, 99ﻭﻨﺠﺩ: f (0,99) 41302,25lim x2 + x = ∞+ ﻭﻫﺫﺍ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﺍﻟﻤﺨﻤﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺼﺤﻴﺤﺔ x∞x→+ ∞ lim f ( x ) = + x→1 ﺍﻟﺘﻁﺒﻴﻕ :2 ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﻤﺎﻫﻭ ﺘﺨﻤﻴﻨﻙ ﺤﻭل : ﺍﻟﺤل : (1ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ: ﻭﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﻜﻤﺎ ﻴﻠﻲ: ﻭﻨﺩﺨل ﺍﻟﻘﻴﻡ (2ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ: ﺍﻟﺘﺎﻟﻴﺔ ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ : ﻓﻴﻅﻬﺭ ﺍﻟﺘﻤﺜﻴل (3ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ: ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﺘﺎﻟﻲ :
ﺜﻡ ﻨﺤﺭﻙ ﻨﻘﻁﺔ (4ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ﻤﻥ ﺍﻟﺒﻴﺎﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺍﻟﻘﺔ ﻓﻨﺠﺩ : f (10000) 10001. lim x2 + x = ∞+ ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻤﺨﻤﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺼﺤﻴﺤﺔ : x ∞x→+ ﺍﻟﺘﻁﺒﻴﻕ : 3 ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x3 2 x 1 0 :ﺘﻘﺒل ﺤﻼ ﻭﺤﻴﺩﺍ ﻓﻲ 1 ; 1 . 4 2 ﺍﻟﻤﺠﺎل ﺍﻟﺤل : ﻭﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ (1ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ: ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : . f (x) x3 2x 1 ﻭﻨﺩﺨل (2ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ﺍﻷﺭﻗﺎﻡ ﻜﻤﺎ ﻴﻠﻲ : ﻓﻴﻅﻬﺭ (3ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺯﺭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﺍﻵﺘﻲ :
(4ﻨﻘﻭﻡ ﺒﺘﺤﺭﻴﻙ ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺒﻴﺎﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺇﻟﻰ ﺃﻥ ﺘﺘﻐﻴﺭ ﺇﺸﺎﺭﺓ )f ( x ﺍﻟﺯﺭ ﻓﻤﻥ ﺃﻥ ﺃﺠل 0,45 :ﻨﺠﺩf ( x) -0,01 : ﻭﻤﻥ ﺃﺠل 0,46ﻨﺠﺩ f ( x) 0,01 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ f ( x) 0ﺤل ﻭﺤﻴﺩ x0 ﻴﺤﻘﻕ 0,45 x0 0,46 : ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ : 1 ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻡ ﺨﻁﺄ ﺍﻟﺠﻤل ﺍﻵﺘﻴﺔ ﻤﻊ ﺍﻟﺘﻌﻠﻴل lim − x = +∞ (1 ∞x→− lim 2x2 - 1 = 2 (2 x2 + 3 ∞x→+ﻓﺈﻥ y = ax + b : (3ﺇﺫﺍ ﻜﺎﻨﺕ ) f ( x ) = ax + b + g ( x ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻟﺒﻴﺎﻥ ﺍﻟﺩﺍﻟﺔ .flim x3 + 4x - 1 = lim x3 = lim x = 0 (4 x2 +3 x2 x→0 x→0 x→0
1 1 − xﻓﺈﻥ : (5ﺇﺫﺍ ﻜﺎﻨﺕ ≤ x :( ) ( )lim fx=0 ≤f x∞x→+ (6ﺇﺫﺍ ﻜﺎﻨﺕ f ( x ) ≥ x2 :ﻓﺈﻥ lim f ( x ) = +∞ :∞x→+( ) ( )lim fx f x (7ﺇﺫﺍ ﻜﺎﻨﺕ ≤ x - 1 :∞x→− ﻓﺈﻥ = -∞ : xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . 1 :f (8ﺍﻟﺩﺍﻟﺔ x xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ∞[ [0 ; + (9ﺍﻟﺩﺍﻟﺔ x + x : f xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ∞[ [0 ; + 1 - (10ﺍﻟﺩﺍﻟﺔ x : f x xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . (11ﺍﻟﺩﺍﻟﺔ x2 + 4 : f (12ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل a ; bﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ] [ f x = 0ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺤﻼ ﻓﻲ ﺍﻟﻤﺠﺎل ] [ ( ). a ; b (13ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 1 ; 5ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ] [ ﻋﻨﺩ . 3 1 (14ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل . I (15ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ . I (16ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻋﺩﺩ x0ﻓﺈﻨﻬﺎ ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ . x0 (17ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻨﺩ ﻋﺩﺩ x0ﻓﺈﻨﻬﺎ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ . x0 (18ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل . I
