Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore tech-2022_10(103)

tech-2022_10(103)

Published by Universum61, 2023-06-18 03:14:12

Description: tech-2022_10(103)

Search

Read the Text Version

№ 10 (103) октябрь, 2022 г. Values at break for polyurethane samples were Conclusion considered in the range of pressing pressure from 5 MPa to 40 MPa. Tensile strength of samples (%) is calculated Physico-mechanical properties of polyurethane based on the following formula. samples formed from polycondensation of 4,4- methylenediphenyldiisocyanate and polyester polyols ������ ������ = ( ������ 1 − ������ 0 )*100%/ ������ 0 were studied using different methods. Equilibrium of elasticity, deformation stress, strength limit with where ������������ is the stability limit l1 after the test of the increasing content of polyester polyol in polyurethane sample length , mm; l0 is the length of the sample before sample decrease and an increase in the breaking the test , mm [ 8-10 ]. resistance indicator etc. were determined. To this reason 4 ,4 -methylenediphenyldiisocyanate and of polyester The decrease in tensile strength value was explained polyols i mutually united urethane groups number to in- by the increase in polyetherpolyol content in polyurethane, crease take is to come. the increase in the number of bonds, and the molecular density in the polymer. References: 1. Jalilov AT, Tillayev AT, Kiyomov SN Materials for friction units based on urethane -epoxy bicomponent systems // Scientific Bulletin of Namangan State University. - 2020. - T. 2. – no. 7. - S. 42-46. 2. Yu.S. Kochergin, V.V. Zolotareva, \"Iznosostoykost kompozitsionnykh materialov na osnove epokidno-kauchukovykh po- limerov\" Vestnik BGTU im. V.G. Shukhova 2017, No. 4-21 ; 3. Kiyomov Sh.N., Djalilov A.T. ADHESION EPOXYURETHANOVOGO POLYMERA PO METALLU // Universum: tekhnicheskie nauki. - 2020. - No. 9-2 (78); 4. N.N. Peschanskaya, Yu. Khristova Skachkoobraznaya deformation of polymer material and micron and submicron level structures Fizika tverdogo tela, 2006, tom 48, vyp. 10 ; 5. Indenbom V.L., Orlov A.N., Problema razrusheniya v fizike prochnosti, \" Problemy prochnosti \" , 1970, No. 12, p. 3. 6. A.F. Shodiev, PhD student; B.F. Mukhiddinov, prof.; Kh.M. Vapoev, prof.; B.E. Yusupov, Mr. gl. engineer; F.J. Olikulov, assistant. (NMZ NGMK, Navoi, Uzbekistan) usstroystvo dlya pererabotki othodov polyurethane Belorussky state technological university 31 January 12 February 2022 p.167-169 7. GOST 270-75 Rubber. Metod opredeleniya uprugoprochnostnyx svoystv pri rastyazhenii. 8. A.N. Radyuka, N.V. Tsobanova \" Materialy dlya detaley niza obvi s polzovaniem v kachestve osnogo komponenta othodov polyurethane \" O buv i kojevenno-galantereynye izdeliya, 2019, #1 (3) 41 9. Djalilov A.T., Kiyomov Sh.N. Urethane-epoxide thermoreactive polymer systems and quality of antifriction material //Bulatovskie chteniya. - 2020. - T. 5. - S. 76-78. 10. Травинская Т.В. и др. Получение и свойства (био) разлагаемых иономерных полиуретанов на основе ксантана // Полімерний журнал. – 2014. – №. 36, № 4. – С. 393-400. 26

№ 10 (103) октябрь, 2022 г. ELECTRONICS QUESTIONS INVESTIGATION OF CONTACTLESS RELAY VOLTAGE IN ELECTRICAL ENGINEERING Rakhmatillo Karimov Doctor of Philosophy in Technical Sciences (PhD), assistant professor, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent E-mail: [email protected] Abror Adhamov Assistant, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent E-mail: [email protected] ВОПРОСЫ ИССЛЕДОВАНИЕ БЕСКОНТАКТНОГО РЕЛЕ НАПРЯЖЕНИЕ В ЭЛЕКТРОТЕХНИКЕ Каримов Рахматилло Чориевич д-р филос. и техн. наук (PhD), доц., Ташкентский государственный технический университет имени Ислама Каримова, Республика Узбекистан, г. Ташкент Адхамов Аброр Музаффарович ассистент, Ташкентский государственный технический университет имени Ислама Каримова, Республика Узбекистан, г. Ташкент ABSTRACT The article deals with the use of thyristor resistive circuits in electrical engineering. By amplifying signals with thy- ristors, you can control the modes of various devices. The principle of operation and the diagram of a thyristor resistive element for non-contact control of a single-phase static switch are given, which are tested in laboratory conditions and the removal of output, adjustment and external characteristics. АННОТАЦИЯ В статье рассматриваются вопросы применения тиристорных резистивных цепей в электротехнике. Усилением сигналов при помощи тиристоров можно управлять режимами разлычных устройств. Приведены принцип работы и схема тиристорного резистивного элемента для бесконтактного управления однофазного статического выключа- теля, которая испытана в лабораторных условиях и снятие выходных, регулировочных и внешних характеристик. Keywords: non-linear dynamic circuits, non-contact voltage relay, thyristor, diode, diode bridge, capacitor, resistor. Ключевые слова: нелинейные динамические цепи, бесконтактное реле напряжения, тиристор, диод, диодный мост, конденсатор, резистор. ________________________________________________________________________________________________ Nonlinear dynamic circuits, in connection with the with a sinusoidal voltage curve on the load, a non-auton- development on their basis of reliable high-quality de- omous nonlinear dynamic circuit was used, consisting of vices, radio electronics, computer technology and power a diode, active resistance and capacitance (Fig. 1) [1-4]. supply. Later, when creating a non-contact voltage relay Currently, various methods for analyzing such cir- cuits are widely used. __________________________ Библиографическое описание: Karimov R.C., Adhamov A.M. QUESTIONS INVESTIGATION OF CONTACTLESS RELAY VOLTAGE IN ELECTRICAL ENGINEERING SYSTEMS // Universum: технические науки : электрон. научн. журн. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14437