(19ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻷﻥ : (20ﺍﻟﺩﺍﻟﺔ x2 - 1 : xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﺩﺍﻟﺔ x2 - 1 xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . ﻭ ﺍﻟﺩﺍﻟﺔ x xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ (19ﺍﻟﺩﺍﻟﺔ x2 - 1 : xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻷﻥ ﺍﻟﺩﺍﻟﺔ x2 - 1 xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . ﻭ ﺍﻟﺩﺍﻟﺔ x ; . 0 π ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺤﻼ ﻓﻲ ﺍﻟﻤﺠﺎل x sin x =1 (20ﺍﻟﻤﻌﺎﺩﻟﺔ 2 ﺍﻟﺘﻤﺭﻴﻥ2 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻜل ﺩﺍﻟﺔ ﻓﻴﻤﺎ ﻴﻠﻲ ﺜﻡ ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻓﻬﺎ. f )(x = x2 - 4 (2 f ( )x = 3 x 3+ x - 4 (1 - 5x + x- 1 x2 6f ( x ) = 4 x4 +2x3 +2x+1 (4 f )( x = x3 + 3x2 - 4x -12 (3 4x2 - 4x - 3 x2 + 4x + 3 ﺍﻟﺘﻤﺭﻴﻥ3 ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : lim x2 + x - 6 (2 lim x+5 -3 x -2 x - 2x - 4 (1 x→2 x→4 lim x lim x - 2x - 1 (3 x + 1 - 1 (4 x→0 x→1 x -1
4ﺍﻟﺘﻤﺭﻴﻥ : ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔlim - x + 4x2 + x + 1 (2 lim 2x - x2+ 1 (1 -4x - x2 + 1 x - 4x2+ xx → −∞ x→+∞ lim -x + x (4 lim x2 + 1 - x (3 x → +∞ x → +∞ lim −x - 5 (6 lim x2 +1 - x2 +2 (5 x2 + 4 x → −∞ x → −∞ 5ﺍﻟﺘﻤﺭﻴﻥ : ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔlim sin 2x (3 lim sin 2x (2 lim sin x (1 tan x x sin 3x x→0 x→0 x→0 lim x sin x (5 lim 1 - cosx (4 1 - cosx sin2 x x→0 x→0 6ﺍﻟﺘﻤﺭﻴﻥ : ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ lim 1 - 2 sin2 x (2 lim cos 3x (1 π 1 + cos4x π cosx x→ 4 x→ 2 lim 1 - sin x - cosx (3 π 1 - sin x + cosx x → 2 f (x) = x2 + x - 4 7ﺍﻟﺘﻤﺭﻴﻥ x +1 : f ﺘﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ . ( ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲC)
-1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺜﻡ ﺃﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻓﻬﺎ. -2ﺒﻴﻥ ﺃﻨﻪ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ f xﻋﻠﻰ ﺍﻟﺸﻜل ( ): f )(x = ax +b+ x c +1 ﺤﻴﺙ aﻭ bﻭ cﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﺎ -3ﻋﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ. -4ﻨﻔﺭﺽ ∆ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﺎﺌل( ). ﺍﺩﺭﺱ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻲ ) (Cﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ( ). ﺍﻟﺘﻤﺭﻴﻥ8 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ( )f x = 2x + x2 + 1 : -1ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﺃﻁﺭﺍﻑ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ.lim f ( x) - x ﺜﻡ lim f ( x) - 3x -2ﺍﺤﺴﺏ :∞x → − ∞x→+ -3ﻋﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ ( ). C f f )( x = 4 + sinx ﺍﻟﺘﻤﺭﻴﻥ9 x2 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : -1ﻋﻴﻥ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ bﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ : x a ≤ 4 + sin x ≤ b -2ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ xﻴﻜﻭﻥ : v x ≤ f x ≤ u xﺤﻴﺙ uﻭ vﺩﺍﻟﺘﺎﻥ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ( ) ( ) ( ). -3ﺍﺴﺘﻨﺘﺞ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ lim f x :ﻭ ( ) ( )lim f x ∞x → − ∞x → + -4ﺃﺤﺴﺏ ) . lim f ( x x→0
ﺍﻟﺘﻤﺭﻴﻥ10 )(x = )(α - 1 x +1 x -3 α2 - 1 ( )f fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : ﺤﻴﺙ αﻋﺩﺩ ﺤﻘﻴﻘﻲ . ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : )lim f ( x) , lim f ( x ∞x → + ∞x → − f ( x ) = x3 + 1 ﺍﻟﺘﻤﺭﻴﻥ 11 x2 - 1 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : f (-1) = 3 ; x ≠ 1 , x ≠ -1 -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f -2ﺍﺩﺭﺱ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ fﻋﻨﺩ . -1 ﺍﻟﺘﻤﺭﻴﻥ 12 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎﻴﻠﻲ : f ( x ) = x2 , x ≥1 x2 + 1 f )(x = - 1 x2 + 1 , x<1 2 ﺃﺩﺭﺱ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ .
ﺍﻟﺘﻤﺭﻴﻥ. 13 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎﻴﻠﻲ : f )(x = ax + b , x > 0 x2 + 4 f ( x) = 2x2 + 1 , x ≤ 0 ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ bﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 0 ﺍﻟﺘﻤﺭﻴﻥ. 14 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ ﻜﻤﺎ ﻴﻠﻲ : ∞x − ∞3- 2- 3 +)f (x 1 +4 ∞− -3 3 ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ f x = 0ﻓﻲ ( ). f )( x = x + x -1 ; x≠1 ﺍﻟﺘﻤﺭﻴﻥ. 15 x -1 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : f (1) = 2 -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ -2ﺃﺩﺭﺱ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ
ﺍﻟﺘﻤﺭﻴﻥ. 16 ﺇﻟﻴﻙ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﺩﺍﻟﺔ : f∞x −∞ 0 +f (x) 4 -4 -2 ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ f x = 2ﻓﻲ ( ). ﺍﻟﺘﻤﺭﻴﻥ. 17 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ 1 ; +ﺒﺎﻟﻌﺒﺎﺭﺓ [ [: f ( x) = -x + x - 1 + 0,9ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ .ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ( )f x = 0 : ﻤﻊ ﺇﻋﻁﺎﺀ ﺤﺼﺭﺍ ﻟﻜل ﻤﻨﻬﺎ ﺒﺘﻘﺭﻴﺏ 10−2 ﺍﻟﺘﻤﺭﻴﻥ. 18 ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ 2 x - cosx = 0 : 0 ; π : ﺘﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﺤﻼ ﻓﻲ ﺍﻟﻤﺠﺎل 6 ﺍﻟﺘﻤﺭﻴﻥ. 19 ﻜﻤﺎﻴﻠﻲ : - π ; π fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 2 2 f ( x ) = x . sin x ,x ≠ 0 1 - cosx f (0) = 2
-1ﺍﺩﺭﺱ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ 0 -2ﺍﺩﺭﺱ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ fﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ . ﺍﻟﺘﻤﺭﻴﻥ. 20 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻭ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 0 ; 1ﺯ ﺘﺄﺨﺫ ﻗﻴﻤﻬﺎ ﻓﻲ ﺍﻟﻤﺠﺎل [ ] [ ]. 0 ; 1 -1ﺒﺭﻫﻥ ﻋﻠﻰ ﻭﺠﻭﺩ ﻋﺩﺩ αﻤﻥ ﺍﻟﻤﺠﺎل 0 ; 1ﺒﺤﻴﺙ [ ]:. f (α) = α -2ﻓﺴﺭ ﻫﻨﺩﺴﻴﺎ ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ . -3ﻫل ﺘﺒﻘﻰ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﺼﺤﻴﺤﺔ ﻋﻠﻰ ﻤﺠﺎل a ; bﺤﻴﺙ [ ]. a < b ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 13x + 36 = 0 : ﺍﻟﺘﻤﺭﻴﻥ. 21ﺍﻟﻤﻌﺎﺩﻟﺔ x6 - 13x3 + 36 = 0 : -1ﺤل ﻓﻲﺍﻟﻤﻌﺎﺩﻟﺔ x2n - 13x4 + 36 = 0 : -2ﺤل ﻓﻲ -3ﺤل ﻓﻲ ﺍﻟﺘﻤﺭﻴﻥ. 22ﺒﺭﻫﻥ ﺃﻥ ﻜل ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﺩﺭﺠﺘﻪ ﻓﺭﺩﻴﺔ ﻴﻨﻌﺩﻡ ﻋﻠﻰ ﺍﻷﻗل ﻤﺭﺓ ﻓﻲ .
ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1 (1ﺼﺤﻴﺤﺔ ﻷﻥ ∞ − x → +ﻟﻤﺎ ∞ x → -ﻭﻋﻠﻴﻪ : ∞lim − x = + ∞x→− 2x2 - 1 = lim x2 2 - 1 x2 lim (2ﺼﺤﻴﺤﺔ ﻷﻥ : x2 + 3 ∞x→+ 3∞x→+ x2 1 + x2 = 2- 1 =2 lim x2 ∞1 +x→+ 3 x2 ﺍﻟﺘﻲ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﻤﻌﺩﻭﻤﺔ) ( x lim g (3ﺨﺎﻁﺌﺔ ﻷﻨﻨﺎ ﻻ ﻨﻌﻠﻡ ∞x →+ ﻟﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ . (4ﺨﺎﻁﺌﺔ ﻷﻥ xﻴﺅﻭل ﺇﻟﻰ 0ﻭ ﻟﻴﺱ ﺇﻟﻰ ∞ +أو ∞− lim 1 = lim − 1 =0 (5ﺼﺤﻴﺤﺔ ﻷﻥ : x x ∞x→+ ∞x→+ (6ﺼﺤﻴﺤﺔ ﻷﻥ lim x2 = +∞ :ﻭ ﻟﺩﻴﻨﺎ ( )f x ≥ x2 : ∞x → +ﻭ f (x) ≤ x - 3 ( )lim (7ﺼﺤﻴﺤﺔ ﻷﻥ = -∞ : ∞x→− x -3 (8ﺨﺎﻁﺌﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ 0ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻭﻤﻥ ﺜﻡ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . (9ﺼﺤﻴﺤﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﻤﺠﻤﻭﻉ ﺩﺍﻟﺘﻴﻥ ﻤﺴﺘﻤﺭﺘﺎﻥ ﻋﻠﻰ ∞[ [0; + xﻭ x x ﻫﻤﺎ x :
(10ﺨﺎﻁﺌﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ . 0 (11ﺼﺤﻴﺤﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﻤﺴﺘﻤﺭﺘﺎﻥﻭ ﻤﻭﺠﺒﺔ xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻷﻭﻟﻰ x2 + 4 : xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . + ﺍﻟﺜﺎﻨﻴﺔ x : xﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل (12ﺨﺎﻁﺌﺔ ﻓﻤﺜﻼ ﺍﻟﺩﺍﻟﺔ x2 - 1 : f] 4؛ [2ﻟﻜﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 1 = 0ﻟﻴﺱ ﻟﻬﺎ ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 2 ; 4ﻭ ﺤﺘﻰ ﺘﻘﺒل ﺤل ﺃﻜﻴﺩ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ( ) ( ) ] [. f a . f b < 0 (13ﺼﺤﻴﺤﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ﻜل ﻗﻴﻤﺔ ﻤﻥ ﺍﻟﻤﺠﺎل ] [. 1 ; 5 (14ﺨﺎﻁﺌﺔ ﺇﻻ ﺇﺫﺍ ﻜﺎﻨﺕ fﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﻋﻠﻰ . I xﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ (15ﺨﺎﻁﺌﺔ .ﻓﻤﺜﻼ ﺍﻟﺩﺍﻟﺔ -x2 - 1 : fﻟﻜﻥ ﻏﻴﺭ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻷﻥ f ′ x = -2x :ﻭﻋﻠﻴﻪ ﻓﻬﻲ) (ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل x > 0ﻭ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل . x < 0 (16ﺨﺎﻁﺌﺔ .