№ 10 (103) октябрь, 2022 г. Figure 1. Scheme of a non-linear electrical circuit To solve the equation of state of the circuit, we take where, uc - is the voltage across the capacitance. the ideal characteristic of the diode and assume that Up to the moment t = t1 , the voltage on the capaci- u = Um sint . Then from the moment t = 0 to t1 the tance is determined taking into account the initial condi- diode opening circuit equation has the following form: tions. From time t = t1 , the diode opens and until time t2 , Um sin t = Ri + uc (1) the voltage across the capacitance remains at the level of the voltage across the capacitance with a different given that i = C dUc we have: initial condition. dt Let's assume that the voltage of the power supply dUc = Um sint − uc (2) changes according to a sinusoidal law and the thyristor dt Rc RC has an ideal characteristic. Until the moment t = t1 the thyristor is closed, the voltage across the capacitance C will be zero. At the moment t = t1 , the thyristor opens abruptly and a voltage of u = Um sin t ( t1  t  t2 ) will be applied to the capacitance C. a) b) Figure 2. Schematic diagram of a non-contact voltage relay (a) and the shape of the voltage curve on the capacitance (b) 28

№ 10 (103) октябрь, 2022 г. At time t2 , the voltage across the capacitance C will angle of 900. After the opening of the thyristor VT2, the thyristor VT1 opens and the capacitor C is charged to be equal to the source voltage i.e. uc = Um sint2 , and the voltage of the secondary winding. At the same moment, from the plates of the capacitor C, a controlled signal the thyristor T is closed, so the capacitor is discharged pulse is applied to the power thyristor VT3, which has the to the resistance R [5-9]. shape shown in Fig.2b. Since a DC signal is applied to the control electrodes of the thyristor VT2, it remains Figure 2, a shows a circuit diagram of a non-contact constantly open, and a sinusoidal current will flow voltage relay with a sinusoidal voltage across the load. through the load R4. The moment of operation of the The non-contact voltage relay contains a diode bridge thyristors VT2 is controlled by selecting the parameter VD1, in the diagonal of which a controlled thyristor VT3 of the resistor R1 [3-5, 17-21]. is connected, and the diode bridge is connected to the network in series with the load Rload, control signals are When testing, thyristors of the KU202I, KU202I, supplied to the control electrodes of the power thyristor KU202R types were used as thyristors, respectively, as through a resistor R3 from the plates of the capacitor C, a KTs402B diode bridge, as active resistances R1, R2, R3, which is connected in series with two low-power con- Rload, respectively, 5.6 kOhm, 160 Ohm, 390 Ohm, trolled thyristors VT1 and VT2 connected to the second- 2 ,4 kOhm, as a capacitance C, a capacitor with a capac- ary winding of a step-down transformer, control signals itance of 30 microfarads, as a transformer, a single-phase to these thyristors are supplied from the same trans- transformer with a voltage of 220/24 V was used. Exper- former, respectively, through resistor R2 and series-con- imental studies have shown that the load Rload=2.4 kOhm nected diode VD1-VD5 and resistor R1 [3-6, 10-16]. was connected to the network at a voltage of 220V [22]. Consider the operation of a non-contact voltage relay. The appearance of the investigated voltage relay is At a certain value of the input voltage, the unlocking shown in Fig. 3a and the voltage characteristic \"input- signal on the control electrode of the thyristor VT2 output\" in Fig. 3b. reaches a value sufficient to open the thyristor with an Uinput, V 200 Uoutput=f(Uinput) 150 100 50 Uout, V 50 100 150 200 250 Figure 3. The appearance of a non-contact thyristor voltage relay (a) and its “input-output” voltage characteristic (b) Analysis of the study shows that the load Rload is provides a sinusoidal voltage curve on the load, while connected to the network at a voltage of 220 V. Based the return coefficient is close to unity. on the above diagram, the developed voltage relay References: 1. A.M. Burkhankhodzhayev, R.Ch. Karimov. Research of nonlinear electric chains with two and more nonlinear elements in systems power supply / International Scientific and Practical Conf. World science. – 2017, – Т.1. – №1(17). – P. 49-52. 2. Analysis of voltage stabilizers and non-contact relays in power supply systems / R.Karimov, M.Bobojanov // E3S Web of Conferences. – 2020 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601162 3. Controlled switching circuits based on non-linear resistive elements / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901039 4. E. Usmanov, E.Kh. Abduraimov, R.Ch. Karimov. Using proximity relays to improve power quality // \"Bulletin of TSTU\", Tashkent, – 2012, – №3-4, – P.48-51. 29

№ 10 (103) октябрь, 2022 г. 5. Development and experimental study of circuits of contactless device for automation of compensation of reactive power of capacitor batteries / R.Ch.Karimov, M.K.Bobojanov, and others // E3S Web of Conferences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907012 6. Experimental analysis of a prototype voltage stabilizer using an optoelectronic proximity voltage relay / R. Karimov, and ofters // Journal of Physics: Conf. Series. – 2021 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1742- 6596/2094/5/052042 7. Modeling of kinematics and kinetostatics of planetary-lever mechanism / R. Karimov, and others // IOP Conference Series: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012129 8. M.Sadullaev, M.Bobojanov, R.Ch.Karimov. Creation and experimental study of a contactless device for automatic regulation of capacitor batteries power // Journal \"Problems of Energy and Soerces Saving\", Tashkent, – 2021, – №1, – P. 97-106. 9. M.U. Idriskhodzhaeva, R.Ch. Karimov. Research stabilized secondary power sources and used in electroplating-based power supply systems // International Scientific and Practical Conf. World science. – 2017, – Т.1. – № 3(19), – P. 49-50. 10. M.K. Bobojanov, E.G. Usmanov, E. Abduraimov, R.Ch. Karimov. Resistive time delay switches // European Science Review. – 2018, №1-2, – P. 210-212. 11. Non-contact controlled voltage stabilizer for power supply of household consumers / R.Karimov, and others // IOP Conf. Ser.: Materials Sci. and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012120 12. New solutions for controlled compensating devices / R.Karimov, Sh.Dzhuraev, and others // E3S Web of Confer- ences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907021 13. Non-contact voltage relay for switching windings of a boost transformer / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901079 14. Reliability indicators of stabilizing devices in the agriculture electrical supply system / R.Karimov, and others // IOP Conf. Ser.: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012142 15. Rasulov A.N., Karimov R.Ch. The Contactless Relay of Tension in System of Power Supply // EESJ. – 2015. – № 4, – P. 174-178. 16. R.Ch.Karimov. Improvement of capacitor battery power regulation circuit based on contactless switching devices // Journal \"Problems of Energy and Soerces Saving\", Tashkent, – 2021, – №2, – P.145-154. https://t.me/uzenergysaving 17. Rasulov A.N., Karimov R.Ch. The Contactless Thyristor Device for Inclusion and Shutdown of Condenser Installa- tions in System of Power Supply // EESJ. – 2015. – № 4, – P. 179-183. 18. R.Karimov. Using optoelectronic noncontact voltage relay in electrical supply systems // Journal “Technical science and innovation”, Tashkent, – 2019, – № 2. 19. Study of the state of the issue of increasing the quality of electric energy in the power supply systems / R.Karimov // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601163 20. Study of the efficiency of conveyors of mining transport systems of mining complexes / R.Ch.Karimov, and others // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202017703023 21. Каримов Р.Ч. Обзор стабилизатора напряжения на основе тиристоров в системах электроснабжения // Universum: технические науки : электрон. научн. журн. 2021. 9(90). URL: https://7universum.com/ru/tech/archive/item/12285 22. Икромов М.М., Ибайдуллаев М.Я., Каримов Р.Ч. Обзор стабилизатора напряжения на основе транзисторов в системах электроснабжения // Universum: технические науки: электроный научный журнал. 2021. 4(85). URL: https://7universum.com/ru/tech/archive/item/11595 30