ﻓﻤﺜﻼ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : f ( x ) = x2 - 1 ; x≠1 x -1 f (1) = 3ﻤﻌﺭﻓﺔ ﻋﻨﺩ f 1 = 3 1ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ 1ﻟﻜﻭﻥ ( ( ) ): lim f ( x) = lim ( x + 1) = 2 x→1 x →1 (17ﺼﺤﻴﺤﺔ .ﻷﻨﻪ ﺤﺘﻰ ﺘﻜﻭﻥ ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ x0ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ :( ) ( ). lim f x =f x0 ﻤﻌﺭﻓﺔ ﻋﻨﺩ x0ﻭﺘﺤﻘﻕ x→ x0 (18ﺨﺎﻁﺌﺔ ﻷﻨﻪ ﻗﺩ ﺘﻜﻭﻥ fﺴﺎﻟﺒﺔ ﻭ ﻋﻠﻴﻪ ﻓﺎﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻤﻌﺭﻓﺔ. (19ﺨﺎﻁﺌﺔ ﺇﻻ ﺇﺫﺍ ﻜﺎﻨﺕ x2 - 1 > 0ﻭﻫﺫﺍ ﻏﻴﺭ ﻤﺤﻘﻕ ﻓﻲ . (20ﺼﺤﻴﺤﺔ ﻷﻥ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f x = x sin x :ﻤﺴﺘﻤﺭﺓ) (
. 1∈ 0 ; π ﻭ 0 ; π ﻋﻠﻰ 2 2 . 2ﺍﻟﺘﻤﺭﻴﻥ f ( x) = 3x2 + x - 4 : ( ﻟﺩﻴﻨﺎ1 x -1• Df = ]-∞ ; 1[ ∪ ]1 ; +∞[( )• lim fx = lim 3x2 = lim 3x = -∞ x→−∞ xx→−∞ x→−∞ 3x 2 x( )• lim fx = lim = lim 3x = +∞ x→+∞ x→+∞ x→+∞( )• lim fx = lim 3x2 + x - 4 < < x -1 x→1 x→1 = lim (x - 1) (3x + 4) = lim (3x + 4) = 7 < x -1 < x→1 x→1• lim f ( x) = lim (3x + 4) = 7>>x→1 x→1 f (x) = x2 - 4 : ( ﻟﺩﻴﻨﺎ2 x2 - 5x + 6• Df = {x ∈ : x2 - 5x + 6 ≠ 0} x = 3 ﺃﻭx = 2 : ﻓﻨﺠﺩx2 - 5x + 6 = 0 : ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ
Df = - {2 ; 3} : ﻭﻤﻨﻪ Df = ]-∞ ; 2[ ∪ ]2 ; 3[ ∪ ]3 ; +∞[ : ﺃﻱ( )• lim f x = lim x2 =1 x→−∞ x→−∞ x2( )• lim f x = lim x2 =1 x→+∞ x→+∞ x2 ﻨﻜﺘﺏ ﺠﺩﻭل ﺇﺸﺎﺭﺓ ﺍﻟﻤﻘﺎﻡ: ﻟﺤﺴﺎﺏ ﺒﻘﻴﺔ ﺍﻟﻨﻬﺎﻴﺎﺕ x −∞ 2 3 +∞x 2 -5 x +6 + - +• lim f ( x) = lim x2 - 4 = lim ( x - 2) (x + 2)<< x2 - 5x + 6 < ( x - 2) (x - 3)x→2 x→2 x→2 = lim x + 2 = -4 > x- 3 x→2( )• lim f x = lim x + 2 = -4 > x -> 3 x→2 x→2( )• lim f x = lim x2 x2 - 4 = -∞ < < - 5x + 6 x→3 x→3 x2 - 4 → 5 : ﻷﻥ x 2 - 5x +6 <→ 0( )• lim f x = lim x2 x2 - 4 = +∞ > > - 5x + 6 x→3 x→3
x2 - 4 → 5 : ﻷﻥ x 2 - 5x +6 >→ 0 : ( ﻟﺩﻴﻨﺎ3 f (x) = x3 + 3x2 - 4x - 12 x2 + 4x + 3•Df = {x ∈ : x2 + 4x + 3 ≠ 0} x = -3 ﺃﻭx = -1 ﻓﻨﺠﺩx2 + 4x + 3 = 0 ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ Df = - {-3 ; -1} : ﺇﺫﻥ Df = ]-∞ ; -3[ ∪ ]-3 ; -1[ ∪ ]-1 ; +∞[ : ﻭﻋﻠﻴﻪ( )• lim f x = lim x3 = lim x = -∞ x→−∞ x→−∞ x2 x→−∞( )• lim f x = lim x3 = lim x = +∞ x→+∞ x→+∞ x2 x→+∞( )• lim f x = lim x3 + 3 x2 - 4 x - 12 < x→−3 x2 + 4x + 3 x→−3> = lim ( x + 3) (x2 - 4) ( x + 3) (x + 1) x→−3 = lim x2 - 4 = -5 x→−3 x + 1 2 : ﺇﺸﺎﺭﺓ ﺍﻟﻤﻘﺎﻡ ﻟﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ x −∞ -3 -1 +∞ 3x2 +4 x+3 + - +( )• lim f x = lim x3 + 3x2 - 4x - 12 = +∞ < < x2 + 4x + 3 x →−1 x → −1
x3 + 3x2 - 4x - 12 → -6 : ﻷﻥ x 2 + 4x +3 <→ 0( )• lim f x = lim x3 + 3x2 - 4x - 12 = -∞ > > x2 + 4x + 3 x →−1 x → −1 x3 + 3x2 - 4x - 12 → -6 : ﻷﻥ x 2 + 4x +3 >→ 0 f (x) = 4 x4 + 2 x3 + 2x + 1 : ( ﻟﺩﻴﻨﺎ4 4x2 - 4x - 3• Df = {x ∈ : 4x2 - 4x - 3 ≠ 0} x = 3 ﺃﻭ x = - 1 : ﻨﺠﺩ 4 x2 - 4x - 3 = 0 : ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 2 2 Df = - - 1 ; 3 2 : ﻭ ﻤﻨﻪ 2 Df = -∞ ; - 1 ∪ - 1 ; 3 ∪ 3 ; +∞ : ﺃﻱ 2 2 2 2 ( )• lim f x = lim 4x4 = lim x2 = +∞ x→−∞ x→−∞ 4x2 x→−∞( )• lim f x = lim 4x4 = lim x2 = +∞ x→+∞ x→+∞ 4x2 x→+∞• lim f ( x) =1 lim 1 (2x + 1) (2x3 + 1) 2 2 (2x + 1) (2x - 3) x → − x →− 2x 3 +1 3 -3 2x -3 16 = lim 1 = 4 = 2 -4 x→−
( )• lim fx = lim 4x4 + 2x3 + 2x + 1 = -∞ 4 x2 - 4x -3x < 3 x < 3 2 2 → → 4x4 + 2x3 + 2x + 1 → 41 : ﻷﻥ 4 x 2 - 4x -3 <→ 0 x −∞ - 1 3 +∞ 2 2 + 4 x2 -4 x-3 + - : ﻷﻥ( )• lim fx = lim 4x4 + 2x3 + 2x + 1 = +∞ 4 x2 - 4x -3x > 3 x > 3 2 2 → → 4x4 + 2x3 + 2x + 1 → 41 4 x 2 - 4x -3 >→ 0 . 3ﺍﻟﺘﻤﺭﻴﻥ : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ1) lim x + 5 - 3 x→4 x - 2x - 4 ( x+5 - 3) ( x+5 + 3) ( x + )2x-4 = lim ( ) ( ) ( )x→4 x - 2x-4 x + 2x-4 x+5 + 3 ( )( x + 5- 9) x + 2x - 4 = lim ( )x→4 [ x - (2x - 4)] x + 5 + 3
( )( x - 4) x + 2x - 4 = lim ( )x→4 -( x - 4) x + 5 + 3 ( )= lim x + 2x - 4 = 2 + 2 = - 4 = - 2 -x→4 x + 5 + 3 -(3 + 3) 6 32) lim x2 + x - 6 = lim ( x2 + x - 6) x - 2 x→2 x - 2 x→2 x - 2 . x - 2 = lim ( x - 2) (x + 3) x -2 x→2 x -2 = lim (x + 3) x - 2 = 0 x→23) lim x - 2x-1 = lim x - 2x-1 x + 2x-1 x→1 x -1 x→ ( x - 1) x + 2x - 1 = lim x - (2x - 1) x→1 ( x - 1) x + 2 x - 1 = lim - (x - 1) x→1 ( x - 1) x + 2 x - 1 = lim −1 = - 1 x→1 x + 2 x - 1 24) lim x = lim x x+ 1 + 1 x→0 x+ 1 - 1 x→0 x+ 1 - 1 x+ 1 + 1