№ 10 (103) октябрь, 2022 г. ELECTRICAL ENGINEERING DOI - 10.32743/UniTech.2022.103.10.14414 RESEARCH ISSUES OF OPTOELECTRONIC NONLINEAR CIRCUITS IN ELECTRICAL ENGINEERING Rakhmatillo Karimov Doctor of Philosophy in Technical Sciences (PhD), assistant professor, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent E-mail: [email protected] Dilmurod Xushvaqtov Assistant, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent E-mail: [email protected] ВОПРОСЫ ИССЛЕДОВАНИЯ ОПТОЭЛЕКТРОННЫХ НЕЛИНЕЙНЫХ ЦЕПЕЙ В ЭЛЕКТРОТЕХНИКЕ Каримов Рахматилло Чориевич д-р филос. и тех. наук (PhD), доц., Ташкентский государственный технический университет имени Ислама Каримова, Республика Узбекистан, г. Ташкент Хушвактов Дилмурод Шухратович ассистент, Ташкентский государственный технический университет имени Ислама Каримова, Республика Узбекистан, г. Ташкент ABSTRACT This article discusses the use of discrete control systems in all areas of the economy, carried out on the basis of contactless optoelectronic circuits. The analysis of the properties and characteristics of optoelectronic semiconductor devices and the creation on their basis of a non-contact static single-phase AC switch. АННОТАЦИЯ В данной статье рассматривается вопросы использования дискретных систем управления во всех областях народного хозяйства, осуществляющихся на базе бесконтактных оптоэлектронных цепей. Проводиться анализ свойств и особенностей оптоэлектронных полупроводниковых приборов и создания на их базе бесконтактного статического однофазного выключателя переменного тока. Keywords: optocoupler, optoelectronic integrated circuit, galvanic isolation, contactless optoelectronic flail. Ключевые слова: оптопара, оптоэлектронная интегральная микросхема, гальванический развязка, бескон- тактное оптоэлектронное цеп. ______________________________________________________________________________________ __________ The development of optocoupler technology has receiver of optical radiation, which are optically and confidently entered the stage of mass industrial production. structurally interconnected. For an optocoupler, both the Optocouplers are increasingly being used in electronic input and output parameter is an electrical signal. A feature equipment due to their undeniable advantages associated of optocouplers is the absence of galvanic coupling be- with the fact that the use of optocouplers allows electrical tween input and output signals. The emitter of an opto- decoupling of the power circuit and control circuits without coupler can be a light emitting or infrared diode, an electric the use of additional means. An optocoupler is an opto- light bulb, or a semiconductor laser. As an optocoupler electronic semiconductor device containing a source and receiver, photoelectric devices are used: photoresistors, __________________________ Библиографическое описание: Karimov R.C., Xushvaqtov D.S. RESEARCH ISSUES OF OPTOELECTRONIC NONLINEAR CIRCUITS IN ELECTRICAL ENGINEERING // Universum: технические науки : электрон. научн. журн. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14414