= lim x x + 1 + 1 x→0 ( x + 1) - 1 = lim x x + 1 + 1 x→0 x = lim x + 1 + 1 = 2 x→0 . 4ﺍﻟﺘﻤﺭﻴﻥ : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ1) lim 2x - x2 + 1 = lim 2x - x2 1 + 1 x2 x→+∞ x - 4 x2 + x x→+∞ x2 4 + 1 x x- 2x - x2 1+ 1 = lim x2 x→+∞ x- x2 4+ 1 x 2x - x 1+ 1 = lim x2 x→+∞ 4+ 1 x x -x
x 2 - 1+ 1 = lim x2 x→+∞ x 1 - 1 4+ x 2- 1+ 1 2-1 = lim x2 1-2 = = -1 x→+∞ 1 4+ x 1-2) lim - x+ -x+ x2 4+ 1 + 1 4x2 + x+ 1 = lim x x2 x→−∞ -4 x - x2 + 1 x→−∞ 1 x2 -4x - x 2 1 + −x + x2 4+ 1 + 1 = lim x x2 x→−∞ −4x - x2 1+ 1 x2 −x + x 4+ 1 + 1 = lim x x2 x → −∞ −4x - x 1+ 1 x2 −x - x 4+ 1 + 1 = lim x x2 x→−∞ −4x + x 1+ 1 x2
x -1 - 4+ 1 + 1 = lim x x2 x→−∞ x -4 + 1 1+ x2 -1- 4+ 1 + 1 -1 - 2 x x2 -4+1 = lim = =1 x→−∞ 1 -4+ 1+ x23) lim x2 +1 - x x2 +1 +x x→+∞ x2 +1 - x = lim x→+∞ x2 + 1 + x = lim x2 + 1 - x2 = lim 1 =0 x→+∞ x2 + 1 + x x→+∞ x2 + 1 + x4) lim - x + x = lim - x. x+ x x→+∞ x→+∞ ( )= lim x - x + 1 = -∞ x→+∞5) lim x2 + 1 - x2 + 2 x→−∞ x2 +1 - x 2 +2 x2 +1 + x 2 +2 = lim x→−∞ x2 + 1 + x2 + 2 = lim ( x2 + 1) - (x2 + 2) x→−∞ x2 + 1 + x2 + 2
= lim −1 = 0 x→−∞ x2 + 1 + x2 + 26) lim 5 = lim ( )5 -x + x2 +4x→−∞ - x - x2 +4 x→−∞ - x- x 2 +4 - x + x 2 +4 ( )5 -x + x2 + 4 = lim x→−∞ x2 - (x2 + 4) = lim -5 - x + x2 + 4 = -∞ x→−∞ 4 . 5ﺍﻟﺘﻤﺭﻴﻥ : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ sin x1) lim sin x = lim x = 1 x→0 sin 3x x→0 sin 3x 3 3. 3x2) lim sin 2x = lim 2 × sin 2x =2 x→0 x x→0 2x3) lim sin 2x = lim sin 2x = lim sin 2x × cosx x→0 tan x x→0 sin x x→0 sin x cosx 2. sin 2 x 2x = lim sin x × cosx =2 x→0 x
1 - cosx 1 - 1 - 2 sin2 x sin2 x 2 4) lim = lim x x 2 x→0 x→0 2sin 2 cos 2 2 sin2 x 1 1 2 2 = lim x x = lim x2 = x→0 2 2 x→0 2 4 sin2 cos2 2 cos x sin x = lim x .2 sin x cos x 1 - cosx x→0 2 25) lim x→0 1- 1 - 2 sin x2 2 2x sin x cos x xcos x 2 2 2 = lim x = lim x x→0 2 sin2 2 x→0 sin 2 cos x cos x 2 2 = lim sin x = lim x x→0 x→0 sin 2 2 x 2 x 2.