№ 10 (103) октябрь, 2022 г. photodiodes, phototransistors, photothyristors. Optocou- According to the general classification of electronic plers allow you to solve the same problems as individual products, optocouplers belong to the class of semicon- pairs of emitter - photodetector, however, in practice, ductor devices, and optocoupler microcircuits belong to they are usually more convenient, since they have already the class of hybrid integrated circuits. Optocouplers are optimally matched the characteristics of the emitter and divided into diode, thyristor and transistor, and optocou- photodetector and their relative position [1, 20-21]. pler microcircuits are based on one of the listed optocou- plers. The family of output current-voltage Only optocouplers are widely used, which have a characteristics of thyristor optocouplers are similar to direct optical connection from the emitter to the photo- the current-voltage characteristics of conventional thy- detector and, as a rule, all types of electrical connection ristors. The family parameter is the input current through between these elements are excluded. the emitting diode. At a certain value of the input cur- rent, the characteristic is “rectified”, which corresponds Optocoupler technology is divided into two groups to the on state of the photothyristor. The turn-on time of of devices [2-6, 20-21]: the optocoupler depends on the input current. When thy- ristor optocouplers operate in a pulsed mode, with an in- • optocoupler, (elementary optocoupler) consist- crease in the amplitude of the control pulse, it is possible ing of an emitting and photo receiving element; to achieve a significant reduction in the turn-on time, but at the same time, an increase in the turn-off time • an optoelectronic integrated circuit consisting of by 20 ... 30% is observed [1-4, 12-13]. one or more optocouplers and one or more matching or amplifying devices electrically connected to them. It is most expedient to use thyristor optocouplers for galvanic isolation of control logic circuits from high- By design, optocouplers are usually no different from voltage circuits of high-power loads, for shapers of pow- semiconductor devices and integrated circuits. Optocou- erful pulses for controlling high-current thyristors, in- plers and optoelectronic microcircuits are devices with cluding symmetrical ones that switch the load in an electrical input and output signals, characterized in that alternating current network, for secondary power supply inside them the connection between input and output is protection devices [1-4, 14]. carried out using light signals [4-5, 7-9]. Complex automation of production processes re- Consider the main distinguishing features of opto- quires the introduction of modern discrete control sys- couplers: tems in all areas of the national economy, accompanied by the improvement of electrical and electronic devices • the possibility of providing an ideal electrical that provide high reliability, speed, ease of maintenance (galvanic) isolation between the input and output; and ability to work in polluted environments. All this can be done on the basis of non-contact optoelectronic circuits. • low value of control currents, providing a reduc- tion in power consumption by the control system; Consider the principle of building an AC switch based on a thyristor optocoupler, thyristor and semicon- • the possibility of transmitting via an optocoupler ductor diodes. The use of optocouplers in the control circuit circuit, both a pulse signal and a constant component, of power thyristors allows you to adjust their operation and others. mode [3-5, 15]. The capabilities of the optocoupler as an element of In Fig.1. shows a diagram of a non-contact static galvanic isolation are characterized by the maximum single-phase AC switch. The switch contains one thyris- voltage and decoupling resistance Uden, Rden, as well as tor VT, which is included in the diagonal of the VD1-VD4 the through capacitance Сden. As already noted, optocou- bridge from the side of the rectified current. The bridge plers are mainly used as elements of galvanic isolation: is connected to the AC voltage source in series with the for connecting equipment blocks between which there is load Rload [4-5, 16-18]. a significant potential difference, that is, between the power unit and their control system. Another major area of application for optocouplers is the optical, non-con- tact control of high-current and high-voltage circuits [2- 5, 8-11]. Figure 1. Scheme of a non-contact single-phase switch 32

№ 10 (103) октябрь, 2022 г. To turn on the load in the network, it is necessary to plates, which is connected to the network through a sem- apply a positive DC pulse to the control electrode of the iconductor diode. The voltage on the capacitance in such power thyristor. In this case, the thyristor will be in a a circuit remains constant for the entire period of the in- conducting state during the entire period of the alternat- put voltage [4-5, 19-24]. ing voltage and both half-waves of the alternating cur- rent flow through the load. One half-wave of current When the toggle switch is open, the thyristor control passes through the circuit Rload, VD1, VT, VD3, the second circuit is contactlessly disconnected and the load is dis- half-wave through the circuit VD2, VT, VD4, Rload. When connected from the network. The function of a toggle the control signal is removed, the thyristor is locked and switch is usually performed by an electrical, electrome- the load is disconnected from the network. To control chanical or mechanical device. In the first case, it can be the state of the power thyristor, a thyristor optocoupler a low-power key electronic device with a sensor that is VU is used, and the diode circuit of the optocoupler is triggered by voltage, light, temperature, pressure, etc. connected through a limiting resistor to the capacitor Thus, switching of significant power in the load is car- ried out by a low-power signal. References: 1. Analysis of voltage stabilizers and non-contact relays in power supply systems / R.Karimov, M.Bobojanov // E3S Web of Conferences. – 2020 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601162 2. A.M.Burkhankhodzhayev, R.Ch.Karimov. Research of nonlinear electric chains with two and more nonlinear elements in systems power supply / International Scientific and Practical Conf. World science. – 2017, – Т.1. – № 1(17). – P. 49-52. 3. Development and experimental study of circuits of contactless device for automation of compensation of reactive power of capacitor batteries / R.Ch.Karimov, M.K.Bobojanov, and others // E3S Web of Conferences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907012 4. Controlled switching circuits based on non-linear resistive elements / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901039 5. E. Usmanov, E.Kh. Abduraimov, R.Ch. Karimov. Using proximity relays to improve power quality // \"Bulletin of TSTU\", Tashkent, – 2012, – №3-4, – P.48-51. 6. Experimental analysis of a prototype voltage stabilizer using an optoelectronic proximity voltage relay / R. Karimov, and ofters // Journal of Physics: Conf. Series. – 2021 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1742- 6596/2094/5/052042 7. Modeling of kinematics and kinetostatics of planetary-lever mechanism / R. Karimov, and others // IOP Conference Series: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012129 8. M. Sadullaev, M. Bobojanov, R.Ch. Karimov. Creation and experimental study of a contactless device for automatic regulation of capacitor batteries power // Journal \"Problems of Energy and Soerces Saving\", Tashkent, – 2021, – №1, – P. 97-106. 9. M.U. Idriskhodzhaeva, R.Ch. Karimov. Research stabilized secondary power sources and used in electroplating-based power supply systems // International Scientific and Practical Conf. World science. – 2017, – Т.1. – №3 (19), – P. 49-50. 10. M.K. Bobojanov, E.G. Usmanov, E. Abduraimov, R.Ch. Karimov. Resistive time delay switches // European Science Review. – 2018, № 1-2, – P. 210-212. 11. Non-contact controlled voltage stabilizer for power supply of household consumers / R.Karimov, and others // IOP Conf. Ser.: Materials Sci. and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012120 12. New solutions for controlled compensating devices / R.Karimov, Sh.Dzhuraev, and others // E3S Web of Conferences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907021 13. Non-contact voltage relay for switching windings of a boost transformer / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901079 14. Rasulov A.N., Karimov R.Ch. The Contactless Relay of Tension in System of Power Supply // EESJ. – 2015. – № 4, – P.174-178. 15. Reliability indicators of stabilizing devices in the agriculture electrical supply system / R.Karimov, and others // IOP Conf. Ser.: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757- 899X/883/1/012142 16. R.Ch. Karimov. Improvement of capacitor battery power regulation circuit based on contactless switching devices // Journal \"Problems of Energy and Soerces Saving\", Tashkent, – 2021, – №2, – P.145-154. https://t.me/uzenergysaving 33

№ 10 (103) октябрь, 2022 г. 17. Rasulov A.N., Karimov R.Ch. The Contactless Thyristor Device for Inclusion and Shutdown of Condenser Installations in System of Power Supply // EESJ. – 2015. – №4, – P.179-183. 18. R.Karimov. Using optoelectronic noncontact voltage relay in electrical supply systems // Journal “Technical science and innovation”, Tashkent, – 2019, – №2. 19. Study of the state of the issue of increasing the quality of electric energy in the power supply systems / R.Karimov // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601163 20. Study of the efficiency of conveyors of mining transport systems of mining complexes / R.Ch.Karimov, and others // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202017703023 21. The state standard of Uzbekistan is O’zDSt 1050:2004. – №05-02 of January 30, 2004, – P.53. 22. The state standard of Uzbekistan O’zDSt 1044:2003. – №05-19 of July 18, 2003, – P.27. 23. Каримов Р.Ч. Обзор стабилизатора напряжения на основе тиристоров в системах электроснабжения // Universum: технические науки : электрон. научн. журн. 2021. 9(90). URL: https://7universum.com/ru/tech/archive/item/12285 24. Икромов М.М., Ибайдуллаев М.Я., Каримов Р.Ч. Обзор стабилизатора напряжения на основе транзисторов в системах электроснабжения // Universum: технические науки: электроный научный журнал. 2021. 4(85). URL: https://7universum.com/ru/tech/archive/item/11595 34

№ 10 (103) октябрь, 2022 г. ENERGY INDUSTRY DOI - 10.32743/UniTech.2022.103.10.14373 SHORT CIRCUIT CHARACTERISTICS IN ELECTRICAL NETWORKS Zuhriddin Hamidjonov Assistant of the Department of Electric Power Industry of the Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana E-mail: [email protected] Ilyosbek Do‘ltayev Master of Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana ХАРАКТЕРИСТИКИ КОРОТКОГО ЗАМЫКАНИЯ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ Зухриддин Хамиджонов ассистент кафедры электроэнергетики Ферганского политехнического института, Республика Узбекистан, г. Фергана Илёсбек Доултаев магистр Ферганского политехнического института, Республика Узбекистан, г. Фергана ABSTRACT In this article, short circuits occurring in medium and low voltage distribution networks are studied. In it, the situation, effects and damages of short circuits in electrical networks are considered based on switching schemes. АННОТАЦИЯ В данной статье исследуются короткие замыкания, возникающие в распределительных сетях среднего и низкого напряжения. В ней рассматривается ситуация, последствия и повреждения коротких замыканий в электрических сетях на основе коммутационных схем. Keywords: short-circuit, electrical networks, consumer, short-circuit performance characteristics. Ключевые слова: КЗ, электрические сети, потребитель, КЗ. ________________________________________________________________________________________________ Short-circuit operating cases, they are to be graphically displayed in the form of a vector or phasor diagram. In general, In this case, the consumer resistance is short-circuited vector diagrams are used for networks operated with by a fault (by metal or by arcing) so that a very high line sinusoidal voltages in order to better illustrate the current flows. A distinction must be drawn between processes. symmetrical (three-pole) and asymmetrical (one or two-pole) short circuits. Only the three-pole fault can be The representation of an AC quantity as a vector represented in the single-phase equivalent circuit dia- makes two statements about this quantity: namely about gram. That is why only this type of fault is examined in the value (vector length) and the phase relation (vector the following experiment. When a short-circuit occurs, direction). The sinusoidal curve of the quantity can be the transmitted power is generally much greater than the recorded as a projection of the rotating point of the vector thermal limit rating of the transmission line. The faulty on the ordinate of the coordinate system; the angular condition must thus be recognized by the network velocity ω is equal to the circuit frequency 2πf of the protection device and switched off within the shortest oscillation. Expressed the other way round, a vector rep- possible time. In order to better understand these three resents a snapshot of a sinusoidal phenomenon. Vectors __________________________ Библиографическое описание: Hamidjonov Z.M., Do'ltayev I. SHORT CIRCUIT CHARACTERISTICS IN ELECTRICAL NETWORKS // Universum: технические науки : электрон. научн. журн. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14373

№ 10 (103) октябрь, 2022 г. can be geometrically added and subtracted, thus allowing, to this. For practical reasons, the voltage vector at the line e.g., the voltage drops in a network to be easily illustrated. end is selected as the reference vector when representing In this connection, the use of the complex calculations the operating performance of a transmission line. in which the vectors are shown in the Gaussian plane is favourable. By multiplication by the complex operator j, The following illustrations show the single phase for example, a 90° rotation of a vector is achieved. equivalent circuit diagram of a loss-free transmission However, complex representations are used here only line in the operating cases described above with the cur- when the relationships shown in the vector diagrams are rents, voltages and voltage drops indicated; the respec- to be evaluated mathematically. One vector is selected tive combined voltage and current vector diagram is arbitrarily as the reference vector with the phase angle 0°. included. The following uniform indices are used for the All other angles in the vector diagram are with reference representations: Figure 1. Single-phase equivalent circuit diagram of a loss-free three-phase transmission line in no-load operation, with appropriate vector diagram Beginning of line point 1 the most un favourable case. Due to the geometric addition End of line point 2 of the voltage drops, the mathematical treatment be- Neutral point point 0 comes much more complex, while the results deviate insignificantly from those determined through the study With regard to the experiment procedure, it must be of a loss free transmission line. In order not to lose sight of what is important, the following derivations refer to mentioned that the relationships barely change when the loss-free transmission line. Deviations in the perfor- mance of real, i.e. low-loss transmission lines are noted studying low-loss transmission lines, as the effective re- in the appropriate places. sistance R of the high and ultra-high voltage lines is equal to approximately 10% of the reactance X = ωL in 36