2 cos x 2 = lim x =2 x→0 2 sin x 2 . 6ﺍﻟﺘﻤﺭﻴﻥ : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ1) lim cos3x π cos xx→ 2 x = π + z ﺃﻱ x - π =z : ﺒﻭﻀﻊ 2 2 : ﻭﻋﻠﻴﻪz → 0 : ﻓﺈﻥ x → π ﻟﻤﺎ 2 cos3x cos3 π + z cos 3π + 3z cosx 2 2 lim = lim = lim x→0 cos π + z x→0 -sinz x→0 2 cos 3π cos3z - sin 3π sin3z 2 2 = lim z→0 -sinz sin3z 3. sin 3z -sinz 3z = lim = lim - sin z = -3 z→0 z→0 z
2) lim 1 - 2sin2 x π 1 + cos4x x→ 4 x = π +z ﺃﻱ x - π =z ﺒﻭﻀﻊ 4 4 ﻭﻋﻠﻴﻪ z → 0 : ﻓﺈﻥ x → π ﻟﻤﺎ 4 1 - 2sin2 x 1 - 2sin2 π + z 1 + cos4x 1 + cos4 4 lim = lim π π 4 x → 4 z→0 + z sin π π 2 4 4 1-2 cosz + cos sinz = lim 1 + cos (π + 4z) z→0 2 2 2 2 2 1 - 2 cosz + sinz = lim z→0 1 - cos4z 1-2 × 1 (cosz + sinz)2 2 = lim z→0 1 - cos4z = lim 1 - (cos2z + sin2z + 2 sinz cosz) z→0 1 - cos4z = lim 1 - (1 + 2 sinz cosz) z→0 1 - cos4z -2 sinz . cosz -2 sinz . cosz 1 - cos4z 1 - 1 - 2 sin2 2z = lim ( )z→0 = lim z→0
= lim -2 sinz . cosz = lim - sinz . cosz z→0 2 sin2 2z z→0 ( 2 sinz . cosz)2 = lim - sinz . cosz = lim -1 z→0 4 sin2z . cos2z z→0 4 sinz . cosz : ﻭﻋﻠﻴﻪ • lim 1 - 2 sin2 x = lim -1 =-∞ > π 1 + cos4x > 4 sinz . cosz x 4 z→0 → • lim 1 - 2 sin2 x = lim -1 = +∞ < π 1 + cos4x < 4 sinz . cosz x 4 z→0 →3) lim 1 - sinx - cosx π 1 - sin x + cosx x→ 2 x = π +z : ﻨﺠﺩ x - π =z ﺒﻭﻀﻊ 2 2 z → 0 : ﻓﺈﻥ x → π ﻟﻤﺎ: ﻭﻋﻠﻴﻪ 2 1- sinx - cosx 1- sin π + z - cos π + z 2 2 lim = lim π 1- sin x+ cosx x→0 π π x→ 2 1- sin 2 + z + cos 2 + z 1-cosz +sinz 1-sin 1- 2sin 2z + 2sin z cos z 1-cosz -sinz 2 2 2lim = lim z - 2 z z x→0 x→0 1- 1- 2sin2 2sin 2 cos 2
2sin2 z + 2 sin z cos z 2 2 2 = lim z z z z→0 2sin2 2 - 2 sin 2 cos 2 2sin z sin z + cos z 2 2 2 = lim z→0 2sin z sin z - cos z 2 2 2 sin z + cos z 1 2 2 -1 = lim z z = = -1 z→0 2 2 sin - cos . 7ﺍﻟﺘﻤﺭﻴﻥ : ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ-1 Df = ]-∞ ; -1[ ∪ ]-1 ; +∞[ ؛Df = - {-1} : ﺍﻟﻨﻬﺎﻴﺎﺕ-( )lim fx = lim x2 = lim x = -∞ x→−∞ xx → −∞ x→−∞( )lim fx = lim x2 = lim x = +∞ x→+∞ xx → +∞ x→+∞( )lim fx = lim x2 + x - 4 = +∞ < < x +1 x → −1x →−1 x2 + x - 4 → -4 : ﻷﻥ x +1 <→ 0( )lim fx = lim x2 + x - 4 = -∞ > > x +1 x → −1x → −1
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427