№ 10 (103) октябрь, 2022 г. Short-circuit performance characteristics Figure 2. Single-phase equivalent circuit diagram of a loss-free three-phase transmission line with short-circuit and coresponding vector diagram In this type of operation, the transmission line is angle ω1 between U1 and I1 is exactly 90°; for low-loss short-circuited at the end, i.e. I2 = I12 and U2 = 0. The transmission lines, it is still about 85°. current I1 at the beginning of the transmission line re- sults from the geometric addition of the currents I10 In the experiment procedure the three operating through the operating capacitance CB/2 at the beginning cases described above are simulated first. Afterwards of the line and I12 through the line inductor. The phase the performance of the transmission line model is inves- tigated for mixed ohmic-inductive and a mixed ohmic- capacitive load. References: 1. Schlabbach J., & Schlabbach, J. (2005). Short-circuit currents (Vol. 51). Iet. 2. Hamidjonov Z.M (2022). Elektr energiyasini tejash usullari. НТЖ ФерПИ, 1(6), 184-186. 3. Hamidjonov Z.M (2022). Elektr uzatish liniyalarida quvvat o‘tkazuvchanligini qobiliyatini oshirish usullari. НТЖ ФерПИ, 1(6), 64-69. 4. Hamidjonov.Z.M (2022). Yuqori kuchlanishli elektr uzatish liniyalarini elektr o‘tkazuvchanlik qobiliyatini oshirish usullari. НТЖ ФерПИ, 2022, 1(1), 191-195. 5. Mirkamol R., & Zuriddin X. (2019). Увеличение эффективности турбогенераторов теплового электрического центра. Journal of Technical sciences, (3), 10-13. 6. Kh E.A., Hamidjonov Z.M., Rakhimov M.F., & Abdullaev A.A. (2019). Increasing efficiency of turbo generators in heat electric centers. European science, (6), 48. 7. Hamidjonov Z. (2021). Elements of power grid design. Uzbekistan Journal of Engineering and Technology. 8. Zuhriddin H., & Saida I. (2022). ELEKTR ENERGIYASINI TEJASH MASALALARI. Involta Scientific Journal, 1(7), 69-72. 9. Hamidjonov Zuhriddin (2021). ELEMENTS OF POWER GRID DESIGN. Universum: технические науки, (11-6 (92)), 91-93. 10. Зухриддин Маъруфжонугли Хамиджонов (2020). ЭЛЕКТР ТАРМОҚЛАРИНИ ЛОЙИҲАЛАШ ЭЛЕМЕНТЛАРИ. Science and Education, 1 (9), 265-270. 11. Эралиев Абдинаби Хакимович, Хамиджонов Зухриддин Маръуфжон Угли, Рахимов Миркамол Фархотжон Угли, & Абдуллаев Абдувохид Абдугаппар Угли (2019). Повышение эффективности турбогенераторов в теп- лоэлектрических центрах. European science, (6 (48)), 37-40. 12. Hamidjonov Zuhriddin, Abdullaev Abduvokhid, Ashurov Abdulahad, & Ergashev Komiljon Ravshan O'G'Li (2021). REACTIVE POWER COMPENSATION IN POWER GRIDS. Universum: технические науки, (11-6 (92)), 87-90. 37

№ 10 (103) октябрь, 2022 г. 13. Hamidjonov Z.M (2022). O‘zbekiston Respublikasida qayta tikanadigan energiya manbalaridan foydalanish istiq- bollari. НТЖ ФерПИ, 1(6), 112-116. 14. Farxodjon o’g’li R.M., & Zuriddin Ma’rufjon o’g X. (2019). ISSIQLIK ELEKTR MARKAZI TURBOGENERA- TORLARI SAMARADORLIGINI OSHIRISH. Техник тадқиқотлар журнали, (4). 15. .Nabievna N.F., Valijonua A.A., & Abdulvosievna K.F. (2020). Efficiency of using information resources and technology in students research work. ACADEMICIA: An International Multidisciplinary Research Journal, 10, 1680-1684. 16. Комолддинов Сохибжон Солиджон Ўғли, Кодиров Афзал Ахрор Ўғли, Ашуров Абдулахад Валижон Ўғли, & Тухтасинов Саидисломхон Хасанхон Ўғли (2022). РЕГУЛИРОВКА ИЗМЕНЕНИЯ НАПРЯЖЕНИЯ В УСТРОЙСТВЕ АВТОКОМПЕНСАЦИИ (НА ПРИМЕРЕ ОДНОЙ ФАЗЫ). Universum: технические науки, (5-9 (98)), 49-54. 17. Qodirov A.A., Ashurov A.V. (2022). Irrigatsiya nasoslarining energiya samaradorligini ashirishning innovatsion texnologiyalarini ishlab chiqish. FarPI Respublika ilmiy-texnika jurnali, 64-68. 18. Эргашев Комилжон Равшан Угли, Ашуров Абдулахад Валижон Угли, & Бойназаров Бекзод Бахтиёрович (2021). МЕТОДЫ РЕГУЛИРОВКИ НАПРЯЖЕНИЯ. Universum: технические науки, (11-5 (92)), 58-62. 19. Ashurov A.V. (2020). Efficeincy of using information resources and technology in students’ research work. ACADEMIKA An International Multidisciplinary Research Journal, (11), 1686-1689. 20. Ashurov A. V, Nasretdinova F. N, Qobilov M.X. (2022). Havo liniyalarida toj razryadining hosil bo‘lishi va ularni bartaraf qilish usullarini tadqiq etish. FarPI Respublika ilmiy-texnika anjumani materiallari, 152-158. 21. Halilova F.A. Nasretdinova F.N. Ashurov A.V. (2021). Ta’limda o‘quv faollikni oshirish omillari. ACADEMICIA: Xalqaro ko'p tarmoqli tadqiqot jurnali, 4(11), 1090-1094. 22. Kamoliddinov S.S., Qodirov A.A., Ashurov A.V., To‘xtasinov S.X. (2022). Регулировка изменения напряжения в устройстве автокомпенсации (на рпимере одной фазы). UNIVERSUM Технические наука, 5(98). 23. Hamidjonov Z.M. (2021) ELEKTR ENERGETIKASI TA’MINOTI TIZIMI UZLUKSIZLIGINI TA’MINLASH DOLZARB MUAMMOLARINING SAMARADOR YECHIMLARI 1, 19-21. 24. Абдулхамидов А.А. Абдуллаев Абдувохид. Муминов Бобур Применение виртуальной лаборатории в учеб- ной работе, 64-65. 25. Abdullaev A. (2020). ПЕРЕХОДНЫЕ ПРОЦЕССЫ НА ИСТОЧНИКАХ ПИТАНИЯ СВЕТОДИОДОВ И МЕТОДЫ ИХ УСТРАНЕНИЯ. Главный редактор: Ахметов Сайранбек Махсутович, д-р техн. наук; Заместитель главного редактора: Ахмеднабиев Расул Магомедович, канд. техн. наук; Члены редакционной коллегии, 44. 26. Исмоилов Иброхимжон Келдибоевич, & Турсунов Дониёр Абдусалимович (2020). ПРИМЕНЕНИЕ МЕТО- ДОВ РОБАСТНОГО УПРАВЛЕНИЯ В СИСТЕМАХ РЕГУЛИРОВАНИЯ СИНХРОННЫХ ГЕНЕРАТОРОВ. Universum: технические науки, (12-5 (81)), 28-31. 38

№ 10 (103) октябрь, 2022 г. DOI - 10.32743/UniTech.2022.103.10.14364 ANALYSIS OF THE DESIGN AND OPERATIONAL ADVANTAGES OF VACUUM CIRCUIT BREAKERS Sona Rzayeva Head of laboratory Department of Electromechanics, Azerbaijan State University of Oil and Industry, Azerbaijan, Baku E-mail: [email protected] Nigar Ganieva Lab. Department of Electromechanics Azerbaijan State University of Oil and Industry, Azerbaijan, Baku E-mail: [email protected] АНАЛИЗ КОНСТРУКТИВНОГО И ЭКСПЛУАТАЦИОННОГО ПРЕИМУЩЕСТВА ВАКУУМНЫХ ВЫКЛЮЧАТЕЛЕЙ Рзаева Сона Вагиф зав. лаб. кафедры Электромеханика, Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджан, г. Баку Ганиева Нигяр Акиф лаб. кафедры Электромеханика, Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджан, г. Баку ABSTRACT The article considers medium voltage vacuum circuit breakers up to 35 kV from leading foreign companies. The design and operational advantages of vacuum circuit breakers are analyzed. Vacuum circuit breakers of various manufacturers meet the requirements and for one voltage class differ in technical parameters, purpose, type of drive and its kinematics, dimensions, weight, design and are the dominant type of switching device in networks of medium voltage class 6 kV-35 kV. АННОТАЦИЯ В статье рассмотрены вакуумные выключатели среднего напряжения до 35 кВ ведущих зарубежных фирм. Проанализированы конструктивные и эксплуатационные преимущества вакуумных выключателей. Вакуумные выключатели различных производителей соответствуют предъявляемым требованиям и для одного класса напря- жения различаются техническими параметрами, назначением, типом привода и его кинематикой, габаритами, массой, конструкцией и являются доминирующим типом коммутационного аппарата в сетях среднего класса напряжения 6 кВ-35 кВ. Keywords: vacuum circuit breakers, switchgear, operating costs, SF6 gas, insulating material. Ключевые слова: вакуумные выключатели, распределительное устройство, эксплуатационные затраты, элегаз, изоляционный материал. ________________________________________________________________________________________________ In the last decade, a large number of companies and The design advantages of vacuum circuit breakers enterprises have been successfully working in the field are high speed and current shutdown at its first zero of development and production of high-voltage vacuum crossing after the contacts are separated; high rate of res- circuit breakers in far abroad countries. These are ABB, toration of the electrical strength of the intercontact gap Siemens, Alstom (Areva), Schneider Electric and others. in vacuum after the arc is extinguished; high switching __________________________ Библиографическое описание: Rzayeva S., Ganieva N. ANALYSIS OF THE DESIGN AND OPERATIONAL AD- VANTAGES OF VACUUM CIRCUIT BREAKERS // Universum: технические науки : электрон. научн. журн. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14364

№ 10 (103) октябрь, 2022 г. and mechanical life, determined by the high wear re- of a complete switchgear (CSG) and a prefabricated sistance of contacts when switching rated currents and one-way service chamber (PSC). short-circuit currents; explosion and fire safety, even when working in aggressive environments; wide operat- It should be noted that if there are no more than ten ing temperature range; increased resistance to shock and enterprises that produce vacuum interrupters in the world, vibration loads; small dimensions and weight give an then there are several times more enterprises producing advantage when performing installation; the possibility vacuum circuit breakers based on these chambers. There of arbitrary spatial arrangement of the VDC without de- are even more enterprises that use ready-made vacuum teriorating the quality parameters of the circuit breaker, circuit breakers for completing switchgear cells which creates additional convenience during installa- and complete transformer substations, not to mention tion. different companies and dealer organizations involved in the sale and supply of foreign switches and complete Operational advantages include: high reliability; switchgear [6, 2]. lower failure rate; shorter duration of repairs; noiseless- ness; no emissions of arc combustion products and ex- At the same time, it is extremely difficult to find de- ternal effects when short-circuit currents are switched tailed descriptions of the design and features of a partic- off; lack of environmental pollution; reduction of inter- ular switch. Basically, these are commercial offers and ruptions in power supply associated with the implemen- promotional materials that do not allow you to evaluate tation of routine maintenance; no need for current, the advantages and disadvantages of a particular device, medium and major repairs; low operating costs associ- the choice of which depends on many factors, ranging ated with the absence of the need to maintain oil and from personal attachments to price. Siemens is the compressor facilities. leader in the development and production of vacuum switching equipment. Figure 1 shows Siemens vacuum In addition, vacuum arc chambers do not require re- technology, which covers the entire range of require- plenishment of the arc quenching medium; they have ments for power switching devices with voltage classes low power consumption in the auxiliary power supply from 6 kV to 35 kV [7]. circuit and are compatible with any existing types of cells Figure 1. Vacuum switching technology from Siemens The basic principles of this equipment were laid 3AH4 - circuit breaker with a very high switching several decades ago during fundamental research, which life for 120,000 cycles; allowed Siemens specialists to create a powerful vacuum arc chute, and on its basis, in the early 70s, the first serial 3AH5 - circuit breaker with improved efficiency for vacuum circuit breakers of types 3AF and 3AG. 10,000 cycles. Improved special geometry of arcing contacts, pro- All 3AH series circuit breakers provide high speed prietary formulation and technology for manufacturing and synchronization capability, automatic reclosing for contact materials, as well as extensive experience gained currents up to 31.5 kA, breaking of short-circuit currents in the manufacture and operation of about 300,000 circuit with a very high current slope, switching of overhead breakers formed the basis for the creation of a new series and cable lines, switching of electric motors, switching of 3AH circuit breakers. of transformers and reactors, switching of capacitor banks, switching circuits of electrostatic precipitators These are five switches for all types of switching: and electric arc furnace power supply (for this task, a 3AH1 - standard switch for 10.000 cycles, requiring 3LH5 switch with improved efficiency is used). no maintenance; 3AH2 - circuit breaker with increased switching life In voltage classes from 6 kV to 35 kV, the 3AH se- for 60,000 cycles; ries covers the entire range of switching powers. At the 3AH3 - standard high-power switch for 10.000 cycles; same time, the circuit breakers reliably operate both dur- ing long breaks between shutdowns and in the mode of frequent switching, which makes them indispensable for 40

№ 10 (103) октябрь, 2022 г. use in urban power supply networks and industrial en- Schneider Electric's HVX vacuum circuit breakers terprises. are the latest series of vacuum circuit breakers that com- bine the latest technology. Schneider Electric HVX vac- Switches of the series have a long service life, are uum circuit breakers are suitable both for use in new air- characterized by increased reliability and do not require insulated switchgear and as replacements for obsolete maintenance and care during the entire service life. This circuit breakers in refurbishments. Schneider Electric's is ensured by the use of bearings with non-wearing fric- HVX vacuum circuit breakers are designed to meet the tion surfaces and the use of special ageless lubricants, as latest requirements and have a simple and reliable de- well as high workmanship [5]. sign, simple and safe to operate, which ultimately allows you to significantly reduce your operating costs in the Vacuum circuit breakers HVX Alstom advanced de- future. Schneider Electric HVX vacuum circuit breakers velopment for use in modern switchgear with air insula- provide protection for all connections (fig. 3). tion (Fig. 2). The HVX series vacuum circuit breaker is an advanced development for the latest air insulated switchgear applications. It is characterized by compact structure, small overall dimensions, operator-friendly control system and modern multifunctional industrial design. Figure 2. Alston vacuum circuit breakers Figure 3. Schneider Electric HVX vacuum circuit breakers Thus, the circuit breaker fully meets modern market requirements, while its compact dimensions, without the One of Schneider Electric's vacuum circuit breakers use of additional solid insulating material, when in- is the three-pole SF2 medium voltage circuit breakers stalled in switchboards, provide sufficient dielectric designed for indoor installation. They are used as strength. switching and protection devices in primary and second- ary distribution networks of 20 and 35 kV. Main characteristics of HVX Alstom circuit break- ers: The auto-compression method of arc extinguishing used in the circuit breakers makes it possible to turn on • design versatility; and off any loads, capacitive and inductive, without • compact and reliable single-shaft spring drive overvoltages at the moment of switching. Thus, the SF6 mechanism; switch is well suited for controlling capacitor banks • functional placement of working and signal ele- (Fig. 4). Vacuum circuit breakers, due to their merits, are ments of the system; already a serious competitor to circuit breakers with SF2 • controls for the operator; insulation for voltages of 110 kV and higher, although • absence of unprotected poles; SF2 circuit breakers are serious competitors for these • hanging vacuum chamber, protected from external voltage classes. forces; • the pole shell performs the functions of an insu- lating support; • the pole sheath provides a high degree of me- chanical protection; • does not require maintenance. Applications: Overhead transmission lines; cable power lines; electric motors; transformers; generators; capacitors 41

№ 10 (103) октябрь, 2022 г. Figure 4 Vacuum circuit breaker SF2 rious, and possibly insurmountable, difficulties. In addi- tion, on the basis of vacuum circuit breakers, it is hardly At the same time, the creation of vacuum circuit possible to create complete switchgears isolated from the breakers for voltages of 500 kV and higher presents se- external environment, as is the case when using SF2 gas. Thus, we considered the design features of vacuum circuit breakers presented on the market of switching equipment, the state and prospects for the development of modern vacuum and SF2 circuit breakers and complete switchgears (cells) based on them. Conclusion 1. Significant advantages of vacuum circuit breakers over other types of switching devices and one can say their only drawback today is the cost. 2. The main disadvantage of SF2 circuit breakers is the impact of SF6 gas on the environment, while vacuum circuit breakers are environmentally friendly devices. 3. Vacuum circuit breakers are the main mass switching device for voltages of 6kV - 35 kV and, pos- sibly, they will replace the positions of SF2 devices for voltages of 110 kV - 220 kV. References: 1. Aleksandrov Q.N., Afanasyev A.I., Borisov V.V. i dr. Ekspluatasiya elektricheskix apparatov/; Pod red. Q.N. Aleksandrova. - SPb.: Izd. PEIPK, 2000. - 307 s. 2. Aleksandrov Q.N., Borisov V.V., Evdokimov Q.A. i dr. Vakuumnie kommutasionnie apparati / - SPb., 1995. - 62. 3. Vakuumnie vikluchateli. http://www.gigavat.com/viklyuchateli vakuumnie.php. 4. Visokovoltnie vakuumnie vikluchateli. Ustroystvo i prinsip raboti. http://electricalschool.info/main/visokovoltny/1687- vvsokovoltnye- vakuumnye -vyklj uchateli. html. 5. Visokovoltnie vikluchateli: eleqaz protiv vakuuma. http://forca.ru/stati/podstancii/wsokovoltnye-wklyuchateli- elegaz-protiv- vakuuma.html. 6. Nabatov K.A., Afonin V.V. Visokovoltnie vakuumnie vikluchateli raspredelitelnix ustroystv. Tambov. Izdatelstvo VPO TQTU. 2010. 7. Nazarichev A., Suvorov A., Chayka V., Tadjibaev A. Perspektivi I primeneniya vakuumnix vikluchateley 110-220kV. http ://forca.ru/ stati/podstancii/. 42

ДЛЯ ЗАМЕТОК

Научный журнал UNIVERSUM: ТЕХНИЧЕСКИЕ НАУКИ № 10 (103) Октябрь 2022 Часть 7 Свидетельство о регистрации СМИ: ЭЛ № ФС 77 – 54434 от 17.06.2013 Издательство «МЦНО» 123098, г. Москва, улица Маршала Василевского, дом 5, корпус 1, к. 74 E-mail: [email protected] www.7universum.com Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3 16+


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook